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A family of Hopf algebras coacting on k[x,y]/(xy)
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Introduction

In 2X2 matrix bialgebras B; were defined for A€k—{0, 1,
+,/—1}, where % is the base field, and representation theory of B: has
been developed. Among others, B in cosemisimple if A is not a root of 1.
In this paper we study a Hopf algebra H, generated by B..

The bialgebra B, is defined by generators x;, 1<7,7<2, and relations
under which the matrix X®X, with X=(x;), preserves a certain decom-
position of £*@%*. The Hopf algebra H, is obtained by adjoining S(B,)
to B:, where S is the antipode, and imposing some relations on x:, S(xs).

Representation theory of H: goes mostly parallel to that of Bi.. All
simple H;-modules and comodules have dimensions 1 or 2. However H,
is not cosemisimple.

The bialgebra pairing ws.: BiX B,—k introduced in extends to
a bialgebra pairing %.: H:X H.—k, nondegeneracy being preserved. In
fact this requirement naturally leads us to the definition of H..

The category of comodules over Hi has a braid structure defined by
the pairing wf.°(1X "), where t*: H,— H{°® is a certain bialgebra isomor-
phism. Namely, we have a family of comodule isomorphisms bx,y :
X®Y—YR®X satisfying the hexagon axioms ([JS],[Y]). For simple
comodules X and Y, bx,y are explicitly computed.

We could start with the Yang-Baxter operator Ri: =bg:2. The con-
struction of Faddeev, Reshetikhin and Takhtajan yield the two bialgebras
A(R:) and U(R;), where the latter is a subbialgebra of the dual of the
former ([FRT]). We have B,=A(R)), and if A is not a root of 1, then H,
= U(RA).

We construct H; in Section 2. The algebra structure of H; is inves-
tigated in Section 3, where another set of generators of H, is more conve-
nient. The defining relations among them are listed in [Theorem 2.3
The classification and the tensor decomposition of simple comodules are
given in Section 6. The pairing w%,. is defined in Section 5 and computed
explicitly on the coradicals of H;, H. in Section 7. The braid structure
of the comodule category and the construction of H,; from R, are discus-
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sed in Section 8.

Conventions. Throughout the paper the field # is algebraically closed
and char(k)#2. The dual space of a vector space V is denoted by V*.
The tensor algebra on V is denoted by 7T(V). For a bialgebra B the
categories of left B-modules and right B-comodules are denoted by
B-Mod and Comod-B respectively. Suppose B has the antipode S. If
V'is a left B-module with structure map o : B—End( V), then we give V*
the left B-module structure #°p°S, where ¢t :End(V)—>End(V*) is the
canonical map. If V is a finite dimensional right B-comodule with struc-

ture map w:End(V)*—B, then we give V* the right B-comodule struc-
ture Sewot*,

1. Preliminary about B;

In this section we reproduce from some basic definitions and
formulas about the bialgebra B;, and in addition, give a result (Proposi-
tion 1.1) which motivates us to make the definition of H, as in Section 2.

(a) Definition of Bi: We fix A€k such that A*#0, 1 and choose a
square root A throughout. Let V=F%? with basis e1=(1,0), e2=(0,1).
Define subspaces V*, Vi of VRV by

V'=(a®ea+aQea, e®e+ Qe
Vv[:<e1®€2— €2®€1, (/1"‘/1-1 ‘2)81@81 —(/1+/1—1 +2)€z®ez>.

The bialgebra B, is generated by x;, 1<i,7<2. The definining relations
are given by the conditions

(XQX)(VH)CV*, (XQX)NVi)C Vi,

where X is the 2X2 matrix (x;) and V=F% is viewed as the column
vector space. B, becomes a bialgebra with comultiplication A and counit
€ given by

A(xz'j) = ;xik@)xkj; E(xij) = 0j.

The map 6 : V— V®B, taking e; to 3:e:®x:; makes V a right B;-comod-
ule, which is called the basic comodule. The above conditions on X®X
mean that V', V" are subcomodules of VR V.

We set

fzé(?ﬁﬁ‘?hz)

g:%(XU—Xzz)
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s=i( L X2+ L x)
2\VA—=y2 7 A+ A
t=i< 1 X127~ L x)

2\VA=YA A+t

Then the defining relations for these generators are as follows :

fo=gf=s*+1*

st=ts=0

fs=Asg gs=A""sf
A=A gt =Atf.

Note that B,=DB;, and if we write s=s(/1), t=¢(J/1), then s(/1)=
—t(y2™Y), t(yA)=—s(VA71). The linear automorphism & : e;—(—1)%e; of
V' induces the bialgebra automorphism o: B,—B:=B;-.. We have o¢: x;
=(=1)"xg; ff, g—g, sSWA)tWATY), HA)=s(VAT.

(b) Bi-modules: For a, 8, Yk we have representations ms(a, B),
ma, B) : B—M,(k) and x:(y): Bi—Fk such that

ms(a, B):
fH<agB agﬂ% gH(aEB a—?ﬂ)é
s0 tH(a/-(i)-,B “5'8>_~/21
mea, B):
fH(m(:B ag/?)% g <a53 aiﬁ)liz_l
T
x(y)

f—0, g7y, s—0, t—0.

Let Mis(a, B), Mi(a, B), Li(y) be the Bi-modules with underlying

spaces k% k% k and actions ms(a, B), m(a, B), x:(y) respectively. We
write e1=(1,0), e2=(0, 1)€k*>. The subscript A will be omitted if no confu-
sion may arise.

We have commutative diagrams
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B; —G’ Bi- B l—d" Bj-1
rila, B) | |mida )  mla )] | 74, 8)
My(k) —ld_’ My(k) MZ(k)T My(k)

where 0 My(k)—My(k) is the map e;—(—1)""’e; with e; the matrix units.
If a#++x 8, we have isomorphisms of B:-modules

M(a, B)RL(y)=M:(Aay, ABy)=L(7)QM;(a, )
M(a, BYRL(7)=Ms(A ay, 7' By)= L(y)QM.(a, B)

with correspondences

€1®1 A (&'+ ,8)82 A 1®€1
—€2®1 A (&"“B)el > 1®€2
for the both lines.

The Bi-module Ms(1,1) has the submodule ke.~L(A) and we have
Ms(1,1)/kea=k. Also M.(1,1) has the submodule ke.=L(A"!) and we have

M.(1,1)/kes=k. We have a B;-isomorphism
Ms(1, 1)QM.(1, =M1, 1)Q@Ms(1,1)
ei®ejH(-—1)(i_1)(j_l)ej®ez’-

Let @, 8€,—{0}. Then we have a B;-isomorphism

M(a, B)@Mt(a'_l, B-I)EMS(L 1)®Mt(1, 1)
(a+Be®et(a—pea®e < a®e
(Q_B)el®el+(a+ 3)€2®82 o e
(a+5)el®€2+(ﬂ_3)€2®€1 o a®e,
(a_B)el®€2+(Q+B)ez®e1 A €2®e1,

which is verified directly.
Combining these facts, we obtain the following.

PROPOSITION 1.1. Let a, B3€k—{0).
(i) We have Bi-module maps

7 k—>Ms(a, OM.(a!, f7)
1—=(a—RB)e®ea+(a+p)e:Res
€: Ms(a, B)QM.(a!, 7))k
a+p if 1=7=1
eiQe;—(a—pB) if i=;=2
0 if 7.
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(ii) Ms(a, QM (a™t, B7Y) has submodules

Js=<(a—R)e®e:+(a+B)e:Re1, (a—B)eQe+(a+B)e:Rex)
]t:<(a’+,8)€1®€2+(a/—,8)€2®€1, (a—B)el®el+(a+ B)ez®€2>

and we have

]sm]t:Im% Jst+J:=Kere,
Js/(JsNJ)= L(A), Jo/ (JsNJ)=LQ2A™).

(iii) We have a Ba-isomophism

Ms(a, )M (a!, B =M™, B7)QOMs(a, B)
€1®€1 « €1®€1

e © —ex@e;

B/a;a/ﬁ’ e Res+ B/a;a/ﬁ e®ey

€1®€2 «>

€2®€1 « M&@ez +M€z®e1.

(¢) Bi-comodules: Define the graded algebra
Si=@®nSin=T(V)/(Vi).
Set

fu:(/'{—].)el‘f‘(/H*l)ez
fAZZ(A—l)&—(A"f‘l)ez.

Then Vi =<{fuQfw, f12Q%1>, hence Si» has the basis fii, f& for n>0.
The algebra S.i becomes a graded right Bi-comodule algebra by the
comodule structure of V.

(d) The bialgebra pairing B.X B,—k: A bilinear map 7: AXB—k
with A, B bialgebras is called a bialgebra pairing if the adjoint maps "7 :
A—B* rn*:B—A* are algebra maps. In this case, right B-comodules
are viewed as left A-modules through *x. Thus we have a functor
Comod-B— A-Mod, which preserves tensor products. This is a full em-
bedding if 7 is nondegenerate.

Let A, p€Fk with A% ¢*+0,1. In [TT, Section 5] a bialgebra pairing
wae . BiX B.,—k is defined so that the diagram

#
Wi,p

B, B;

ms(l,h‘ l

End(V)
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commutes, where the vertical arrow comes from the comodule structure
V->V&®B.
The values of w=uw.,. on the generators f, g, s, ¢t are as follows.

w(f, f)= 7
w(f, g)*%ﬂ
g, =57

w(g, 9)= —7/1/1

w(t, t):~%ﬁ«/ﬁ
w(—, —)=0 for the other pairs of f, g, s, t.

If A, 1 are not roots of 1, then wa, is nondegenerate.

The definition of the Hopf algebra H; given in the next section is
based on the following consideration. Let ji.:Comod-B.—B:-Mod be
the functor associated with w... The last commutative triangle means
that 7..(V)=Ms(1, 1), where V is the basic B.-comodule. If we have a
bialgebra map B.—H with H Hopf algebra and a bialgebra pairing B X
H—Fk extending w.,., then j.,. factors as

Comod- B,—Comod-H->B,-Mod.

In particular, 2(V*) is a dual object of j;.(V) in Bi~Mod. On the other
hand, [Proposition 1.1 (i) and (iii) show that Mis(1, ) and Mi.(1, ™)

are dual objects to each other. So one may expect to construct such an H
from Mis(1, 1) and M;.(1, ™).

2. The Hopf algebra H,;

In this section we construct the Hopf algebra H,. We fix A€£ such
that A*+0,1. Let V= V'=Fk? with basis es=(1,0), e,=(0,1). We consider
the following subspaces and maps.

VR VDO V™*, Vi: defined in Section 1
VRVDV™, Vit Vr=V*, Vir=Vi = Vi
B> VRV :

lF—’(l—/i)&@erf-(l—F/i)ez@ez
VRV —>k:

ei®e - 141
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€2®€2H—(1—A)
e:Qe;— 0 for i+j
VRV LSV :
a®e — ei®e
Qe —e®e:

-1 -1

e®er 2/1 er®er+ /H_Z/l exXe
-1 31

exQe — —{_2/1 €1®€2‘|';t ZA e e

VRV DWin, Wi
Wan=<{1-De®e:+(1+1)ex®en, 7:(1)>
VVAz:<(1+/1)e1®ez+(1—/1)ez®€1, 77&(1)).

These data define the bialgebra H: as follows. Let F be the tensor
algebra on End(V)*®End(V’)*. The coalgebra structure of End
(V)*®End(V’)* extends to a bialgebra structure of F. The canonical
maps V—VQ®End(V)*, V'—»V'®End(V')* make V, V’ right
F-comodules. Define H; to be the largest quotient bialgebra of F such
that the above subspaces and maps are Hi-subcomodules and
H;-comodule maps ((M], [TD.

Let x;, x5 H, denote the images of the matrix coordinates e, €End
(V)*, e$€End(V')* respectively. Then Hi is generated by x, x, and
using the matrices X=(xy), X'=(x%), the defining relations are expressed
as follows.

2.1) (i) (X®X)(VHCV', (XQX)Vi)CVr
(i) (X'QXNVHCV™, (XQXNVI)CTVi
(ii) (XX m=m, (XX )=e
(iii) B(X®X)=(X®X")B
(iv) (XQX )W) Wi, 1=1,2.

The coalgebra structure of H, is given by
A(xij)zzk‘.xik®xkjy e(x,-j)=8ij
A(xl-j)=§x2-k®x;j, 6(96:7):5:3,

We have bialgebra maps
ti: Bi—H; XijF>Xi5

¢ 2 Ba-— H; XX

PROPOSITION 2.2.  The bialgebra H; has the antipode S such that
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S(X>___<1—/1 0 )tX,<1—/1 0 >—1

0 1+A 0 1+A
a (1=270 0, <1—/1—1 0 )—1
S(X)_( 0 1+/1-1>X 0 1+A7Y

The proof is sketched at the end of this section.
Set

f:%(xu‘*‘xzz)

g:%(ﬁﬁl“xzz)

s———i< L X12+ 1 X >
2 \//1__«/7_1 12 \//T+ /1_1 21

t

o e
2 \//1—_\/71—_1 12 \//T‘|‘x/7-l 21
f’Z%(xh-l-xéz)

g’=%(xil—xéz)
’r 1 1 ’ 1 ’
AR R R e
_1 1 - 1 ,
B 2<¢"-1—J’“2 J/i—*‘+ﬁx“>
THEOREM 2.3. The defining relations of H. are equivalent to the fol-
lowing :

(1)

S

tl

fg=gf=s"+1*
st=ts=0
fs=Asg ft=2"'tg
gs=A"'sf  gt=Alg

(1)
fg=gf=s*+t"
St=t's'=0
fis'=1"sg  ft'=A"¢g
gs’=aAs'f gr=1"tg

' +g9'=1
fg=—Ass"+A7'tt’
gf =A"'ss'—Att’
st’'=ts'=0
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(3)
= fg=gf’
agr=r 99=g9’
s's=—ss’ tt=—tt'
t's=s"t=0

(4)

fs'=—sg=—Af's=As'g
fi=tg=A"ft=A"tg
gs'=sf'=A""g's=A"'s'f
gt'=—tf'==Ag't=At'f.
The proof is outlined at the end of this section.
The antipode S acts on the new generators as follows.

S(H=r S(f)=r1
S(g)=g’ S(g)=g
S(s)=t' S(s)=t
S(t)=—5s S(t')=—s.

We have 1-dimensional H:-comodules
UA . Wu/(Wum VVAZ), U/{ L= VVAz/( VVum le).

Let z, 27€ H, be the corresponding group-like elements respectively. Then

z=xuxéz+%xmxé1 =ff'—gg —2(ss’—tt)

2 =X1%X2 +%47X12x§1:ff/—gg/+2(88'— ).

We have a bialgebra isomorphism
H—H- : xi; F—’?C;'j, x;ﬁ—’ Xij.

This can be seen from the identities 7.:1=—A"'Biom, e-1=A"'€0 1!, Bir=
,8/1_1, VVA-H:BA( VVAZ), Wl—lz—_—,&t( Wa).

PROOF OF PROPOSITION 2.2: Set

Y:<1—A 0 >tX,<1—/1 0 )—1

0 144 0 1+2
L (1= 0, (1—/1—1 0 )—1
Y_( 0 1+/1-1>X 0 1+AY

We must show two things: (1) X '=Y, X"'=Y". (2) There is an anti-
algebra map H,— H, taking X to Y, X" to Y.
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(1) We have

XY =] =(XQX)n=n:
VX =I—ea(XQ®X)=¢

and the interchange X< X', A=A7"! yields the equations YX=1, X' Y'=].

(2) It is quicker to use [Theorem 2.3 One can verify that the sub-
stitution f— f', g— g/, s t, t——s', f'—=f, g— g, s’ t, t'>—s trans-
forms the defining relations of H; into those of H".

PROOF OF THEOREM 2.3: Step 1. Our first task is to rewrite each of
(2.1)('i )—(iv) in terms of the generators f, g, s,......

(i), (i"): We know by [TT, Section 1] that (i) (resp. (i’)) is
equivalent to (1) (resp. (1')) of (2.3).

(ii) says that

X11x11 +XZZX.;.2:2
(1+A)x12x2=— (1—2)*x21x21

(1 —/1)96119611 +(1+/1)X12xi2:1—/1
(1 —/1)9611.96é1 - (1 +/1)XI29Cé2
(1—/1)96219611: —(1 ‘|’/1)X22x12
(1+A)xuxiz=(1—A)xa1x22

(14 A)x12x11=(1—A)x22x21.

One verifies that these are equivalent to the following.

(I1. a)

ff'+gg9'=1

st'+ts"=0

19’ +gf' =—(A—=2A")(ss"+ 1)
(II.b)

sf'=gs’

tf'=—gt’

sg’=—f

g =1t'.

(iii) is divided into the four equations :

X11x11 xIZXiZ xhxu xilez
(111. 1) BO ( ’ ’ ) = < ’ ’ ) BO
X21X21 X22X22 X21X21 X22X22

X11xé2 szgl thzz X1ZX21
(111. 2) Bl ( ’ ’ ) == < ’ ’ ) Bl
X21X12 X22X11 X21X12 X22X11
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X11xi2 X12xi1 X11X12 Xizxu
(111. 3) BO < ’ ’ ) = < ’ ’ > Bl
X21X22 X22X21 X21X22 X22X21

xnxé1 xlzxéz xileI xizmz
(111. 4) Bl < ’ ’ ) - < r ’ > BO
X21X11 X22X12 X21X11 X22X12

where

/1 _L(Aﬂrl /1+A‘1>
5‘)'( —1)’ A= Gra a-a)

One verifies that (iii.1) is equivalent to

(I1L. a)
ff'+99=rrf+gg
f9+g9f'=19+g'f
ss’+ ' =—(s's+t't)
st/+its'=—(s't+1's)

and (iii. 2) is equivalent to

(IIL. b)
ff'—99=rr1r—9gg
st'—ts'=—s"t+t's
A+ADNfg —gf )=—(AP+A1H)(ss'—tt")+2(s's—t't)
A+ANFg—gf)=2(ss—tt)—(BB+AD(s's—t't)

and (iii. 3), (iii.4) are equivalent to

(IIL ¢)
frm /1—2/1—1 fot A+2/1‘1 Vo
os'= — /1—2/1“ st /1+2/1—1 of
e /1—2/1—1 o /1+2/1-1 Vo
ot /1—2/1‘1 it /1+2/1-1 v

-1 _ a1
Sf,:/H-Z/i g's—/l 2/1 S F

L A+ATE L, A=A
s9'=""5 f's— 5y Y
,_A+ATN A=A,

4 _1 4 A_A_l 4
z‘g=/H_2/1 f't— 5 t'g.
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(iv): We note that

Wa=Kere;NKer(0, 1+4, —(1—2), 0)
We=Kere:Ker(0,1—2A, — (14 1), 0).

Therefore, under the condition that 7., €; are comodule maps, Wi;C
V@V’ are subcomodules if and only if

0
7’ l_A —_—
0,144, (1=, 0(x®x)| 14 | =0
0
0
0,14 =(1+2,0(x®X) | 1 77 | =0.
0

These are equivalent to

xlzxélz —Xleiz
(1 - /12)(961196;2 _x:zzxil) = 2(1 + /12).761296';1

and also to
(IV)
st'=ts
19 —gf ' =—QA+ 1 H(ss’"— #").

Step 2. Now (II), (III), (IV) are combined together. One verifies

(I1.a), (IIl. a), (IIL.b), (IV) &= (2), (3) of (2.3)
(I1.b), (IIL. ¢) <= (4) of (2.3).

Then the proof is completed.
3. Algebra structure of H;

We show that H, is embedded into H,/(s)X H,/(¢), which is a central
localization of By/(s)X B,/(t), and in particular «: B,— H, is injective.

It is convenient to rewrite some of the relations of (2.3) as follows.
The first three of (2) of (2.3) are equivalent to

(f+AQ(f +Ag)=1— (A=)t
(f=2A)(f =27 g ) =1+ (A=At
(f+A7' ) +Ag)=1—(AP=A?)ss’
(f=A7')(f =g )=1+(A—A")ss’
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and (4) of (2.3) is equivalent to
(F+Ag)s = s(f+Ag)=—AF—21"g)s=as(f—1"'¢)
(F—Ag)s = —s(f—Ag)=—AFf+1"'g)s=—As(f+27'¢)
(F+Alg) = t(f+A7g)= A Nf—ag)t=—A"t(f—Ag)
(F=A't' ==t (f—A'g)= AN +Ag)t=2"t(f+29).
Also we have
z2=(f=A'g)(f' +Ag)+(A—=A"")ss’
=(f—Ag)(f +A'g)— (A=)t
Z=(f+Ag)(f —Ag)—(A=A"")ss’
=(f+Ag)(f —A'g)+(A—=A"1)tt.
We note that His+ His’, Hit +Hit' are ideals annihilating each other.
LEMMA 3.1. His=Hs', Hit=H;t'.

PrOOF: Using above equalities, we have

(F=A)(f+Ag)s'=—Af = Ag)(f —A7'g)s
=— A1+ (A2=A"2)tt")s
=—Js,

and similarly
(F =) +A1g)s==A"'s".
Let K be the algebra defined by generators u, v, w and relations

uv=ou
UWw=uwu
vw=—uwv

u'—vi=w’.

PROPOSITION 3.2. We have algebra isomorphisms

Hi/(s)=K[u™, v 1= H/(2)
f+Allgeoue f_+/157
f—A'geove f—Ag
WAt owe2 5.
where bar means the residue class.

PrOOF: As for Hi/(s), we set
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w'=f"+2g
v'=F'—27.

The defining relations of H: reduce modulo s to the following.

U — =471

uv=vu, ut=rtu, vt=—"tv
un'=u'u=1

w'=v'v=1

V=A"u'v't.

This establishes the left isomorphism. Additionally we have z2=u"'v.
COROLLARY 3.3. His(Hit=0.
PROOF: ¢ is not a zero divisor modulo His.

COROLLARY 3.4.  The map t:: Bi—H, is injective.

PrROOF:  Compare [Proposition 3.2 with [TT, Proposition 2.2].

The centre of K is the polynomial algebra k[u, v*] and K is a [u,
v?*]-order in Ma(k[u, v*]) [TT, Remark 2.3]. It follows from
3.2 and Corollary 3.3 that we have algebra injections

H—H,/(s)X Hi/ ()= Mo(klu*, v*2]) X Mo(klu*, v*2]).

One sees also that

2x5=(—1)""xyz, 2x;=(—1)""x}z, 2=z""
In particular 2* is central and S? is the inner automorphism by z.

4. H;,-modules

The classification of simple H;-modules and the decomposition of ten-
sor products of them follow immediately from those for B:-modules.

By Proposition 2.2 the algebra H, is generated by the entries of the
matrices X and X '=S(X). Hence the map ¢ : B.—H, is a ring epimor-
phism. For H,-modules M and M’, a map M—M’ is H,-linear if it is
B,-linear.

For a, f€k—{0} we have a representation

Klu™ v7']— Mu(k)

()
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”H<B —3)
“’H(a+,8 a—ﬁ>'

Compositions of this with the maps H—H:/(s)=K[u, v'], H—H:/(t)=
K[u!, v™'] of Section 3 yield the representations (e, B), ni(a, B):
H— M%) respectively. For y&k—{0} we have also the representation
vi(y): Hi—k taking g to 7, ¢ to ™" and f,s,¢, /', s’ t" to 0.

Comparing these representations with the ones of B; in Section 1(b),
we see

mhs(a/, B)OCA:ﬂAs(a’, B)
m"t(a, B)thmt(a’, B)
xH(7)e =),

and

rli(a, B)eti=0d°om-1s(a”!, B7)
mht(a, ,8)06;1'—_71'/1-&(&’_17 B—l)
12 (y)ei=xa- (™)

where §: Ma(k)—Ms(k) is the map e;—(—1)""es;.

Denote by Mi(a, B), Mk(a, B), Li(y) the Hi-modules with underlying
spaces k%, ¥, k and actions nf(e, B), nii(a, B), +2(7) respectively.

As in the case of B: [TT, Section 2], simple H;-modules have dimen-
sions 1 or 2. A complete list of 2-dimensional simple Hi-modules is

MIs(E, V), Mi(&, V)

for & p€k—{0}, £&+7. The Bi-isomorphisms of [TT, Section 3] and
Section 1(b) are H;-isomorphisms.
If ¢8#+0 and a+ £ 4, then we have isomorphisms of H;-modules

Mi(a, B)*=Mh(a?, B7Y), Mi(a, B)*=Mi(a™, B7)
et o(a—p)er
ey o(a+p)e:

where ey, ey is the dual basis of e1, es. These follow from Proposition
1.1 (i), (iii).

5. The Hopf algebra pairing of.: HiXH.—k

In this section we extend the bialgebra pairing wiu:BiXB.—k of
[TT, Section 5] to wi.: HiX H—k.
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Let Auck—{0}, A*+1+4". Let V=V'=k. We make H; act on V
and V' through 7 %(1, ) and 7 %(1, #7'), respectively. By [TT, Proposi-
tion 3.1] and [Proposition 1.1|, the subspaces and the maps considered in
the definition of H, are B;-stable and B,-linear, hence H,-stable and
Hi-linear. Let H; be the dual bialgebra of H; ([S]). Then by the univer-
sality of H., we have a unique bialgebra map H.— H; such that the dia-
gram

H, — H;
U M
End( V)*®End( V) *—— H}

commutes, where the bottom map is (7(1, ©)*, 7£(1, £~H)*).
Let wf.: HiX H.—k be the corresponding pairing. Then

Wk uo (X tu)=wau

Wl e (X tp)=wair,u10(1 X 5)

Wi uo (X tw)=war1,u-10(6X 1)

wi (X tw)=wi,uo(0X1)=wiuo(1X0)

where ¢ are the isomorphisms defined in Section 1(a). We have w%.(a, b)
h
:a)}“/l(by a)

PROPOSITION 5.1.  If neither A nor p is a root of 1, then the paiving
w} . is nondegenerate.

PROOF: As in the proof of [TT, Theorem 5.1], it is enough to show
the faithfulness of the H;-module Q=®.M#%(1,4)®". By [TT, Proposition
4.2], @ is the direct sum of the faithful Bi/(s)-module Qs and the faithful
Bi/(t)-module Q:.. Then Qs Q. are also faithful over H./(s), H:/(t)
respectively. Hence @ is a faithful H;-module.

REMARK 5.2. Actually the proof shows that tha pairing @%.°(1X ¢u):
H, X B,—Fk is nondegenerate.

6. H.-comodules

Throughout this section we assume that x is not a root of 1. The
main results here are the classification and the tensor decomposition rules
of simple H.-comodules. The proofs are sketched at the end of this sec-
tion.

Consider the graded algebras

Se=®nSun=T(V)/( Vi), Su=BnSin=T(V")/( V7).
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Since V, V' are right H.-comodules and Vi, V.~ are subcomodules of

VRV, V'RV’ respectively, Su, S: become right H.-comodules. Obvi-
ously the comodule stucture maps factor as

S, S.®B. S, Q H.
S;l: Su-l_a’S#*@B#-ll@;;S#-l@H#-

The subscript x is omitted if no confusion may arise.

THEOREM 6.1. A complete list of simple Hu-comodules is

Sm®U®n m>0, nel
S U®” m>0, n&Z
Ue nel

where USI=(U*)®" for n=0.

We know that S» has the basis %, f#% and S» has the basis fitn, fitu,

where fuEV, for; & V'(=V) were defined in Section 1(c). In the follow-
ing proposition we write i=7, i=/fi for simplicity. We also set [m]=
u"—up ™ Let e€U be a nonzero element.

PROPOSITION 6.2. We
H.-comodules.

( i ) Sm®Sn§Sm+n@Sm+n®Ul

have the following isomorphisms of

1®1+[ [+] ]1®2+[ 7] ]2®1 (1, 0)

22+ [”E_{_]n] 182+ [ng-i-]n] 2Q1<(2, 0)

1R2<(0, 1®e)
—2®1<(0, 2®e).

(ii) Su®Sr=Sn-n®Sn-2QU’ if m>n:

©"1®1+1®24(1, 0)
©"2@2+2Q1<(2, 0)

AR+ ™22+ 12+ 1" *2®1-(0, 1®e)

— "1 — 2" "2®2 — 1" "1R2—2@1-(0, 2Re).

p"®1+281<(1, 0)

©"2Q2+1@2<(2, 0)
M@+ 27 "2Q2+ 102+ 1 "2Q1-(0, 1Qe)
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— ML~ 1" 2@2 - 1" " 1R2—-201(0, 2Q®pe).
(iv) Sn®Sn=S,&Sx:

(2" + p7 " =2) " "1 @1 — (1 — 2™ ™) " "2 Q02

— (1= 2™ ") (1R2+2R®1) - 1R®1
(" + 72 =2) " "2@2 — (1 — 2™ ™ "1®1

—(1— 2™ ")  M(1R2+2R01)2®2
(" + 72 =22 ") 1R2+(1— 2" )2®1

+(1— 2" ) ™ (1R1 +202) - 1R)2
()UZm_I__lu—2n_2lu2(m—n))2®1_+_(1_#2(m—n))1®2

+(1— 2" ) p™(1Q1+2®2)-2R)1.

e®1-2Qe
e®2-1Re.

(vi) Sk=Sn:
1Veou™ +2
2V l+u™2
where {1¥,2"} is the dual basis of {1,2}.

The isomorphisms for Sm®Sn, Sw® S, etc. are obtained by the inter-
change pep™'.

REMARK 6.3. For m>0, =0 we regard the Bu.-comodule Sn. of
[TT, Section 6] as an H.-comodule through ¢.: B.—H.. Then we have
an isomorphism of H.-comodules

Sm,n;Sm+n® U@n .
RSz, filno AT R e®”
N, fa}no I Qe®(—1)"
where {, }» is as in [TT, Section 6].

REMARK 6.4. The canonical associativity isomorphism (S,®S»)®S,
= S5.®(S»&®S:) decomposes as follows. For simplicity we regard canoni-
cal isomorphisms as identities. Let ¢, ¢’ be the composites

c: Si®Sn®S,

S(SninDSren@U)RS,
=S51+n@SDSnin@URS,
=Sem@S D Srin@S,QU

SSn+me P Snims QU (Snsms P Snim+ QU)QU
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:Sn+m+l@sn+m+l® U@Sn+m+l® U(‘Bsn+m+l® URQU
c: Sn@Sm@Sz

55, Q(Sn+ D Sn+QU)

:Sn®5m+l@sn®5m+l®U

Snsmt 1 DSnint QUB(Sn+m+ i@ Snimt . QU)QU
:Sn+m+l@Sn+m+l® U®Sn+m+l® U@Sn+m+l® URXRU

where the isomorphisms are induced by the ones of Proposition 6.2 (1)
and (v). Then

fl 1
coc’'= [m+1]
N1 B
[m+1][n+m] [n+m] 1

PROOF OF THEOREM 6.1. AND PROPOSITION 6.2: Let A, ¢ be not
roots of 1. Let ha.: Comod-H,— H;-Mod be the functor induced by the
bialgebra pairing ®/. As in the case of wux [TT, Section 5], Proposi-
tion 5.1 assures us that %, is a full embedding.

We have isomorphisms of H;-modules

RawSm= sh(ly ﬂm) :
(1+ ™) (fA+ fl) e
—(1—p™(fii—flB)o e
hawSm=MM1, ™)
(1+ ™ (fiEn+ fihg) e
—(1— ™) (flrn— fltr2) e
R U=L"(A).
In fact, the first two of these follow from [TT, Proposition 6.5] or the
descriptions of §su,5mm G su.swn in [Proposition 7.1, and the last one follows
from Proposition 1.1(ii). Hence we have
B u(Sn@ U®B™) = MHA", A" ™) if » is even
~ MPA™ A" y™)  if mois odd

B (SHQUE) = MIHA™, 'u™™) if # is even
> MEA™ A" ™) i mois odd.

Using these, one sees that the isomorphisms of Proposition 6.2 are equiva-
lent to appropriate isomorphisms of Bi;-modules in Sections 1, 4 and [TT,

Section 3].
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The above isomorphisms show also that the H.-comodules S»& U®*,
SnQU®", U®" for all m>0, nEZ are simple and mutually nonisomorphic.
By Proposition 6.2 the class of comodules whose composition factors are
some of these simple comodules is closed under tensor products. It con-
tains the basic comodules V and V’, hence does also all finite dimensional
comodules. This proves [Theorem 6.1.

7. End(X)*XEnd(Y)*-H: X H.—k

In this section we compute w}. on the images of simple corepresenta-
tions of H;, H.. The result is used in the next section.

For a right Hi-comodule X and a right H.-comodule Y with struc-
ture maps ¢ : End(X)*—H,, 8: End(Y)*—H,, we set

r
Wa,pu

gx,v : End(X)* X End( Y)*<5% H, X H.~25 .

This corresponds naturally to the maps

F dx,y . End(X)*HEnd( Y)
gx,v : End(Y)*—End(X)
dx,y . X@ Y—>X® Y.

In the following proposition the elements f7:E Six, f11:E Sin, FE Sum, [l
ESun are written as ¢ and e€ U;, e€ U, are fixed nonzero elements.

PROPOSITION 7. 1.
G sin,sum = 181> —A"u™2&2
22 —A"u"1®1
182 1®2+ p"1Q@1+ A"2®2
2801 201+ A"1Q1+ 1"2®)2
G Sinsem . 1Q1— — A" "2R)2
2Q2— — A" "1R®1
12— 102+ £ "1Q1+1"2®2
2Q1- 21 +A"1Q1+ 1~ ™22
4 sinsum : the same expression as q si,sm
4 smsum . 11— 1Q1+ £"1&Q2+ 1"2®1
202 202+ 1"1Q2+ 1"2®1
1®2+— —A"u"2®1
2Q1— —1"u"1Q2
G Uinsum: €Ql— p"e@?2
e@2— p"e®1
G Uunsim: €Q1— ™ "e@2
e®2 p "e®1
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Q'UA,U,A e®er—> —e®e.

PROOF: (1) Gspmsum: Let 8: Si—S:QB.: be the comodule structure.
Define v.;€ B by 80(fi;)=2:/1::®v:;. Then

( ”):<f+x/zs+\/lj_ll‘ g—@“s—@f>
ViD= g Ja skt s —Aut)

We identify End(Si.)=M-(k) by the basis /i, /& of Si.. Let fij€M)k)*
be the matrix coordinates. Since 8(ff5)=2./E®yk;, we have

(a) #qsln,y(fl'}/'):#qsklyy(fi\;')n
and similarly
(b) q§,sum( i})zq}},s,,l(fij)’”,

One computes wiu(Viij, Yurr) from the formula of ws. in Section 1(d)
and finds that *¢s;.,s.. is the following map.

f=(o ) Ao )

(G 2) A=)

Then, by (a), the map *gsums. 1S given by

I BT (A
fu*_’<0 1 fiz— 0 0

. 0 0) . < 1 0>
— —
121 <_/1,1/J P f22 p

The transpose of this iS g u,su :

e(08) el

0 1 0 0
1
A (e ) 5= (o o)

Then, by (b), we obtain the map géu,sun:

fl\i'—*<0 /1”> flvz'_’<#m *An#m>

0 1 0 0
v 0 0 v 1 0
fai (—/i";/” /1'”) fir (/1" 0 )

(2)  Gsinsim Simsim dsmsim . We first note that S; = S;-» and fu =
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—Afi-iz, fiz=—Afi-u. Secondly, the automorphism &: V—V of Section
1(a) extends to the graded algebra automorphism Si—S,=S:-, which is
also denoted by . We have (fi;)=Afi-1; and G is compatible with the
coactions S,—S:&® By, Si-—S1-1Q B+ and ¢: Bi— Bj-1.

Then, by the formulas preceding [Proposition 5.1 we have

q.s;m,Sﬂm:(1® 5)—10 q.SA'ln,Su‘lmo(]-® 5)
dsAn,S'um:( 5®1)—10 q.sa"lnysu'lmo( 6®1)
q.skn.sﬁm:( 5®1)_1O q‘sm,sumo( 5®1)

From these and (1), the left sides are computed as asserted.

(3)  Guisim Guusim Guwu.: These are easy.

8. Braid structure of Comod-H,

We show that Comod-H,, Comod-B, are braided monoidal categories
in the sense of and compute the intertwiners bx.y: XQVY—YXX for
simple comodules X, Y. We finally remark that H, is isomorphic to the
bialgebra obtained from the Yang-Baxter operator bv,v by Faddeev, Re-
shetikhin and Takhtajan’s construction if x is not a root of 1.

In general, let B be a bialgebra and 7: BXB“—F a bialgebra pair-
ing. Here B*” is the bialgebra with underlying algebra B and opposite
coalgebra structure. For X, YEComod-B, the intertwiner bx,y associat-
ed with 7 is the linear map

bx,y . X® Y— Y®X
2Qy - 20 @xy (¥, X))

We have

bX®Y,Z:(bx,z® Y)°(X®by,z), bk,Z:id
bZ,X@Y:<X®bZ,Y)°(bZ,X®Y), bZ,k:id.

If bx,y are B-comodule isomorphisms for all X, Y, then 7 is called a
braid pairing ([H],[LT]. In this case, for any comodule X, R:=bxx
satisfies the Yang-Baxter equation

(RIDIJR)NROD=(1QR)RRX1)(1®R)

in End( X®X®X).

Let r: Bu—Bu,r": H.—H, be the algebra automorphisms defined by
t(X)=t"(X)=c() ' X-c(p)", M X)=c(p™) X - c(p™)", where c(p)=
diag(x—1, p+1)&My(k). Then r and z* are coalgebra anti-isomorphisms,
and fix f,9,s,f,9,s andsend # to —¢, ¢ to —¢'.
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PROPOSITION 8.1. @i uo(1X7"): HoX Hi—k and @uno(1X7): BuX
B.—Fk are braid pairvings.

Let b be the intertwiner associated with wi .o(1Xt*). We write i=f%
€S, and i=f%,€8,.

PROPOSITION 8. 2.

bsmsn: 101 181+ 1™1R2+ 1"2X1
202 202+ 1"1Q2+ p"2@1
1®2— — ™ "1Q2
201 — — ™21
bsmsn: 1QL > — " "2Q)2
202> — ™ "1®1
1802 201+ 1" 1Q@1+ 1~ "2&)2
201 12+ £ "1R1+ 1 "2Q2
bsmsn: 101 1801+ 1 "1Q2+ 1 "2®1
202 22+ 1 "1Q2+ 1 ™2QR1
1®2+— —p " "1®2
21— —pu ™ "21
bsmsn: the same expression as bsy,sn
bu,s.: eQl— p"2Qe
e®2- 1"1Re
bsnu=Tobys,e T
bu,sn: e®l— 1 "2Qe
eX2— 1 "1Re
bs’n,U: T°bu,5'n° T
buy: eQe— —eQe

wheve T is the map xQy— yQx.

Assume p is not a root of 1. Let m, n>0 and XE{Sn, Sn}, YE{S,,
S»} and assume {X, Y}+{S,, S»} when m=n. As bx,y is an H.-comodule
map, the scalars @,3 are determined by the commutative diagram

XQY=ZDZQW
bX,Yl la/@ﬁ
Y®X§Z@Z®W

where ZE{Sinin, Simen}, WE{U, U’} and the isomorphisms are those in
Proposition 6.2.
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PROPOSITION 8. 3.
(X’ Y):(Sm, Sn)‘:> a=1, B:_ﬂﬂHn
(X, Y)=(Sn, SW=a=1, B=u"" for m>n

=1, =u""  for m<mnm
(X, Y)=(Sn, Sn)=a=u?", B=p"" for m>n
=p =u" for m<nm

(X, Y)=(Sn, SW=a=1,  f=—p"""

We prove Propositions and later. The proof of Proposition
8.3 is straightforward and omitted.

Set R.=bv,y, a Yang-Baxter operator. Let us see briefly how B, and
H, can be constructed from R..

In general, let R: VR V—-V&®YV be an invertible map satisfying the
Yang-Baxter equation. Faddeev, Reshetikhin and Takhtajan associate
with R two bialgebras A(R) and U(R) [FRT]. The bialgebra A(R) is
the largest quotient bialgebra of 7 (End(V)*) such that R is a right
A(R)-comodule map. If /: X®Y—Y®X is a linear map, it naturally
induces a linear map /' :End(X)*— End(Y). The maps R*, (R™")*":End
(V)*>End(V) extend uniquely to anti-algebra maps /4, [- : A(R)—End(7V)
respectively. The bialgebra U(R) is defined to be the subalgebra of the
dual bialgebra A(R)° generated by the images of /¥, /*.

Return to the case V=F* R=R,.. As V', V. are the eigenspaces of
R., we have A(R.)=B,.. Define a map r: Mxk)—>Mk) by t{a)=c(y)-ta-
c(u)™! for aEMy(k). Then we have

Li=roms(1, ), l-=rom(1,pu").

Therefore U(R.) coincides with the image of the bialgebra map H.— B
induced by the pairing wi .°(1X¢.). Hence we have by Remark 5.2 that
H.=U(R,.) if ¢ is not a root of 1.

PROOF OF PROPOSITON 8.1: It is enough to prove the part for H..
Let b be the intertwiner associated with wf.°(1Xz"). We have a general
formula [Y, Proposition 7.1]

(X@ Y®€X)O(X®bX*,Y®X)°(77X® Y@X)Obx,yzid

for finite dimensional H.-comodules X, Y, where ex: X*®X—k, 7x :
k—XQ®X* are the canonical maps. Therefore bx,y is always bijective,
and if bx+y is a comodule map, then so is bx,y.

Since any finite dimensional comodule is a subquotient of direct sums
of tensor products of V and V'= V*, all bx,y are comodule maps if bv,v is
a comodule map. One can see this from the description of by,y=bs,s, in
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[Proposition 8.2

PROOF OF PROPOSITION 8.2: Let 8: S.—S.®B,. be the comodule
structure map and 6: S,—S. the algebra automorphism defined in the
proof of [Proposition 7.1. Then 8°6=(5®7)°8 mod S.&(s), because
6(fi)=—12, 6(f2)=—rf and

(r(yu) T(y12)>5<y22 ym) mod s

T(y21) T(yzz) Viz Yu

where yi;=vu; are as in the proof of Proposition 7.1. Now the module
action of H. on huu(S,) factors through H./(s). It follows from the
above congruence that

bsmsn=(1QF)"° d 5n.5n°(105)° T
Similarly
bsimsn=(1Q7) "0 §snsm°(1QG)° T.
Since H, acts on hu.(S») through H,/(¢) and r=id mod ¢, we have

bsmsn= q spsm® 1
bs'm,sh: d sn,5m° T.

Thus these four intertwiners can be obtained from [Proposition 7.1
The other bx,y are easily computed.
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