Note on Hadamard groups of quadratic residue type

To Tosiro Tsuzuku on the occasion of his retirement

Noboru ITO (Received January 26, 1993)

1. Introduction

In a previous paper (3) we introduced an Hadamard design and an Hadamard group as follows. An Hadamard design D=(P,B) is a block design, where P and B are the sets of points and blocks respectively, satisfying the following conditions;

- (1) |P|=|B|=2n, where |X| denotes the number of elements in a finite set X. For $a \in B$ we have that |a|=n and $P-a \in B$;
- (2) For α , $\beta \in B$ we have that $|\alpha \cap \beta| = n/2$, provided that $\beta \neq \alpha$ and $P-\alpha$, and
- (3) We may put $P = \{a_1, \dots, a_n, b_1, \dots, b_n\}$ so that $|\alpha \cap \{a_i, b_i\}| = 1$ for any $\alpha \in B$ and $1 \le i \le n$.

Then we consider an Hadamard design whose automorphism group contains a regular subgroup. An Hadamard group is a group theoretical formulation of such a subgroup. A group G of order 2n is called an Hadamard group if G contains a subset D and an element e^* satisfying the following conditions:

- (4) $|D \cap Da| = n$ if a = e, where e denotes the identity element of G; = 0 if $a = e^*$ and = n/2 for any other element a of G, and
 - (5) $|Da \cap \{b, be^*\}| = 1$ for any elements a and b of G.

Furthermore, in (3) we gave a constrution of an Hadamard design and an Hadamard group of quadratic residue type. Let GF(q) be a finite field of q elements where q is a prime power such that $q \equiv 3 \pmod{4}$. Further let Q and N denote the sets of quadratic residues and non-residues of GF(q)- $\{0\}$ respectively. Now an Hadamard design D(q) = (P(q), B(q)) of quadratic residue type is defined in the following way. P(q) is the set of projective half-points. In the notation of (3) projective half-points are $\infty = \{(0, a), a \in Q\}, \infty^* = \{(0, a), a \in N\}, a = \{(b, ba), b \in Q\}$ and $a^* = \{(b, ba), b \in N\}$, where $a \in GF(q)$. Let us consider * as a natural isomorphism from GF(q) to its disjoint copy $GF(q)^*$. So we have that $Q^* = \{a^*, a \in Q\}$ and $N^* = \{a^*, a \in N\}$. Then B(q) consists of $GF(q) \cup \{\infty\}, Q$

374 N. Ito

 $+a \cup \{\infty\} \cup N^* + a^* \cup \{a^*\}$ and their complements, where $a \in GF(q)$.

Now an Hadamard group $G(\mathbf{q})$ of quadratic residue type is a group of order 2(q+1) defined by $a^{q+1}=b^4=e$ and $b^{-1}ab=a^{-1}$. To show that $G(\mathbf{q})$ is an Hadamard group it is natural to present $G(\mathbf{q})$ as a subgroup of $SL(2,\mathbf{q})$;

$$a = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ with $a + d = y$, $y = x + x^q$

where x in an element of $GF(\mathbf{q}^2)$ of order q+1.

Then $G(\mathbf{q})$ acts on D(q) regularly and D is the set of elements of $G(\mathbf{q})$ which transfers ∞ into $GF(\mathbf{q})^* \cup {\infty^*}$.

It is well known that tetrahedral, octahedral and icosahedral subgroups of orders 12, 24 and 60 respectively are distinguished amog subgroups of $\mathbf{PSL}(2, \mathbf{q})$. For this see (1, 2). We keep the same names for the corresponding subgroups of orders 24, 48 and 120 of $\mathbf{SL}(2, \mathbf{q})$. Moreover we call a group G tetrahedral, octahedral or icosahedral if G is isomorphic to a tetrahedral, octahedral or icosahedral subgroup of $\mathbf{SL}(2, \mathbf{q})$ respectively.

Now the purpose of this note is to prove the following proposition.

PROPOSITION. Tetrahedral, octahedral and icosahedral groups are skew Hadamard groups.

In each of these three groups there exists a unique involution. Hence it should be e^* . So it is sufficient to determine D in each of these three groups which will be done separately.

2. Tetrahedral case

Let G_4 be a tetrahedral group. Then in order to show that G_4 is an Hadamard group it is natural to present G_4 as a subgroup of SL(2,11).

Let
$$a = \begin{pmatrix} 0 & 10 \\ 1 & 0 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 & 3 \\ 3 & 10 \end{pmatrix}$ and $c = \begin{pmatrix} 4 & 7 \\ 8 & 6 \end{pmatrix}$.

Then we have that $a^2=b^2=e^*$, $b^{-1}ab=ae^*$, $c^3=e$, $c^{-1}ac=b$ and $c^{-1}bc=ab$. Hence $\langle a,b,c\rangle$ is a presentation of G_4 . Now D is determined in the same way as G(11):

$$D = \{e^*, ae^*, be^*, abe^*, c, ace^*, bce^*, abc, c^2e^*, ac^2, bc^2e^*, abc^2e^*\}.$$

In order to inspect the intersection property of D it is convenient to use the following relations; $ba=abe^*$, ca=abc, $c^2a=bc^2$, cb=ac, bcb=ac

 $abce^*$ and $c^2b=abc^2$. We omit to give the details of the inspection. Instead we give the resulting Hadamard matrix. We use elements of D neglecting e^* in the order listed above as the label of row and column of the matrix. Then the matrix obtained is the following, where + and - denote 1 and -1 respectively:

3. Octahedral case

Let G_8 be an octahedral group. Then in order to show that G_8 is an Hadamard group it is natural to present G_8 as a subgroup of SL(2,23).

Let
$$a = \begin{pmatrix} 7 & 19 \\ 4 & 11 \end{pmatrix}$$
, $b = \begin{pmatrix} 10 & 9 \\ 22 & 13 \end{pmatrix}$ and $c = \begin{pmatrix} 18 & 11 \\ 19 & 4 \end{pmatrix}$.

Then we have that $a^4=b^2=e^*$, $b^{-1}ab=a^3e^*$, $c^3=e$, $c^{-1}a^2c=b$, $c^{-1}bc=a^2be^*$ and $(ab)^{-1}cab=c^{-1}$. Hence $\langle a,b,c\rangle$ is a presentation of G_8 . Now D is determined in the same way as G(23):

$$D = \{e^*, ae^*, a^2e^*, a^3e^*, b, abe^*, a^2b, a^3be^*, c, ac, a^2ce^*, a^3ce^*, bc, abce^*, a^2bc, a^3bce^*, c^{-1}e^*, ac^{-1}, a^2c^{-1}e^*, a^3c^{-1}, bc^{-1}e^*, abc^{-1}e^*, a^2bc^{-1}e^*, a^3bc^{-1}\}.$$

In order to inspect the intersection property of D it is convenient to use the following relations; $ba=a^3be^*$, $ca=a^3c^{-1}$, $bca=abc^{-1}e^*$, $c^{-1}a=a^3bc$, $bc^{-1}a=ac$, $cd=a^2c$, $bcb=a^2bce^*$, $c^{-1}b=a^2bc^{-1}e^*$ and $bc^{-1}b=a^2c^{-1}e^*$. We omit to give the details of the inspection. Instead we give the resulting Hadamard matrix as in the case of G_4 :

376 N. Ito

4. Icosahedral case

Let G_{20} be an icosahedral group. Then in order to show that G_{20} is an Hadamard group it is natural to present G_{20} as a subgroup SL(2,59).

Let $a = \begin{pmatrix} 6 & 47 \\ 8 & 53 \end{pmatrix}$, $b = \begin{pmatrix} 17 & 51 \\ 51 & 42 \end{pmatrix}$, $c = \begin{pmatrix} 51 & 9 \\ 33 & 7 \end{pmatrix}$ and $d = \begin{pmatrix} 46 & 3 \\ 56 & 46 \end{pmatrix}$. Then we have that $a^2 = b^2 = e^*$, $c^3 = e$, $d^5 = e$, $(da)^3 = e^*$, $d^2a = cde^*$ and $c^{-1}ac = b$. Hence $\langle a, d \rangle = \langle a, b, c, d \rangle$ is a presentation of G_{20} . Now D is determined in the same way as G(59):

 $D = \{e^*, a, be^*, abe^*, c, ac, bc, abc, c^2e^*, ac^2, bc^2, abc^2, d, ad, bd, abd, cde^*, acde^*, bcd, abcd, c^2d, ac^2de^*, bc^2de,^*, abc^2d, d^2e^*, ad^2e^*, bd^2e^*, abd^2, cd^2, acd^2e^*, bcd^2e^*, abcd^2e^*, c^2d^2, ac^2d^2e^*, bc^2d^2e^*, abc^2d^2e^*, d^3, ad^3, bd^3e^*, abd^3, cd^3, acd^3e^*, bcd^3, abcd^3e^*, c^2d^3e^*, ac^2d^3, bc^2d^3, abc^2d^3, d^4e^*, ad^4, bd^4e^*, abd^4, cd^4e^*, acd^4e^*, bcd^4, abcd^4e^*, c^2d^4e^*, ac^2d^4e^*, bc^2d^4, abc^2d^4\}.$

In order to inspect the intersection properoy of D it is convenient to use the following relations; $ba=abe^*$, ca=abc, $c^2a=bc^2$, $da=c^2d^2$, $cda=d^2$, $c^2da=cd^2$, $d^2a=cde^*$, $cd^2a=c^2de^*$, $c^2d^2a=de^*$, $d^3a=abcd^4$, $cd^3a=bc^2d^4$, $c^2d^3a=ad^4$, $d^4a=ac^2d^3$, $cd^4a=abd^3$, $c^2d^4a=bcd^3$, cb=ac, $c^2b=abc^2$, $db=bd^4$, $cdb=acd^4$, $c^2db=abc^2d^4$, $d^2b=bd^3$, $cd^2b=acd^3$, $c^2d^2b=abc^2d^3$, $d^3b=bd^2$, $cd^3b=acd^2$, $c^2d^3b=abc^2d^2$, $d^4b=bd$, $cd^4b=acd$, $c^2d^4b=abc^2d$, $dc=abcd^3e^*$, $d^2c=ac^2d^2e^*$, $d^3c=ad^4e^*$ and $d^4c=c^2de^*$. We

omit to give the details of the inspection. Instead we give the resulting Hadamard matrix as in the case of G_8 :

<i>_</i> -++++-++++++++++++++++-++-+-+-
+-+++++++++++++++++++++++
++-+-+++++++
+++++-+++++++++-+
_+++-++++++-+++-+++-++-+
++-+-+-+-+-+-+-++-+++++-+-+-+-+
-+++-+-+-+-++++++++++++++++
+-++++++++++++++++++++++++++++++++
++++-+++-++++++-+++++++++++
-+-++
_+++-++++++++++++++++++++++++++++++++
+++-+-+++++++-+-++-+-+
_+-++++-+++++++++++++++++++++++++++
++-+-+-++-+-++++++++++++-
+-++-+-+
+-++-++-++-+-++
-+-+-++++-++++-++-++-+-+
-++++-+++-++-+++
+++-+-+-+-++-+-+-+-+-+-+-+-+-
++-++-++-++-+++++-+-+-+-+-+-+-+
+++-+-+-+-+-+-+-++-++++++-
++-++-+-++-+-+-++++
+++++++++++++++++++++++++++++
+++-++-++-++-++++-+++++++-+-
++++-+-+-++-++++++-+++++++
+-+-++++++++++++-++++++-++++-+
++-++-+++++-+-+-+-+-+-+-+-+-+-+-+-+
++++++-+-++-+-+-+-+-+-++
+-++++++-+-+-+-+-+++++++-+++-
++++++++++++-+++-++-++-+-++++-+
++-+-+++++-+-++-+-+-+-
+-+-++++-++-++++++++++
+-+++++-+-+-+-+-+-+-++
++++-++++++-+-+
+++++++++++++-+++-+++++++++
+-++++++-++-++-++-+
\ -+++++-+++++++-+-+-+-+-+-+++-
-+++-+++++-
+++++++++++-++-+++-+-++++++-+-+-+
-++++-+++++++-+-+-+-+-+-+-+-+-+-+-
+++-+-+++-++-++++++++++++-+-++-+-+-+-+
++-++++++++++++-++-++-++-++
-+++-+-+-+-++
+-++++++++++-+-+++++++++-++-
++-+-++++
++++++++-++-+++++++++++++++++++++++
-+++++++++
++++++++-+-+-++
-++-+++++++++++
++-++++-++++-+-++++++++
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_ + - + + + + + + + + + + + + + + + + - + + + - + + + - + + + - + + - + - + + + - + + + - + + - + - + + + + + + +
\ +-+++-+++++-+++-+-++-++-+-++++++-+-+-+
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+-+++++++-+-+-+-+-+-+-+-+-+++-+
+++-++-+-+-++++++++++++++++-+-++++++-+++++-++-++++-++++-++++-++++++++++++++++++++++++++++
\ -+-+++++

378 N. Ito

5. Remarks

We collect here group theoretical facts of Hadamard groups so far constructed.

- (i) All Hadamard groups constructed in (3) are 2-nilpotent and metabelian. G_4 and G_8 are neither 2-nilpotent nor metabelian. G_4 and G_8 have derived lengths 3 and 4 respectively.
- (ii) Using Dirichlet's theorem we see that any prime p divides the order of some Hadamard group of quadratic residue type. For p>5 a Sylow p-subgroup is normal in every Hadamard group so far constructed.
- (iii) G_{20} is non-solvable and isomorphic to SL(2,5). So far PSL(2,5) is an only non-Abelian composition factor appearing in Hadamard groups.

References

- [1] L.E. DICKSON, Linear groups with an exposition of the Galois field thory. Dover, 1958.
- [2] B. HUPPERT, Endliche Gruppen I. Springer, 1967.
- [3] N. ITO, On Hadamard groups. To appear in Journal of Algebra.

Department of Mathematics Meijo University Nagoya, Tenpaku 468, Japan