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Note on Hadamard groups of quadratic residue type
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1. Introduction

In a previous paper (3) we introduced an Hadamard design and an
Hadamard group as follows. An Hadamard design D=(P, B) is a block
design, where P and B are the sets of points and blocks respectively, sat-
isfying the following conditions ;

(1) |P|=|B|=2n, where | X| denotes the number of elements in a finite
set X. For a&B we have that |¢|=# and P—a<B;

(2) For a, BB we have that |eNBl=n/2, provided that A+« and
P—a, and

(3) We may put P={a, -, an, b1, -+, bn} so that |aN{a, b:)|=1 for
any ¢€B and 1<:<#.

Then we consider an Hadamard design whose automorphism group
contains a regular subgroup. An Hadamard group is a group theoretical
formulation of such a subgroup. A group G of order 2» is called an
Hadamard group if G contains a subset D and an element e* satisfying
the following conditions:

(4) |DNDal=n if a=e, where e denotes the identity element of G ;
=( if a=e* and =#»/2 for any other element ¢ of G, and

(5) |Dan{b, be*}|=1 for any elements @ and b of G.

Furthermore, in (3) we gave a constrution of an Hadamard design
and an Hadamard group of quadratic residue type. Let GF(q) be a finite
field of ¢ elements where ¢ is a prime power such that ¢=3 (mod 4).
Further let @ and N denote the sets of quadratic residues and non-res-
idues of GF(q)-{0} respectively. Now an Hadamard design D(q)=(P(q),
B(g)) of quadratic residue type is defined in the following way. P(gq) is
the set of projective half-points. In the notation of (3) projective half
-points are ©={(0, a), a€Q}, «*={(0, a), a= N}, a={(b, ba), b= Q} and
a*={(b, ba), bEN}, where a=GF(q). Let us consider * as a natural
isomorphism from GF(q) to its disjoint copy GF(g)*. So we have that Q*
={a*, a=Q} and N*={a*, a=N}. Then B(q) consists of GF(q)U{o}, @
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+aU{o}UN*+a*U(a*} and their complements, where a< GF(q).

Now an Hadamard group G(q) of quadratic residue type is a group of
order 2(¢+1) defined by a?*'=b*=e and b'ab=a"'. To show that G(q)
is an Hadamard group it is natural to present G(q) as a subgroup of SL(2,
qQ;

a:< Z Z,) and b:<(1) (1)> with a+d=y, y=x+x7
where x in an element of GF(q®) of order g+1.

Then G(q) acts on D(g) regularly and D is the set of elements of G(q)
which transfers o into GF(q)* U {co*}.

It is well known that tetrahedral, octahedral and icosahedral sub-
groups of orders 12, 24 and 60 respectively are distinguished amog sub-
groups of PSL(2,q). For this see (1, 2). We keep the same names for
the corresponding subgroups of orders 24, 48 and 120 of SL(2,q). More-
over we call a group G tetrahedral, octahedral or icosahedral if G is
isomorphic to a tetrahedral, octahedral or icosahedral subgroup of SL(2,
q) respectively.

Now the purpose of this note is to prove the following proposition.

PROPOSITION.  Tetrahedral, octahedral and icosahedral groups are
skew Hadamard groups.

In each of these three groups there exists a unique involution. Hence
it should be e*. So it is suficient to determine D in each of these three
groups which will be done separately.

2. Tetrahedral case

Let G4 be a tetrahedral group. Then in order to show that G; is an
Hadamard group it is natural to present G; as a subgroup of SL(2,11).

(0 10> :<1 3) :<4 7>
Let a (1 O,b 3 10 and ¢ 3 6/

Then we have that a*=b*=¢e*, b~ 'ab=ae*, *=e, ¢ 'ac=b and ¢ 'bc=
ab. Hence <a, b, c> is a presentation of Gs. Now D is determined in the
same way as G(11):

D={e*, ae*, be*, abe*, c, ace*, bce*, abe, ce*, ac?, bcte*, abcte*).

In order to inspect the intersection property of D it is convenient to
use the following relations; ba=abe*, ca=abc, c*a=bc* cb=ac, bcb=
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abce* and c*b=abc®>. We omit to give the details of the inspection.
Instead we give the resulting Hadamard matrix. We use elements of D
neglecting e* in the order listed above as the label of row and column of
the matrix. Then the matrix obtained is the following, where + and —
denote 1 and —1 respectively:

e e
ottt —+
Ft——ttt++———
ottt —+
—t +-—+
-+ttt
ottt
e T
ot ———
ittt
ettt ——
Foto——— =t —

3. Octahedral case

Let Gs be an octahedral group. Then in order to show that Gs is an
Hadamard group it is natural to present Gs as a subgroup of SL(2,23).

(T 19) :<10 9> _(18 11>
Let 2 (4 11) 25\ 9g 13) adc={19 )

Then we have that a*=0b*=¢e* b lab=d%e*, *=e, ¢ 'a’c=0b, ¢ 'bc=
a*be* and (ab)'cab=c™'. Hence <a, b, ¢> is a presentation of Gs. Now
D is determined in the same way as G(23):
D={e*, ae*, a*e*, ate*, b, abe*, a*b, a*be*, c, ac, a*ce*, a*ce*, be, abce*,
atbc, a*bce*, c7te*, ac™!, afcre*, aPc7!, beTte*, abcte*, atbcte¥,
a*bc .

In order to inspect the intersection property of D it is convenient to
use the following relations; ba=a*be*, ca=a’c™!, bca=abc™'e*, ¢ 'a=
a*bc, bc*a=ac, cd=a’c, bcb=a*bce*, c*b=a*bc"'e* and bc'b=dad’c 'e*.
We omit to give the details of the inspection. Instead we give the result-
ing Hadamard matrix as in the case of Gu:
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R s e e e
i et to— =ttt —+—
th——tm—tt——F————++——+—+
B e e T
=ttt b+ —
A e s st
R e T e e
e o e e
et mm— b m—— =t — ==t = —
e e B
ttt——t -ttt ————
Ft—t -ttt —t———t———++
B o e e
Fottttt—t—ttt———tt+———— -
bttt ———F+
Fht——t =+ttt —F——++++
B e s S e
————— e e o e
e e e
e T
tAtt bttt -t ————
e s s s e e A e
B o i o e
e e e e e R

4. Icosahedral case

Let Gz be an icosahedral group. Then in order to show that Gz is
an Hadamard group it is natural to present Gz as a subgroup SL(2,59).

(6 47 :<17 51) :<51 9> :<46 3)
Let (8 53)’b 51 42) ¢ \33 7) and d=(g0 4o )

Then we have that @*=b*=¢e*, c®=e¢, d°=e, (da)’*=¢e* d?a=cde* and
c'ac=b. Hence <a,d>={a, b, c, d> is a presentation of Gz. Now D is
determined in the same way as G(59) :

D={e*, a, be*, abe*, c, ac, be, abe, cte*, ac?, bc?, abc?, d, ad, bd, abd, cde*,
acde*, bed, abed, c*d, actde*, bclde,*, abc’d, d*e*, ad®e*, bd*e*, abd?,
cd?, acd?e*, bed?e*, abcd?e*, c*d?, actd?e*, bctd?e*, abctd?e*, dP, ad’,
bde*, abd?, cd?, acd®e*, becd?®, abed®e*, c*d®e*, ac*d’®, bc*d?, abc?’d?,
de*, ad*, bd*e*, abd?, cdte*, acd*e*, bed*, abcd'e*, c*d*e*, ac’d*e®,
bc*d*, abctd*y.

In order to inspect the intersection properoy of D it is convenient to
use the following relations; ba=abe*, ca=abc, c*a=bc?, da=c’*d? cda=
d?, c*da=cd? d*a=cde*, cd’a=c'de*, c*d*a=de*, d*a=abcd’, cd’a=
bctd?, ctd*a=ad®, d*a=ac’d?, cd*a=abd® c*d*a=bcd? cb=ac, c*b=
abc?, db=bd*, cdb=acd*, c*db=abc’d®, d*b=0bd® cd*b=acd?®, c*d*b=
abd?, d*b=bd? cd*b=acd® td*b=abc*d*® d'b=bd, cd*b=acd, c*d*b
=abc’d, dc=abcd’e*, d*c=ac’d*e*, d’c=ad'e* and d‘c=c*de*. We
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omit to give the details of the inspection. Instead we give the resulting
Hadamard matrix as in the case of Gs:

e o o e A e e T T T N I eI S I
e e e e s e L T U R e
e e i L e S Y
o L e e e HE I S —— FAtt -ttt ——
R e e S s [ Hp—— e i e Ft -
B e e e S s e s e E e Y
e R e e e T N U I G Fm—t =t
—— et B e e o e T T I e T T
A e e e st R o T b T T U U IS U FH————— +H——
i e s R e e e e +
BRI e e e T it e T T T I S SR,
e i s A M e et e e S N NN H N N
R e e S T A ol e e S U g5 O
B e e At S S e e T T E R T R ++
Tttt ettt b bt bbb m—— =t ———
i e A e R i e s S N FHtt—+—+
e B A e e el S NS ——— fofo————— ottt
B e At e A e o 1y A
B e e e A e T T +
A e s S St b et o S W S U A AR
- i L o e e e e o o b SRS U v
o= s e s Al S e e s T e +o—+—+
R e e o e R e e T T TS E S E S A At T
B e s sk b SE e EP E NE6 Fo—t ottt ettt
B e e L s s i o e e o SECC MNNSR0S
At ——————— B e e e e ol i o o o T N SN SRS UV
L e e S e i S o s SR S R G O
e s st U N i T o b o i eI
e T 2 e S ot
B e S i e i 0 et e e S S S S T U SIS
ettt ————— L e T T L S Sl Ay Sy U
Fot ottt bttt b — o ———— Fht—t ettt bttt 1
—— ettt ——— - R e T e s et T o N HNE S VU
e i e e e T i e A T
B e e e e e e A At S HEEN E S ST TR
R o o e i s St SN SN T S U G R R e
e e e e A e b T RIS SRS
e e e i A e kL s
B e LA e S ST O
L e B e s e AT Attt — bt —
—t R ottt bt e s st o T SR O KN U R S
B e L T e e S i e o S S o g R
R e ot i . B A L o sl s SEar e SYSEN EpUp A I U
B T e o e e R T TP S e
Ft -t =ttt ottt — e B i s s e Y N e
e T ottt —— e i T +--
i e e e e L et S S SE 6 ST
————— e i s S e a ahunle S e S i
e e e A A AU
R e At e T e ——— R e sharaas SEE R SR AT
e e e e L e e o SPumt S s S I
R T e e o T T bt e L N Ft—— -
e e s s S FAt——ttt—t——++++
B e L e o e T e s S S [ EESN S S SRR
R e e e T T p— Fo—t ettt bt — b -
e TR ol o e e s e s g i ++
B i s R kLT T p—— R th——tttt—t -
Fot e e A s ottt tob—t——————+
B e e e R e e i e T FES IV U S KUY
i R i A e e O o T [Tt U S S,
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5. Remarks

We collect here group theoretical facts of Hadamard groups so far
constructed.

(i) All Hadamard groups constructed in (3) are 2-nilpotent and
metabelian. G. and Gs are neither 2-nilpotent nor metabelian. G4 and
Gs have derived lengths 3 and 4 respectively.

(ii) Using Dirichlet’s theorem we see that any prime p divides the
order of some Hadamard group of quadratic residue type. For p>5 a
Sylow p-subgroup is normal in every Hadamard group so far construct-
ed.

(iii) Gz is non-solvable and isomorphic to SL(2,5). So far PSL(2,
5) is an only non-Abelian composition factor appearing in Hadamard
groups.
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