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Note on Hadamard groups of quadratic residue type
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1. Introduction

In a previous paper (3) we introduced an Hadamard design and an
Hadamard group as follows. An Hadamard design D=(P, B) is a block
design, where P and B are the sets of points and blocks respectively, sat-
isfying the following conditions;

(1) |P|=|B|=2n , where |X| denotes the number of elements in a finite
set X. For \alpha\in B we have that |\alpha|=n and P-a\in B ;

(2) For \alpha , \beta\in B we have that |\alpha\cap\beta|=n/2 , provided that \beta\neq\alpha and
P-\alpha , and

(3) We may put P=\{a_{1^{ }},\cdots, a_{n}, b_{1^{ }},\cdots, b_{n}\} so that |\alpha\cap\{a_{i} , b_{i} ) |=1 for
any \alpha\in B and 1\leq i\leq n .

Then we consider an Hadamard design whose automorphism group
contains a regular subgroup. An Hadamard group is a group theoretical
formulation of such a subgroup. A group G of order 2n is called an
Hadamard group if G contains a subset D and an element e^{*} satisfying
the following conditions:

(4) |D\cap Da|=n if a=e , where e denotes the identity element of G ;
=0 if a=e^{*} and =n/2 for any other element a of G , and

(5) |Da\cap\{b, be^{*}\}|=1 for any elements a and b of G .
Furthermore, in (3) we gave a constrution of an Hadamard design

and an Hadamard group of quadratic residue type. Let GF(q) be a finite
field of q elements where q is a prime power such that q\equiv 3 (mod 4).
Further let Q and N denote the sets of quadratic residues and non-res-
idues of GF(q)-\{0\} respectively. Now an Hadamard design D(q)=(P(q) ,
B(q)) of quadratic residue type is defined in the following way. P(q) is
the set of projective half-points. In the notation of (3) projective half
-points are \infty=\{(0, a), a\in Q\} , \infty=\{*(0, a), a\in N\} , a=\{(b, ba), b\in Q\} and
a^{*}=\{(b, ba), b\in N\} , where a\in GF(q) . Let us consider * as a natural
isomorphism from GF(q) to its disjoint copy GF(q)^{*} . So we have that Q^{*}

=\{a^{*}, a\in Q\} and N^{*}=\{a^{*}. a\in N\} . Then B(q) consists of GF(q)\cup\{\infty\} , Q
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+a\cup\{\infty\}\cup N^{*}+a^{*}\cup(a^{*} } and their complements, where a\in GF(q) .
Now an Hadamard group G(q) of quadratic residue type is a group of

order 2(q+1) defined by a^{q+1}=b^{4}=e and b^{-1}ab=a^{-1} . To show that G(q)
is an Hadamard group it is natural to present G(q) as a subgroup of SL(2,
q) :

a=(\begin{array}{ll}a bb d\end{array}) and b=(\begin{array}{ll}0 -11 0\end{array}) with a+d=y, y=x+x^{q}

where x in an element of GF(q^{2}) of order q+1 .
Then G(q) acts on D(q) regularly and D is the set of elements of G(q)
which transfers \infty into GF(q)^{*}\cup\{\infty\}* .

It is well known that tetrahedral, octahedral and icosahedral sub-
groups of orders 12, 24 and 60 respectively are distinguished amog sub-
groups of PSL(2, q) . For this see (1, 2) . We keep the same names for
the corresponding subgroups of orders 24, 48 and 120 of SL(2, q) . More-
over we call a group G tetrahedral, octahedral or icosahedral if G is
isomorphic to a tetrahedral, octahedral or icosahedral subgroup of SL(2,
q) respectively.

Now the purpose of this note is to prove the following proposition.

PROPOSITION. Tetrahedral, octahedral and icosahedral groups are
skew Hadamard groups.

In each of these three groups there exists a unique involution. Hence
it should be e^{*} . So it is suficient to determine D in each of these three
groups which will be done separately.

2. Tetrahedral case

Let G_{4} be a tetrahedral group. Then in order to show that G_{4} is an
Hadamard group it is natural to present G_{4} as a subgroup of SL(2,11) .

Let a=(\begin{array}{ll}0 101 0\end{array}) , b=(\begin{array}{ll}1 33 10\end{array}) and c=(\begin{array}{ll}4 78 6\end{array}) .

Then we have that a^{2}=b^{2}=e^{*} . b^{-1}ab=ae^{*} . c^{3}=e , c^{-1}ac=b and c^{-1}bc=

ab. Hence ( a, b, c\rangle is a presentation of G_{4} . Now D is determined in the
same way as G(11) :

D=\{e_{7}^{*}ae^{*}-be^{*}abe^{*}, c, ace^{*}. bce^{*}. abc, c^{2}e^{*}, ac^{2}. bc^{2}e^{*}. abc^{2}e^{*}\} .

In order to inspect the intersection property of D it is convenient to
use the following relations; ba=abe^{*} , ca=abc , c^{2}a=bc^{2} . cb=ac , bcb=
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abce* and c^{2}b=abc^{2} . We omit to give the details of the inspection.
Instead we give the resulting Hadamard matrix. We use elements of D
neglecting e^{*} in the order listed above as the label of row and column of
the matrix. Then the matrix obtained is the following, where + and -

denote 1 and -1 respectively:

\{\begin{array}{l}----+--+-+--+--+--++++-+++--+++++---+-+-+-+----+-+------+--+++-++--+--+++---++--++++---++-+-+-+-+--+-+--------++++-++--++++++---++--+-+----++-+-\end{array}\}

3. Octahedral case

Let G_{8} be an octahedral group. Then in order to show that G_{8} is an
Hadamard group it is natural to present G_{8} as a subgroup of SL(2,23) .

Let a=(\begin{array}{ll}7 194 11\end{array}) , b=(\begin{array}{ll}10 922 13\end{array}) and c=(\begin{array}{ll}18 1l19 4\end{array}) .

Then we have that a^{4}=b^{2}=e^{*} . b^{-1}ab=a^{3}e^{*} , c^{3}=e , c^{-1}a^{2}c=b , c^{-1}bc=

a^{2}be^{*} and (ab)^{-1}cab=c^{-1} . Hence \langle a, b, c\rangle is a presentation of G_{8} . Now
D is determined in the same way as G(23) :

D=\{e^{*} , ae^{*} . a^{2}e^{*} , a^{3}e^{*} . b , abc2. a^{2}b , a^{3}be^{*} . c , ac , a^{2}ce^{*} . a^{3}ce^{*} . bc , abcc*.
a^{2}bc , a^{3}bce^{*}c^{-1}e^{*} . ac^{-1} . a^{2}c^{-1}e^{*} . a^{3}c^{-1} , bc^{-1}e^{*} , abc^{-1}e^{*} . a^{2}bc^{-1}e^{*} .
a^{3}bc^{-1}\} .

In order to inspect the intersection property of D it is convenient to
use the following relations ,\cdot ba=a^{3}be^{*} . ca=a^{3}C^{-1}- bca=abc^{-1}C^{*}- c^{-1}a=

a^{3}bc , bc^{-1}a=ac , cd=a^{2}c , bcb=a^{2}bce^{*} . c^{-1}b=a^{2}bc^{-1}e^{*} and bc^{-1}b=a^{2}c^{-1}e^{*} .
We omit to give the details of the inspection. Instead we give the result-
ing Hadamard matrix as in the case of G_{4} :
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{?} —-+-+-++–+-+–+-+—++—-+——-+—+++–+-+++—+—+—++++-+-+++++–+–++–+—-+++–+-++-+++—++—-+-+-+++++–+-+—-+++++–+-+++-++-++-++++–+–+++++++–+—++-++–+-+—++-++-+—-+-+—+—-+-+-++–+-+-++-+-++++++—+—+—+++++–+-+++–+–++–+—–+++–+-+—-+——-+—+++-++–+-+—-+++++–++-+++++-+-+++—++—-+–++-+—-++-++–+-+—+++++–+–++-++++–+–++++++–+-+–+-+—+—-+-+——+—+++–+-+—-+—-+—++++-+-++++++—+-+–+—-+++–+-+++–+–+++—-+-+-+++++-+-+++—+++++–+-+++-++–+-+—–+–+++++++–+–++-++++-+-+—++-++-+—-++-++– {?}

4. Icosahedral case

Let G_{20} be an icosahedral group. Then in order to show that G_{20} is
an Hadamard group it is natural to present G_{20} as a subgroup SL(2,59) .

Let a=(\begin{array}{ll}6 478 53\end{array}) , b=(\begin{array}{ll}17 5151 42\end{array}) , c=(\begin{array}{ll}51 933 7\end{array}) and d=(\begin{array}{ll}46 356 46\end{array}) .

Then we have that a^{2}=b^{2}=e^{*} . c^{3}=e , d^{5}=e , (da)^{3}=e^{*} , d^{2}a=cde^{*} and
c^{-1}ac=b . Hence \langle a, d\rangle=\langle a, b, c, d\rangle is a presentation of G_{20} . Now D is
determined in the same way as G(59) :

D=\{e^{*} . a , be^{*} , abe^{*} . c , ac , bc , abc , c^{2}e^{*} , ac^{2}bc^{2}abc^{2} . d , ad , bd , abd , cde^{*} .
acde^{*} , bed, abc , c^{2}d , ac^{2}de^{*} . bc^{2} de,*. abc2d , d^{2}e^{*} . ad^{2}e^{*} , bd^{2}e^{*} , abd ,
cd^{2} . acd^{2}e^{*} , bcd^{2}e^{*} . abcd^{2}e^{*} . c^{2}d^{2} , ac^{2}d^{2}e^{*} , bc^{2}d^{2}e^{*} . abc^{2}d^{2}e^{*} . d^{3} . ad^{3} .
bd^{3}e^{*} . abd , cd^{3} , acd^{3}e^{*} bcd3, abcd^{3}e^{*} . c^{2}d^{3}e^{*} . ac^{2}d^{3} . bc^{2}d^{3} . abc2d ,
d^{4}e^{*} , ad^{4} . bd^{4}e^{*}\backslash abd, cd^{4}e^{*} . acd^{4}e^{*} . bcd3 , abcd4 e^{*} , c^{2}d^{4}e^{*} , ac^{2}d^{4}e^{*} .

bc^{2}d^{4} . abc^{2}d^{4}}.

In order to inspect the intersection properoy of D it is convenient to
use the following relations; ba=abe^{*} . ca=abc , c^{2}a=bc^{2} . da=c^{2}d^{2} , cda=
d^{2} , c^{2}da=cd^{2} . d^{2}a=cde^{*} . cd^{2}a=c^{2}de^{*} . c^{2}d^{2}a=de^{*} , d^{3}a=abcd^{4} , cd^{3}a=

bc^{2}d^{4} . c^{2}d^{3}a=ad^{4} . d^{4}a=ac^{2}d^{3} , cd^{4}a=abd^{3}-c^{2}d^{4}a=bcd3 , cb=ac , c^{2}b=

abc^{2} , db=bd^{4}-cdb=acd^{4} . c^{2}db=abc^{2}d^{4} . d^{2}b=bd^{3} , cd^{2}b=acd^{3} , c^{2}d^{2}b=

abc^{2}d^{3} . d^{3}b=bd^{2} . cd^{3}b=acd^{2}c^{2}d^{3}b=abc^{2}d^{2}-d^{4}b=bd , cd^{4}b=acd , c^{2}d^{4}b

abc2d , dc=abcd^{3}e^{*} . d^{2}c=ac^{2}d^{2}e^{*} . d^{3}c=ad^{4}e^{*} and d^{4}c=c^{2}de^{*} . We
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omit to give the details of the inspection. Instead we give the resulting
Hadamard matrix as in the case of G_{8} :

{?}
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5. Remarks

We collect here group theoretical facts of Hadamard groups so far
constructed.

(i) All Hadamard groups constructed in (3) are 2-nilpotent and
metabelian. G_{4} and G_{8} are neither 2-nilpotent nor metabelian. G_{4} and
G_{8} have derived lengths 3 and 4 respectively.

(ii) Using Dirichlet’s theorem we see that any prime p divides the
order of some Hadamard group of quadratic residue type. For p>5 a
Sylow p-subgroup is normal in every Hadamard group so far construct-
ed.

(iii) G_{20} is non-solvable and isomorphic to SL(2,5) . So far PSL(2,

5) is an only non-Abelian composition factor appearing in Hadamard
groups.
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