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Existence for asymptotically coercive
nonlinear elliptic equations

in Hilbert spaces

Ronald I. BECKER
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Abstract

We consider equations of the form

(L-Q(x))x+e=0

where
1.L is a self-adjoint (abstract) elliptic operator with domain in H_{1}\subseteq

H (H a Hilbert space);
2. For each x\in H , Q(x) is a bounded self-adjoint linear operator on

H ;
3. e\in H

(see Section 2 for a definition of (abstract) elliptic).
Many results in the literature deal with the case where L is a

differential operator and, if \lambda_{n} and \lambda_{n+1} are successive eigenvalues of L,

then we have for all x of sufficiently large norm
\lambda_{n}I\leq Q(x)\leq\lambda_{n+1}I

(where inequality is in the usual partial order on the self-adjoint opera-
tors). This is not sufficient to guarantee existence, since Q may interact
with the eigenvectors corresponding to the two eigenvalues. Suitable
sufficient conditions are that for all x of sufficiently large norm

Q(x)\geq\gamma(t)I>\lambda_{n}I on the eigenspace of \lambda_{n} ; Q(x)\leq\Gamma(t)I<\lambda_{n+1}I on
the eigenspace of \lambda_{n+1} .

In this paper, we will relax the condition at the lower eigenvalue to Q(x)
\geq\lambda_{n}I for all x of sufficiently large norm and an asymptotic coerciveness-
type condition of the form

\lim_{marrow}\inf_{\infty}((Q(x_{m})-\lambda_{n})x_{m}-e, T_{n}x_{m}))>0

for all sequences \{x_{m}\} tending asymptotically to eigenspace of \lambda_{n} (see Sec-
tion 3 for a precise definition).
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1 Introduction

We consider equations of the form

(L-Q(x))x+e=0 (1)

where

1. L is a self-adjoint (abstract) elliptic operator with domain in H_{1}\subseteq

H, H a Hilbert space;
2. For each x\in H , Q(x) is a bounded self-adjoint linear operator on H ;
3. e\in H

(see Section 2 for a definition of (abstract) elliptic).
Many results in the literature deal with the case where L is a

differential operator and, if \lambda_{n} and \lambda_{n+1} are successive eigenvalues of L,
then we have for all x of sufficiently large norm

\lambda_{n}I\leq Q(x)\leq\lambda_{n+1}I

where Q\geq Q’ holds iff Q-Q’ is nonnegative in the usual partial order on
the self-adjoint operators. This is not sufficient to guarantee existence,
since Q may interact with the eigenvectors corresponding to the two
eigenvalues. Suitable sufficient conditions are that for all x of sufficiently
large norm

Q(x)\geq\gamma(t)I>\lambda_{n}I on the eigenspace of \lambda_{n} ; Q(x)\leq\Gamma(t)I<\lambda_{n+1}I on
the eigenspace of \lambda_{n+1} .

(See Becker [4]). Typical sufficient conditions which fit into this schema
are for the equation x”+g(t, x)=0, x\in \bm{R} under periodic boundary condi-
tions. One sufficient condition is that \lambda_{n}\leq\alpha\leq g(t, x)\leq\beta\leq\lambda_{n+1} and the two
outer inequalities are strict on a set of positive measure (see Mawhin and
Ward [10] ). Another sufficient condition is that if \gamma(t)=\lim\inf_{|\chi|arrow\infty}x^{-1}g(t,

x) and \Gamma(t)=\lim\sup_{|\chi|arrow\infty}x^{-1}g(t, x) then \int_{0}^{2\pi}\gamma(t)dt\geq 0 and \int_{0}^{2\pi}\max\{\gamma(t),

O\}dt>0 ; and also \Gamma(t)\leq 1 with strict inequality on a set of positive mea-
sure (see Mawhin and Ward [11]). In the latter case we are concerned
with the eigenvalues \lambda_{1}=0 and \lambda_{2}=1 . For a discussion of how these
results are derived from the schema see Becker [4]. In this paper, we will
relax the condition at the lower eigenvalue to Q(x)\geq\lambda_{n}I for all x of
sufficiently large norm and an asymptotic coerciveness-type condition of
the form
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\lim_{marrow}\inf_{\infty}((Q(x_{m})-\lambda_{n})x_{m}-e, T_{n}x_{m})>0

for all sequences \{x_{m}\} tending asymptotically to the eigenspace of \lambda_{n} (see

Section 3 for a precise definition).

As an application of the abstract results, existence is proved for

x”+g(t, x)x=e(t)

x:[0,2\pi]arrow \bm{R} subject to periodic boundary conditions on [0,2\pi] and the

conditions

\lim_{xarrow\infty}g(t, x)x=+\infty;\lim_{xarrow-\infty}g(t, x)x=-\infty uniformly in t\in[0,2\pi]

g(t, x)\leq\lambda_{n+1} with strict inequality on a set of positive measure
\gamma(t)\leq g(t, x) and

[ \int_{0}^{2\pi}(\gamma(t)-\lambda_{n})\phi_{i}\phi_{j}dt]_{1\leq i,j\leq n} is a non-negative definite matrix,

( \phi_{i} being the eigenfunction corresponding to \lambda_{i} ).

This generalizes a result of Mawhin and Ward [11], Theorem 1,

which only considered the situation between the first two eigenvalues.

The last condition allows the function g to cross below the eigenvalue \lambda_{n} .
The abstract theorem may also be applied to partial differential equations,

but the form of the result is not as satisfactory as for ordinary differential
equations due to the weaker implications of Sobolev’s theorem in higher

dimensions.
Improvements on the coercivity condition can be obtained in cases

where the problem has a variational structure (see Mawhin and Willem
[12] ) and the references cited there. In these cases, asymptotic coercivity

can be replaced by coercivity on the eigenspace itself.
Section 2 states the results needed on elliptic quadratic forms. Sec-

tion 3 proves uniqueness results and inequalities implied by them for ellip-

tic quadratic forms. Section 4 proves the main theorems. Section 5 gives

some applications to ordinary differential equations.

2 Bilinear and quadratic forms

We list some properties of quadratic forms which we will need in the
sequel. In this and subsequent sections, we suppose that H_{1}\subseteq H are two

Hilbert spaces with compact embedding. Weak and strong convergence in
H_{1} are denoted byarrow andarrow respectively. Let F:H_{1}\cross H_{1} arrow \bm{R} be a
bilinear form which is bounded in that there exists a constant M such that

F(x, y)\leq M||x||_{H_{1}}||y||_{H_{1}} (x, y\in H)
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and hermitian in that

F(x, y)=F(y, x) .

The Riesz representation theorem implies that there is a bounded linear
operator T on H_{1} such that F(x, y)=(Tx, y)_{H_{1}} , which implies that F is
weakly continuous in each variable separately.

A (bounded) quadratic form on H_{1} is a map G(x) such that
G(x)=F(x, x)

for some (bounded) bilinear hermitian form F. We will write F(x) for
the quadratic form F(x, x) in what follows.

A quadratic form F(x) on H_{1} is:
non-negative if F(x)\geq 0 (x\in H_{1})

positive definite if there exists a constant m>0 such that
F(x)\geq m||x||_{H_{1}}^{2} (x\in H_{1})

weakly lower semicontinuous if

x_{n}arrow x implies \lim_{narrow}\inf_{\infty}F(x_{n})\geq F(x)

weakly continuous if x_{n}arrow x implies \lim_{narrow\infty}F(x_{n})=F(x)

elliptic if it is bounded and

x_{n}arrow x and F(x_{n})arrow F(x) implies x_{n}arrow x .

For further background, see Hestenes [7] and Hildebrandt [8]. We will
need the following well-known results (see [8] for proofs).

LEMMA 1.
(a) A quadratic form F(x) on H_{1} is elliptic iff it is the sum of a bound-

ed positive definite quadratic form D(x) and a weakly continuous
form W(x) .

(b) An elliptic form is weakly lower semicontinuous.
(c) A bounded quadratic form F(x) on H_{1} is elliptic iff there exist con-

stants C_{1}, C_{2}>0 such that
F(x)\geq C_{1}||x||_{H_{1}}^{2}-C_{2}||x||_{H}^{2} (x\in H)

where F is a bounded quadratic form, then F is elliptic.

We will need the following. We use “ > ” to denote the usual order-
ing on the self-adjoint operators of a Hilbert space: Q\geq 0 iff (Qx, x)\geq 0

for all x;Q>0 iff (Qx, x)>0 for all x\neq 0 .
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PROPOSITION 1. Let P_{1}\leq P_{2} be bounded self-adjoint operators in a
Hilbert space H. Then the set

\mathscr{L}=\{Q|P_{1}\leq Q\leq P_{2}, Q\in L(H, H)\}

is sequentially compact in the weak operator topology on H (denoted by
WOT(H)).

PROOF: Since H is a Hilbert space, the set \{Q|||Q||\leq K , Q\in L(H .
H)\} is compact in WOT(H) . (See Dunford and Schwartz [12] VI. 9. 6).
Let \{Q_{n}\}\subseteq \mathscr{L}. Then \{Q_{n}\} is bounded, so there is a Q such that Q_{n}arrow Q in
WOH(H) . But

(P_{1}x, x)\leq(Q_{n}x, x)\leq(P_{2}x, x)

so taking limits, we see that Q\in \mathscr{L}. \blacksquare

3 Inequalities for quadratic forms

In what follows, the operator Q(x) will be assumed bounded self-adjoint.
The purpose of this section is to show that under certain definiteness con-
ditions on Q(x) given in Lemma 2, using a condition implying that Q(x)
lies in a weakly compact set of operators, there is a definiteness inequality
for the quadratic form ((L-Q)x, x-2P_{n}x) (given in Lemma 3). This is
used for obtaining bounds for solutions in the main theorem in the next
section.

Throughout, L will denote a self-adjoint operator having compact
resolvent on a Hilbert space H. Then L has discrete spectrum \{\lambda_{i}\}

(where \lambda_{i} is repeated according to multiplicity) with no finite limit point,
each eigenvalue being of finite multiplicity. We denote the corresponding
orthonormalized eigenfunctions by \{\phi_{i}\} . We assume \lambda_{i}\leq\lambda_{i+1} for all i .
We denote by E_{n} the span of the eigenvectors corresponding to
eigenvalues \lambda\leq\lambda_{n} , and by F_{n} the span of the eigenvectors corresponding to
\lambda\geq\lambda_{n} . So if \lambda_{i}<\lambda_{i+1} we have E_{i}\perp F_{i+1} . Then E_{n}\perp F_{n+1} if \lambda_{n}\neq\lambda_{n+1} and

x\in E_{n} implies (Lx, x)\leq\lambda_{n}(x, x)

x\in F_{n+1} implies (Lx, x)\geq\lambda_{n+1}(x, x)

x\in E_{n} and (Lx, x) =\lambda_{n}(x, x) implies Lx=\lambda_{n}x

x\in F_{n} and (Lx, x) =\lambda_{n+1}(x, x) implies Lx=\lambda_{n+1}x .

We will also denote the span of all eigenvectors belonging to eigenvalue \lambda

by span\{\lambda\} . We denote by P_{n} the orthogonal projection onto E_{n} : by T_{n}

the orthogonal projection onto span\{\lambda_{n}\} ; by \tilde{P}_{n} the operator taking x|arrow

P_{n}x/||P_{n}x|| and similarly for \tilde{T}_{n} and other projections.
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If P is a projection, we say that a sequence \{z_{n}\} is asymptotic to PH if

(i) \lim_{marrow\infty}||Pz_{m}||=+\infty

(ii) \lim_{marrow\infty}||z_{m}-Pz_{m}||_{H_{1}}/||Pz_{m}||_{H_{1}}=0 (that is, z_{m}=Pz_{m}+o(||Pz_{m}||_{H_{1}}) ).

LEMMA 2. Let Q , Q_{1} , Q_{2} be symmetric operators whose domain con-
tains dom(L) , let \lambda_{n}<\lambda_{n+1} and let P_{0}=0 . Suppose that Q_{1}\leq Q\leq Q_{2} where
(a) (\lambda_{n+1}I-Q_{2})\geq 0 , and is >0 on span\{\lambda_{n+1}\} ;

(b) (Q_{1}-\lambda_{n}I)\geq 0 .
Then for x\in dom(L) , for any \alpha>(\lambda_{n+1}-\lambda_{n}) , we have

((L-Q)x, x-2P_{n-1}x)+\alpha||T_{n}x||^{2}\leq 0 iff x=0. (2)

PROOF: Assuming the inequality in 2, we have
0\geq((L-Q)x, x-2P_{n-1}x)+\alpha||T_{n}||^{2}

=((L-Q)(x-P_{n-1}x), (x-P_{n-1}x))-((L-Q)P_{n-1}x, P_{n-1}x)+\alpha||T_{n}x||^{2} (3)
\geq((L-Q)(x-P_{n-1}x), (x-P_{n-1}x))+((\lambda_{n}I-L)P_{n-1}x, P_{n-1}x)+\alpha||T_{n}x||^{2}

\geq((L-\lambda_{n+1}I)(x-P_{n-1}x), (x-P_{n-1}x))+((\lambda_{n}I-L)P_{n-1}x, P_{n-1}x)+\alpha||T_{n}x||^{2}

=((L-\lambda_{n+1}I)(x-P_{n}x), (x-P_{n}x))+((\lambda_{n}I-L)P_{n-1}x, P_{n-1}x)+\beta||T_{n}x||^{2} (4)
\geq 0 (5)

where \beta=\alpha-(\lambda_{n+1}-\lambda_{n})>0 (the last inequality (5) holding by the non
-negativity of all three terms in (4)). It follows that all three terms in (4)
are 0 and we therefore have

(L-\lambda_{n+1}I)(x-P_{n}x)=0 (6)
(L-\lambda_{n}I)P_{n-1}x=0 (7)

T_{n}x=0 . (8)

So by (6) x-P_{n}x\in span\{\lambda_{n+1}\} , and hence x-P_{n-1}x\in span\{\lambda_{n+1}\} . All three
terms in (3) are 0, and so using (8)

0=((L-Q)(x-P_{n-1}x), (x-P_{n-1}x))\geq((\lambda_{n+1}-Q_{2})(x-P_{n-1}x), (x-P_{n-1}x))

and by (a), x-P_{n-1}x=0 . Further, by (7) P_{n-1}x\in span\{\lambda_{n}\} , which implies
that P_{n-1}x=0 and hence that x=0, which proves (2). \blacksquare

LEMMA 3. Let Q, Q_{1} , Q_{2} be symmetric operators whose domain con-
tains dom(L) . Let F(x) be an elliptic quadratic form on H, and let G(Q,
x)=(Qx, Tx)=J(x, x) for some bounded operator T and J a bounded qua-
dratic form on H independent of Q.

For each \epsilon>0 let there exist K_{\epsilon}>0 and Q^{\epsilon}(x) such that
Q_{1}-\epsilon I\leq Q^{\epsilon}(x)\leq Q_{2}+\epsilon I (||x||_{H_{1}}\geq K_{\epsilon}) .
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Suppose that for all Q satisfying Q_{1}\leq Q\leq Q_{2} we have F(x)+G(Q, x)\leq 0

implies x=0 .
Then there exists m>0 , K>0 , \epsilon_{0}>0 independent of \epsilon sueh that

m||x||_{H_{1}}^{2}\leq F(x)+G(Q^{\epsilon}(x), x) (||x||_{H_{1}}\geq K, \epsilon<\epsilon_{0}) . (9)

PROOF: Suppose that there do not exist m, K satisfying (9). Then
there exist \{z_{m}\} , \{\epsilon_{m}\} , \{\delta_{m}\} and Q with ||z_{m}||_{H_{1}}arrow\infty , \epsilon_{m}arrow 0 , \delta_{m}arrow 0 , Q^{\epsilon m}(z_{m})=

Q_{m}arrow Q in WOT(H) (by Proposition 1) and
Q_{1}-\epsilon_{m}I\leq Q_{m}\leq Q_{2}+\epsilon_{m}I

(which implies Q_{1}\leq Q\leq Q_{2}), such that
\delta_{m}||z_{m}||_{H_{1}}^{2}>F(z_{m})+G(Q_{m}, z_{m}) . (10)

Let x_{m}=z_{m}/||z_{m}||_{H_{1}} . Then ||x||_{H_{1}}=1 and we may assume, by the com-
pactness of the embedding of H_{1} in H and by passing to a subsequence if
necessary, that x_{m}arrow x (weakly) in H_{1} and x_{m}arrow x (strongly) in H. By
(10),

\delta_{m}>F(x_{m})+G(Q_{m}, x_{m}) . (11)

F(x) is elliptic. By Lemma 1, F(x) is weakly lower semicontinuous.
Also, we have G(Q_{m}, x_{m})-G(Q, x)=G((Q_{m}-Q), x, x)+G(Q_{m},(x_{m}-x), x)
+G(Q_{m}, x_{m}, x_{m}-x) , \{Q_{m}\} is uniformly bounded and x_{m}arrow x in H, so that

G(Q_{m}, x_{m})arrow G(Q, x) .

So by (11) we have

0= \lim_{marrow\infty}\delta_{m}\geq\lim_{marrow}\inf_{\infty}F(x_{m})+\lim_{marrow\infty}G(Q_{m}, x_{m})\geq F(x)+G(Q, x) . (12)

By hypothesis x=0. Thus

0= \lim_{marrow\infty}\delta_{m}\geq\lim_{marrow}\sup_{\infty}F(x_{m})+\lim_{marrow\infty}G(Q_{m}, x_{m})

= \lim_{marrow}\sup_{\infty}F(x_{m})\geq\lim_{marrow}\inf_{\infty}F(x_{m})

\geq F(x)=0

so that \lim_{marrow\infty}F(x_{m})=0=F(x) . By ellipticity, x_{m}arrow x strongly in H_{1} .
Since ||x_{m}||_{H_{1}}=1 and x=0, we have a contradiction. Hence (9) holds. \blacksquare

4 The main theorems

The main result of this paper in contained in Theorem 1. Corollary 1
enables the theorem to be applied to periodic differential operators
containing such terms as f(x)x’ Theorem 2 applies Theorem 1 in the
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case where \lambda_{n} is a simple eigenvalue.

THEOREM 1. Let L be elliptic and let Q(x):H_{1}arrow L(H, H) be contin-
uous from the strong topology in H_{1} to WOT(H), Q(x) selfadjoint for all
x\in H. Let \lambda_{n}<\lambda_{n+1} and let the following hold:

(a) Let Q_{1}\leq Q_{2} be selfadjoint and satisfy

\lambda_{n+1}I-Q_{2}\geq 0 and be >0 on span\{\lambda_{n+1}\}

Q_{2}-\lambda_{n}I>0 on E_{n}

Q_{1}-\lambda_{n}I\geq 0 on E_{n} .

(b) For any sequence \{x_{m}\} asymptotic to T_{n}H we have

\lim_{marrow}\inf_{\infty}((Q(x_{m})-\lambda_{n}I)x_{m}-e,\tilde{T}_{n}x_{m})>0 .

(c) Let Q(x) map bounded sets in H to bounded sets in L(H, H) .
Given \epsilon>0 , there is a K_{\epsilon}\geq 0 and a Q^{\epsilon}(x) satisfying the same conti-
nuity hypotheses as Q(x) such that

Q_{1}-\epsilon I\leq Q^{\epsilon}(x)\leq Q_{2}+\epsilon I (||x||_{H_{1}}\geq K_{\epsilon})

and

||(Q(x)-Q^{\epsilon}(x))x||_{H}\leq C (x\in H) .

Then the equation

(L-Q(x))x+e=0 (13)

has a solution in dom(L) .

PROOF: We suppose for simplicity that L^{-1} exists. If it does not, a
slight modification of the argument holds with (L-\mu I)^{-1} , in place of L^{-1} ,
\mu a real number. We use symbol C to denote possibly different constants
>0 .

Consider (I-L^{-1}Q(x))x+L^{-1}e=0 . Then

(I-L^{-1}Q^{\epsilon}(x))x=L^{-1}\{(Q(x)-Q^{\epsilon}(x))x-e\}

=L^{-1}g(x) say

For \lambda\in[0,1] consider

( I-L^{-1}\{(1-\lambda)Q_{2}+\lambda Q^{\epsilon}(x)\}x=\lambda L^{-1}g(x) . (14)

Writing

Q_{\lambda}^{\epsilon}(x)=(1-\lambda)Q_{2}+\lambda Q^{\epsilon}(x) (\lambda\in[0,1])
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this reduces to

(I-L^{-1}Q_{\lambda}^{\epsilon}(x))x=\lambda L^{-1}g(x) (\lambda\in[0,1]) . (15)

Note that

Q_{1}-\epsilon I\leq Q_{\lambda}^{\epsilon}(x)\leq Q_{2}+\epsilon I (x\in H) .
For \alpha>(\lambda_{n+1}-\lambda_{n}) let

F(y, z)=(Ly, (I-2P_{n-1})z) (y, z\in dom(L))

G(Q, y, z)=-(Qy, (I-P_{n-1})z)+\alpha||T_{n}z||^{2} (y, z\in dom(L))

F(y)=F(y, y)
G(Q, y)=G(Q, y, y) .

We show that F(x) is elliptic on H_{1} .

(Lx, (I-2P_{n-1})x)_{H}=(Lx, x)_{H}-2(Lx, P_{n-1}x)

=(Lx, x)_{H}-2 \sum_{i=1}^{n-1}\lambda_{i}|(x, \phi_{i})_{H}|^{2}

\geq(Lx, x)_{H}-2|\lambda_{n-1}|||x||_{H}^{2}

\geq C_{1}||x||_{H_{1}}^{2}-(C_{2}+2|\lambda_{n-1}|)||x||_{H}^{2}

which implies ellipticity of F on H_{1} by Lemma 1 (c). By Lemma 3 this
implies there are m>0 , K\geq 0 , \epsilon_{0}>0 such that

m||y||_{H_{1}}^{2}\leq((L-Q_{\lambda}^{\epsilon}(y)y, (y-2P_{n-1}y))+\alpha||T_{n}y||^{2} (||y||_{H_{1}}\geq K, \epsilon<\epsilon_{0}) .
(16)

Setting y=x-P_{n}x we have for any solution x of (15) with ||x||_{H_{1}}\geq K , \epsilon<\epsilon_{0} ,

m||x-P_{n}x||_{H_{1}}^{2}\leq((L-Q_{\lambda}^{\epsilon}(x))(x-P_{n}x), (x-P_{n}x))

=((L-Q_{\lambda}^{\epsilon}(x)x, (x-2P_{n}x))+((L-Q_{\lambda}^{\epsilon}(x))P_{n}x, P_{n}x)

\leq\lambda(g(x), x-2P_{n}x)+((L-\lambda_{n})P_{n}x, P_{n}x)

\leq||g(x)||_{H}(||x-P_{n}x||_{H}+||P_{n}x||_{H})+((L-\lambda_{n})P_{n-1}x, P_{n-1}x)

\leq C(||x-P_{n}x||_{H_{1}}+||P_{n}x||_{H})+(\lambda_{n-1}-\lambda_{n})||P_{n-1}x||_{H}^{2}.

Hence

m||x-P_{n}x||_{H_{1}}^{2}+(\lambda_{n}-\lambda_{n-1})||P_{n-1}x||_{H}^{2}\leq C(||x-P_{n}x||_{H_{1}}+||P_{n-1}x||_{H}+||T_{n}x||_{H}) (17)

so that

||x-P_{n}x||_{H_{1}}\leq C||T_{n}x||_{H_{1}}^{\frac{1}{2}}-C’

||P_{n-1}x||_{H}\leq C||T_{n}x||_{H_{1}}^{\frac{1}{2}}-C’ (18)

Similarly, on using y=x-T_{n}x in (16) we obtain
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m||x-T_{n}x||_{H_{1}}^{2}\leq((L-Q_{\lambda}^{\epsilon}(x))(x-T_{n}x), (x-T_{n}x-2P_{n-1}x))

=((L-Q_{\lambda}^{\epsilon}(x)(x-T_{n}x), (x-T_{n}x))-((L-Q_{\lambda}^{\epsilon}(x))P_{n-1}x, P_{n-1}x)

\leq((L-Q_{\lambda}^{\epsilon}(x)x, (x-2T_{n}x))+((L-Q_{\lambda}^{\epsilon}(x))T_{n}x, T_{n}x)

+(\lambda_{n+1}-\lambda_{1})||P_{n-1}x||_{H}^{2}

\leq\lambda||g(x)||(||x-T_{n}x||_{H1}+||T_{n}||_{H})+(\lambda_{n+1}-\lambda_{1})||P_{n-1}x||_{H}^{2}.

Using (18) we have

||x-T_{n}x||_{H_{1}}\leq C||T_{n}x||_{H_{1}}^{\frac{1}{2}}-C’. (19)

Multiplying (15) by L and taking inner products with \tilde{T}_{n}x , we obtain
(Lx,\tilde{T}_{n}x)=(1-\lambda)(Q_{2}x,\tilde{T}_{n}x)+\lambda(Q(x)x-e,\tilde{T}_{n}x) .

But
(Lx,\tilde{T}_{n}x)=(1/||T_{n}x||)(LT_{n}x, T_{n}x)\leq\lambda_{n}(T_{n}x,\tilde{T}_{n}x)=\lambda_{n}(x,\tilde{T}_{n}x)

so that
0\geq(1-\lambda)((Q_{2}-\lambda_{n}I)x,\tilde{T}_{n}x)+\lambda((Q(x)-\lambda_{n}I)x-e,\tilde{T}_{n}x) . (20)

We have

((Q_{2}- \lambda_{n}I)x,\tilde{T}_{n}x)=((Q_{2}-\lambda_{n}I)(||T_{n}x||_{H_{1}}(\tilde{T}_{n}x+\frac{(x-T_{n}x)}{||T_{n}x||_{H_{1}}}),\tilde{T}_{n}x)

\geq||T_{n}x||_{H_{1}}[((Q_{2}-\lambda_{n}I)\tilde{T}_{n}x,\tilde{T}_{n}x)-C\frac{||x-T_{n}x||_{H_{1}}}{||T_{n}x||_{H_{1}}}] .

(21)

Suppose there is a sequence of solutions \{x_{m}\} of (15) with
\lim_{marrow\infty}||T_{n}x_{m}||_{H_{1}}=\infty . Then by (19) ||x_{m}-T_{n}x_{m}||_{H_{1}}/||T_{n}x_{m}1||_{H_{1}}=o(1) , so that
\{x_{m}\} is asymptotic to T_{n}H . By hypothesis (b) we have

((Q(x_{m})-\lambda_{n}I)x_{m}-e,\tilde{T}_{n}x_{m})>0 (n\geq N) (22)

and by (21) we have (using ((Q_{2}-\lambda_{n}I)\overline{T}_{n}x,\tilde{T}_{n}x)>0 from (a))

((Q_{2}-\lambda_{n}I)x_{m},\tilde{T}_{n}x_{m})>0 (n\geq N) . (23)

Using (22) and (23) in (20) with x_{m} in place of x we obtain a contradic-
tion.

Hence ||T_{n}x||_{H_{1}} is bounded for solutions x of (15). It then follows from
(19) that ||x||_{H_{1}}\leq C .

The remainder of the theorem follows from the fact that if L is ellip-
tic then L^{-1} is compact from H to dom(L) , and the proof is then complet-
ed by a standard argument using the homotopy invariance of the
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topological degree. \blacksquare

NOTE: If Q(x) is bounded as a function of x then the condition of
(b) is implied by

\lim_{marrow}\inf_{\infty}((Q(x_{m})-\lambda_{n}I)\tilde{T}_{n}x_{m},\tilde{T}_{n}x_{m})>0

for all sequences \{x_{m}\} asymptotic to T_{n}H . This is a form of (nonuni-
form) asymptotic positivity on T_{n}H .

The following corollary enables the application of the theorem to peri-
odic ordinary differential equations containing such terms as f(x)x’ or
higher order terms with odd derivatives.

COROLLARY 1. Let h(x) : H_{1}arrow H be continuous and let (h(x), x)=
(h(x), 2 T_{n}x)=0 for x\in dom(L) . Then under the conditions of Theorem 1,
the equation

(L-Q(x))x+e=h(x)

has a solution in H_{1} .

PROOF: The proof is the same except that wherever the symbol e
appears it must be replaced by e-h(x) . Since we have

((e-h(x)), x)=(e, x) and
((e-h(x), T_{n}x)=(e, T_{n}x)

the argument on the boundedness of ||T_{n}x|| goes through as before and the
proof of the corollary follows. \blacksquare

The following is a specialization of Theorem 1 to the case where \lambda_{n} is
a simple eigenvalue.

THEOREM 2. Let the hypotheses of Theorem 1 hold, with \lambda_{n} a simple
eigenvalue and with (b) replaced by the two hypotheses
(a) Let Q_{1}\leq Q_{2} be selfadjoint and satisfy

\lambda_{n+1}I-Q_{2}\geq 0 and be >0 on span\{\lambda_{n+1}\}

Q_{2}-\lambda_{n}I>0 on E_{1}

[((Q_{1}-\lambda_{n}I)\phi_{i}, \phi_{j})]_{1\leq i,j\leq n}\geq 0

where the last inequality indicates the non-negativity of the matrix on
the left.

(b)’ For any sequence \{z_{m}\} asymptotic to T_{n}H we have

\lim_{marrow}\inf_{\infty}((Q(x_{m})-\lambda_{n}I)x_{m}, \phi_{n})>A and (24)
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\lim_{marrow}\sup_{\infty}((Q(-x_{m})-\lambda_{n}I)(-x_{m}), \phi_{n})]<a . (25)

(c) Let Q(x) map bounded sets in H to bounded sets in L(H, H) . Given
\epsilon>0 , there is a K_{\epsilon}\geq 0 and a Q^{\epsilon}(x) satisfying the same continuity
hypotheses as Q(x) such that

Q_{1}-\epsilon I\leq Q^{\epsilon}(x)\leq Q_{2}+\epsilon I (||x||_{H_{1}}\geq K_{\epsilon})

and

||Q(x)-Q^{\epsilon}(x))x||_{H}\leq C (x\in H) .

(d) Let e\in H be such that a\leq(e, \phi_{n})\leq A .

Then the equation

(L-Q(x))x+e=0

has a solution in dom(L) .

PROOF: We need only show that hypothesis (b) of Theorem 1 is
satisfied. We have

\tilde{T}_{n}x=T_{n}x/||T_{n}x||=(x, \phi_{n})/|(x, \phi_{n})|\phi_{n}=sgn((x, \phi_{n}))\phi_{n}

so that
((Q(x)-\lambda_{n}I)x-e,\tilde{T}_{n}x)=sgn((x, \phi_{n}))[((Q(x)-\lambda_{n}I)x, \phi_{n})-(e, \phi_{n})] .

(26)

Conditions (b) and (d) together with (24) and (25) now imply that the
RHS of (26) is stricty positive for ||T_{n}x||=|(x, \phi_{n})| sufficiently large.
Hence hypothesis (b) of Theorem 1 is satisfied, and the proof is complete.

\blacksquare

NOTE: In the case n=1 , the last inequality in (a) reduces to

((Q_{1}-\lambda_{1})\phi_{1}, \phi_{1})\geq 0 .

5 Applications at resonance

The following is a result of Mawhin and Ward [11], Theorem 1.

THOEOREM 3. Consider

x”+f(x)x’+g(t, x)x=e(t) (27)
x(0)=x(2\pi) , x’(0)=x’(2\pi) (28)

where f is continuous, g satisfies Caratheodory conditions, and e(t)\in L^{1}(0,
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2\pi) . Assume that there exist \gamma(t) , \Gamma(t)\in L^{1}(0,2\pi) such that

0 \leq\int_{0}^{2\pi}\gamma(t)dt<\int_{0}^{2\pi}\Gamma(t)dt (29)

\gamma(t)\leq\lim_{|\chi|arrow}\inf_{\infty}g(t, x)\leq\lim_{|\chi|arrow}\sup_{\infty}g(t, x)\leq\Gamma(t) (30)

\Gamma(t)\leq 1 with inequality on a set of positive measure. (31)
Suppose there exist real a, A, R with a<A such that

\int_{0}^{2\pi}g(t, x(t))x(t)dt>A (all x with \min_{t\in[0,2\pi]}x(t)\geq R ) (32)

\int_{0}^{2\pi}g(t, x(t))x(t)dt<a (all x with \max_{t\in[0,2\pi]}x(t)\leq-R). (33)

Then for all e(t) satisfying

a \leq\int_{0}^{2\pi}e(t)dt\leq A (34)

there exists a solution of (27), (28) in the Sobolev space H^{1}(0,2\pi) .

PROOF: In order to show that condition (b) of Theorem 2 holds we
will need the following construction, due to Ahmad and Salazar:

Given \epsilon>0 , let \Psi_{\epsilon}(t)\in C^{\infty}(\bm{R}) and satisfy

0\leq\Psi_{\epsilon}(t)\leq 1 , \Psi_{\epsilon}(t)=1(|t|<r_{\epsilon}) , \Psi(t)=0(|t|>2r_{\epsilon})

where r_{\epsilon} is a number such that
|x|\geq r_{\epsilon} implies \gamma(t)-\epsilon\leq g(t, x)\leq\Gamma(t)+\epsilon (35)

(whose existence for all \epsilon>0 is guaranteed by (30)).
Let

g_{\epsilon}(t, x)=\gamma(t) (|x|\leq r_{\epsilon})

=\Psi_{\epsilon}(x)\gamma(t)+(1-\Psi_{\epsilon}(x))g(t, x) (r_{\epsilon}\leq|x|\leq 2r_{\epsilon})

=g(t, x) (|x|\geq 2r_{\epsilon}) .

Let Q be multiplication by g, Q^{\epsilon} be multiplication by g_{\epsilon} . Then

((Q(x)-Q^{\epsilon}(x))x)(t)=0 (|x|>2r_{\epsilon})

and the LHS is bounded on bounded x-sets. Hence
||(Q(x)-Q^{\epsilon}(x))x||_{H}<C

for some C>0 . Also, g(t, x) satisfies the inequality in (35) for all t , x ,

so that hypothesis (b) of Theorem 1 holds with Q_{1}=multiplication by \gamma(t) ,

and Q_{2}=multiplication by \Gamma(t) .
We apply Corollary 1 where here Lx=-x” with boundary conditions
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(28), so that L is selfadjoint. Q(x) is multiplication by g(t, x(t)) , h(x)=
-f(x)x’. \phi_{1}= constant, \lambda_{1}=0 , \lambda_{2}=1 . Then the continuity and self-adjoint-
ness conditions on Q(x) in Theorem 2 hold.

For (b) note that

((Q(x)- \lambda_{1}I)x, \phi_{1})=C\int_{0}^{2\pi}g(t, x(t))x(t)dt .

If \{x_{n}(t)\} is asymptotic to T_{1}H then, since T_{1}x_{n}=s_{n} ( s_{n} constant), we
have x_{n}(t)=s_{n}+y_{n}(t) with s_{n}arrow\infty and ||y_{n}||_{H_{1}}/s_{n}arrow 0 . Then

x_{n}(t) \geq s_{n}(1-\frac{||y_{n}||_{\infty}}{sn}) .

But by Sobolev’s theorem,

||y_{n}||_{\infty}\leq C||y_{n}||_{H^{1}} (some C>0 )

so it follows that

x_{n}(t) \geq s_{n}(1-\frac{C||y_{n}||_{H^{1}}}{s_{n}})arrow\infty

and hence there exists N such that n\geq N implies \min_{t\in[0,2\pi]}x_{n}(t)\geq R .
Thus by (32), the inequality (24) holds for such x_{n} , all large n . This
argument, and a similar one for s_{n}arrow-\infty implies that (b) of Theorem 2
holds. The condition (a) with Q_{1}=multiplications by \gamma and Q_{2}=multipli -

cation by \Gamma holds by virtue of (29) and (31). Hence the conditions of
Theorem 2 hold and there is a solution of (27), (28) in H^{1}(0,2\pi) . \blacksquare

NOTE 1: The conditions (32) and (33) hold if

\lim_{xarrow\infty}g(t, x)x=\infty and \lim_{xarrow-\infty}g(t, x)xarrow-\infty

uniformly in t .

NOTE 2: The following can be deduced from Theorem 2 in the
same way as Theorem 3 was proved.
Consider (27) together with

x(0)=x(2\pi)=0 . (36)

If Lx=-x” with boundary conditions (28) then \phi_{1}=\sin t , \lambda_{1}=1 , \lambda_{2}=4 .
Assume there exist \gamma , \Gamma satisfying (30), \Gamma(t)\leq 4 with inequality on a set of
positive measure, and

0= \int_{0}^{2\pi}\gamma(t) sin tdt< \int_{0}^{2\pi}\Gamma(t) sin tdt .
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Let there exist real a , A, R with a<A such that

\int_{0}^{2\pi}g(t, x(t))x(l) sin tdt>A (all x with \min_{t\in[0,2\pi]}x(t)\geq R )

\int_{0}^{2\pi}g(t, x(t))x(t) sin tdt<a (all x with \max_{t\in[0,2\pi]}x(t)\leq-R ).

Then if (34) holds there is a solution of (27), (36) in H^{1}(0,2\pi) .
An example of such a g is one satisfying

\gamma(t)=\sin t cos t\leq g(t, x)\leq(3+\sin^{2}t)\sin t=\Gamma(t)

as well as g(t, r)r sin t\geq\mu(r)\sin^{2}t and g(t, -r)r sin t\geq\mu(r) \sin 2t where
\lim_{rarrow\infty}\mu(r)=\infty . Such a g could dip below the first eigenvalue 1.

The following theorem can be deduced from Theorem 2 in the same
way as the results above. It is an example of a situation where g lies
between the second and third eigenvalue. The conditions (39) and (40)
ensure the non-negativity of the matrix in Theorem 2(a).

THEOREM 4. Consider

x”+g(t, x)x=e(t) (37)
x(0)=x(\pi)=0 (38)

(eigenvalues of- x” being \{n^{2}\} with corresponding eigenfunctions \{sin nt\} )
where f is continuous, g is bounded and satisfies Caratheodory conditions,
and e(t)\in L^{1}(0,2\pi) . Assume that there exist \gamma(t) , \Gamma(t)\in L^{1}(0,2\pi) such
that

\gamma(t)\leq\lim_{|x|arrow}\inf_{\infty}g(t, x)\leq\lim_{|x|arrow}\sup_{\infty}g(t, x)\leq\Gamma(t)

\int_{0}^{\pi}\gamma(t) \sin 2 tdt \geq 2\pi;\int_{0}^{\pi}\gamma(t) \sin 2 2tdt\geq 2\pi : (39)

( \int_{0}^{\pi}\gamma(t) \sin 2 tdt-2\pi)(\int_{0}^{\pi}\gamma(t) \sin 2 2tdt-2\pi)

-( \int_{0}^{\pi}\gamma(t) sin t sin 2tdt)^{2}\geq 0 (40)

\Gamma(t)\leq 9 with inequality on a set of positive measure.

Suppose there exist real a, A, R, \epsilon with a<A , R, \epsilon>0 such that

\int_{0}^{\pi}(g(t, x(t))-4)x(t) sin 2tdt>A
(all x with x(t)\geq R(\sin 2t-\epsilon) )

\int_{0}^{\pi}(g(t, x))-4)x(t) sin 2tdt<a
(all x with x(t)\leq-R(\sin 2t+\epsilon) ).
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Then for all e(t) satisfying

a \leq\int_{0}^{\pi}e(t) sin tdt\leq A (41)

there exists a solution of (37), (38) in the Sobolev space H^{1}(0, \pi) .

The proof is as for Theorem 3, using Theorem 2 with n=2 and \phi_{n}=

sin 2 t .

NOTE: Theorem 1 may be applied to operators L of the form

- \sum_{i=1}^{m}(-1)^{i}D^{i}(a_{i}(t)D^{i})x

with suitable boundary conditions. The use of Sobolev’s theorem, which
works only for functions on \bm{R}^{1} . seems to preclude applications exactly
analogous to Theorems 1 and 2 to partial differential operators. Such
applications need a somewhat stronger coercivity condition than (32) and
(33).
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