Abstract elliptic operator and its associated semigroup in a locally convex space

Mariko GIGA (née Ito) (Received August 18, 1988, Revised June 4, 1993)

§ 0. Introduction.

We are interested in a solution operator of a linear elliptic equation

(1)
$$Lu = -f \text{ in } X.$$

Here L is an abstract second order elliptic differential operator (with no zero order terms) defined in a locally compact Hausdorff space X, a typical example of which is a domain in \mathbb{R}^d . Function spaces we consider are some subspaces of $C_b(X)$, the set of bounded continuous functions. By the Green operator we mean a solution operator of (1) although it is rather abuse of words. As is well known, if there is a positive nonconstant L-harmonic function u defined in X, i. e. Lu=0 in X, the Green operator G exists and it operates to all $f \in C_0(X)$, the set of continuous functions with compact support (cf. [4,5]).

Our first goal is to construct the Green operator by an operator theoretical method. We construct the (pseudo) resolvent $J_{\lambda} = (\lambda - L)^{-1}$ and define the Green operator by $\tilde{G} = \lim_{\lambda \to 0} J_{\lambda}$. The meaning of the convergence is important. In [6] the convergence is understood as uniform convergence on X. However, the relation between classical Green operator G and ours was unclear. In this paper we use different topology so that our \tilde{G} is actually an extension of G. We say a sequence $\{f_n\}$ in $C_b(X)$ converges to f strongly if $\{f_n\}$ converges to f uniformly in every compact set and $\{f_n\}$ is uniformly bounded on X. We give a locally convex topology to $C_b(X)$ by this convergence and denote F instead of $C_b(X)$. Our \tilde{G} is constructed under this topology and its domain of the definition is $C_b(X)$. A crucial step is to show that $\lim_{\lambda \to 0} \lambda J_{\lambda} = I$ in F, where I is the identity operator.

Our second goal is to construct the semigroup $e^{-t\tilde{A}}$ in F with a closed operator $\tilde{A} = \lambda - J_{\lambda}^{-1}$ which formally equals \tilde{G}^{-1} .

Our theory applies to a general second order elliptic operators

$$L = \sum_{1 \le i, j \le d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{l=1}^d b_l(x) \frac{\partial}{\partial x_l}$$

with smooth coefficients in a domain $X \subset \mathbf{R}^d$, provided that there is a positive nonconstant L-superharmonic function. The operator L need not to be uniformly elliptic. We impose no conditions on the behavior of a_{ij} and b_l near ∂X and the space infinity. The reason why our theory applies to such general operators is that we rather use $C_b(X)$ instead of $C_0(X)$. Even for $a_{ij} = \delta_{ij}$ and $X = \mathbf{R}^d$, the solution of (1) for $f \in C_0(X)$ may not belong to the completion $C_0(X)$ of $C_0(X)$ unless b_l is bounded. Such operators are excluded in the theory of Hunt [3] and Yosida [12, 13, 14].

K. Yosida got a similar result on the construction of semigroup whose generator is the inverse of Green operator in the space $C_0(X)$. But his thoery does not apply to general elliptic operators to which our theory applies.

Throughout this paper, we discuss our problems in an abstract setting of [4, 6].

§ 1. Preliminaries.

This section establishes conventions of notation, reviews some results of [4, 6].

Let X be a connected, locally compact and σ -compact Hausdorff space, C(X) be the set of all continuous function on X, $C_b(X)$ be the set of all bounded functions in C(X) and $C_0(X)$ be the set of all functions in C(X) with compact support. C(D), $C_0(D)$ and $C(\bar{D})$ are defined analogously for any subdomain D of X. All functions are assumed to be real valued. The norm $\|f\|$ of any bounded function f on $X(\text{or }D,\bar{D})$ is defined by $\|f\| = \sup_{X} |f(X)|$, and the completion of $C_0(X)$ (resp. $C_0(D)$) with respect to the norm is denoted by $\overline{C_0(X)}$ (resp. $\overline{C_0(D)}$). Let $\mathfrak{M}(D)$ be the set of all signed measures on D and $\mathfrak{M}_0(D)$ be the set of $\rho \in \mathfrak{M}(D)$ with compact support in the interior of D. In the space C(D) for any subdomain D of X, we consider the topology of uniform convergence on compact subsets of D. Then the dual space C(D)' of C(D) contains $\mathfrak{M}_0(D)$. (This statement includes the case D = X.)

Let L be a linear operator in C(X) with domain $\mathscr{D}(L)$ such that $\mathscr{D}(L) \cap C_0^+(D)$ is dense in $C_0^+(D)$ for any subdomain D of X, where $C_0^+(D)$ denotes the set of nonnegative functions in $C_0(D)$. We assume that any constant function c belongs to $\mathscr{D}(L)$ and Lc=0. We further assume that L is a local operator, i. e. if $f \in \mathscr{D}(L)$ and f(x) vanishes in a neighborhood of a point $x_0 \in X$, then $(Lf)(x_0)=0$. This enables us to localize L on

any subdomain D of X. We say $f \in C(D)$ belongs to $\mathscr{D}(L_D)$ if, for every domain $D' \subset D$ with compact closure $\overline{D}' \subset D$, there is a function $g_{D'} \in \mathscr{D}(L)$ such that $g_{D'} = f$ in D'. The operator L_D is defined by $(L_D f)(x) = (L g_{D'})(x)$ for $x \in D'$; in this way $(L_D f)(x)$ is uniquely defined for all $x \in D$ since L is a local operator.

We can derive the following fact immediately from the definition of L_D mentioned above.

LEMMA 1.1. If $f \in \mathcal{D}(L)$, then $f|_{D} \in \mathcal{D}(L_{D})$ and $Lf = L_{D}f$.

We notice $\mathcal{D}(L_D)$ is dense in C(D) with the topology of uniform convergence on compact sets. Then we define L_D^* as the dual operator of L_D . We shall often suppress the subscript of L_D . The definition of L_D in the present paper is slightly modified from that in the previous papers [4, 6]. But the results in [4]-[6] are still valid under the new definition.

Since $\mathscr{D}(L)$ is dense in C(X) by the assumption, the dual operator L^* of L is well-defined as a linear operator defined in a certain linear subspace of C(X)'. For any subdomain D of X, $\mathscr{D}(L_D)$ is dense in C(D) as may be seen from the definition of L_D . Hence the dual operator L_D^* of L_D is well-defined in C(D)'. Then we may easily prove the following lemma.

LEMMA 1.2. Assume that $\rho \in \mathfrak{M}_0(X) \cap \mathcal{D}(L^*)$ and that D be any subdomain of X containing the support of ρ . Then $\langle f, L^*\rho \rangle = 0$ for any $f \in C(X)$ satisfying that f = 0 in D.

PROPOSITION 1.3. Let D be an arbitrary subdomain of X.

- i) Assume that $\rho \in \mathfrak{M}_0(D) \cap \mathscr{D}(L_D^*)$ and define $\rho = 0$ outside D. Then $\rho \in \mathfrak{M}_0(X) \cap \mathscr{D}(L^*)$ and $L^*\rho = L_D^*\rho$.
- ii) Assume that $\rho \in \mathfrak{M}_0(X) \cap \mathscr{D}(L^*)$ and that the support of ρ is contained in D. Then $\rho \in \mathfrak{M}_0(D) \cap \mathscr{D}(L_D^*)$ and $L_D^*\rho = L^*\rho$.

The part i) may readily be proved from the definition of L_D . The part ii) is proved by means of Lemma 1.2.

A subdomain D of X is called a regular domain if the closure \overline{D} is compact and, for any $\varphi \in C(\partial D)$, there exists a solution $u \in \mathscr{D}(L_D) \cap C(\overline{D})$ of the boundary value problem: Lu=0 in D and $u=\varphi$ on ∂D . We assume that there exist sufficiently many regular domains, that is, for any domains D_1 and D_2 with compact closure and satisfying $\overline{D}_1 \subset D_2$, there exists a regular domain D such that $\overline{D}_1 \subset D \subset D_2$.

The operator L is assumed to satisfy the following axioms.

(a) If $Lu \ge 0$ and u is nonconstant in D, then u does not take its maximum in the interior of D (maximum principle).

(β) If $\{u_n\}$ and $\{Lu_n\}$ are uniformly bounded on D, then a subsequence $\{u_{n\nu}\}$ of $\{u_n\}$ converges uniformly on every compact subset of D (Harnack property).

(γ) For any regular domain D, and λ≥0 and any $f∈𝒯(L_D) ∩ C(\bar{D})$, there exists $u∈𝒯(L_D) ∩ \overline{C_0(D)}$ satisfying $(λ-L_D)u=f$.

Instead of the axiom (δ) in [6], we set the following axiom (δ') which corresponds to the Weyl-Schwartz lemma for the parabolic differential operator $\Delta - \frac{\partial}{\partial t}$:

 (δ') If u(t,x) is bounded and measurable on $(t_1,t_2)\times D$ and satisfies

$$\int_{t_1}^{t_2} \{\langle u(t, \bullet), L^* \rho \rangle \chi(t) + \langle u(t, \bullet), \rho \rangle \chi'(t)\} dt = 0$$

for any $\chi \in C_0^1((t_1, t_2))$ and any $\rho \in \mathfrak{M}_0(D) \cap \mathscr{D}(L^*)$, then u(t, x) is differentiable in t, $u(t, \bullet) \in \mathscr{D}(L_D)$ for any $t \in (t_1, t_2)$ and $\frac{\partial u}{\partial t} = Lu \in C((t_1, t_2) \times D)$.

REMARK. If we consider the case where u(t,x) in the axiom (δ') does not depend on t, we may easily derive the axiom (δ) in [6] from (δ') stated just above. In § 1-§ 3 we only need to assume (δ) instead of (δ') as in [4,5,6]. The assumption (δ') is invoked from § 4.

EXAMPLE. Let X be a domain in \mathbf{R}^d and let L be a second order operator of form

$$L = \sum_{1 \le i, j \le d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{l=1}^d b_l(x) \frac{\partial}{\partial x_l}$$

with $\mathcal{D}(L) = C^2(X) \subset C(X)$, where a_{ij} and b_l are smooth functions on X. The operator L is assumed to be elliptic in the sense that $\{a_{ij}(x)\}$ is a positive definite real symmetric matrix. (We impose no assumptions on the behavior of a_{ij} and b_l near ∂X and the space infinity.) Then the operator L satisfies all assumptions (α) , (β) , (γ) , (δ') . These are verified by a standard theory of elliptic operators (see, e. g. Gilbarg and Trudinger [1]). We below indicate the proof.

The condition (α) is nothing but a usual maximum principle. The condition (β) follows from usual Harnack principle and (δ') follows from hypo-ellipticity of parabolic operators. It remains to prove (γ) . We first note $\mathscr{D}(L_D) = C^2(D) \subset C(D)$. Let Λ be the set of $\lambda \geq 0$ such that for any $f \in C^2(D) \cap C(\overline{D})$ there exists $u \in C^2(D) \cap \overline{C_0(D)}$ satisfying $(\lambda - L_D)u = f$ in D.

We first claim that Λ is open in $[0, \infty)$. Suppose that $\lambda_0 \in \Lambda$. Then

there is $v \in C^2(D) \cap C_0(D)$ such that $(\lambda_0 - L)v = f$. It follows from the strong maximum principle that

$$(*) ||v|| \le C||f||$$

with C independent of f, where $\|\cdot\|$ denotes the supremum norm in $C(\overline{D})$ (see [1]). Let S denote the operator defined by v = Sf. The estimate (*) guarantees that

$$w = \sum_{m=0}^{\infty} (-\mu S)^m f$$

converges in $C(\bar{D})$ for sufficiently small μ . Since S can be extended on $C(\bar{D})$ by (*) we see

$$u = Sw \in \overline{C_0(D)}$$
.

Applying $\mu + \lambda_0 - L$ to u yields

$$(\mu + \lambda_0 - L)u = f$$
 in D

in distribution sense. By an interior regularity theory of elliptic operator we see $u \in C^2(D)$ since $f \in C^1(D)$. We thus conclude $\lambda_0 + \mu \in \Lambda$ for small μ .

We next claim that $\lambda \in \Lambda$ if there is a monotone increasing sequence $\{\lambda_j\} \subset \Lambda$ converging to λ . We may assume $f \ge 0$ by adding a constant. Let u_j be a function such that

$$(\lambda_i - L)u_i = f$$
, $u_i \in C^2(D) \cap \overline{C_0(D)}$.

By the maximum principle $u_j \ge 0$ on D. Since $\lambda_{j+1} \ge \lambda_j$ it follows from the maximum principle and $u_j \ge 0$ that $u_{j+1} \le u_j$ on D. We now apply the Harnack principle (β) to observe that u_j converges to a continuous function u uniformly in every compact subset of D. Since $0 \le u \le u_1$ and $u_1 \in \overline{C_0(D)}$, we extend u by zero on ∂D and conclude that the extended function (still denoted u) belongs to $\overline{C_0(D)} \subset C(\overline{D})$. Since $u_{j+1} \le u_j$, by Dini's theorem u_j converges to u uniformly on \overline{D} . It is again easy to see that

$$(\lambda - L)u = f$$
 in D

in distribution sense. So we recover $u \in C^2(D)$ and conclude that $\lambda \in \Lambda$.

To show $\Lambda = [0, \infty)$ it now suffices to prove that $0 \in \Lambda$. Let $\Omega \subset X$ be a smoothly bounded domain with $\bar{D} \subset \Omega$, $\bar{\Omega} \subset X$ so that L is uniformly elliptic in $\bar{\Omega}$. By the maximum principle we observe that Lv = 0 in Ω with v = 0 on $\partial \Omega$ has no nontrivial solution. Since L is uniformly elliptic on $\bar{\Omega}$ and Ω is a smoothly bounded domain, the uniqueness of solution implies the solvability of

(**)
$$LU = -f$$
 in Ω and $U = 0$ on $\partial \Omega$;

(cf. [1]). In particular for $f \in C(\bar{\Omega})$ there is a solution $U \in C^1(\bar{\Omega})$ of (**). If $f|_D \in C^1(D)$ then the regularity theory implies $U|_D \in C^2(D)$, where $f|_D$ denotes the restriction on D. For given $f \in C(\bar{D}) \cap C^2(D)$ we extend f to a function (still denoted by f) in $C(\bar{\Omega})$. Let U be a solution of (**) with this f. Since D is a regular domain there is a function $w \in C^2(D) \cap C(\bar{D})$ such that Lw=0 in D and w=-U on ∂D . If we set $u=U|_D+w$ we easily observe that u is in $C^2(D) \cap \overline{C_0(D)}$ and satisfies Lu=-f in D. In other words we conclude that $0 \in \Lambda$ and (γ) is now verified.

In this paper we always assume that the space X admits a positive nonconstant L-superharmonic function.

For any $\lambda > 0$ and any regular domain D, we can define the operator $J_{\lambda}^{D} = (\lambda - L)^{-1}$ of $\mathscr{D}(L) \cap C_{0}(D)$ into $\overline{C_{0}(D)}$ with norm $\leq \frac{1}{\lambda}$. Then we can define a bounded and positive linear operator J_{λ} of $C_{0}(X) \cap \mathscr{D}(L)$ into $C_{b}(X)$ in such a way that $J_{\lambda}f = \lim_{D \uparrow X} J_{\lambda}^{D}f$ (pointwise convergence on X), and

we have $||J_{\lambda}|| \le \frac{1}{\lambda}$; accordingly J_{λ} can be extended to a bounded and positive linear operator of $C_0(X)$ into $C_b(X)$ such that

$$(1.1) |J_{\lambda}f(x)| \leq \frac{1}{\lambda} ||f|| on X for any f \in C_0(X).$$

Hence there exists a measure ρ_{λ}^{x} in X such that $\rho_{\lambda}^{x}(X) \leq \frac{1}{\lambda}$ and

$$(J_{\lambda}f)(x) = \int_{X} f(y) d\rho_{\lambda}^{x}(y)$$
 for any $f \in C_{0}(X)$.

For any $f \in C_b(X)$, we define

$$(1.2) (J_{\lambda}f)(X) = \int_{X} f(y) d\rho_{\lambda}^{x}(y).$$

Then the family of operators $\{J_{\lambda}\}_{\lambda>0}$ in $C_b(X)$ satisfies the resolvent equation; namely, for any $f \in C_b(X)$,

$$(1.3) J_{\lambda}f - J_{\mu}f = (\mu - \lambda)J_{\lambda}J_{\mu}f.$$

We notice

$$(1.4) J_{\lambda}(\lambda - L)u = u \text{for any } u \in C_0(X) \cap \mathcal{D}(L).$$

In [4], the author proved the existence of the Green operator G from $C_0(X)$ to C(X) associated with L such that u=Gf belongs to $\mathcal{D}(L)$ and

satisfies Lu=-f on X for and $f \in C_0(X) \cap \mathcal{D}(L)$ under the assumtion the space X admits a positive nonconstant L-harmonic function. Furthermore there exists a family of measures $\{\Phi(x,E)|x\in X\}$ such that

$$(Gf)(x) = \int_X \Phi(x, dy) f(y)$$
 for any $f \in C_0(X)$.

We define the operator \overline{G} as an extension of G as follows:

$$\mathscr{D}(\overline{G}) = \{ f \in C_b(X) | \sup_{x \in X} \int_X \Phi(x, dy) |f(y)| < \infty \}$$

and

$$(\overline{G}f) = \int_X \Phi(x, dy) f(y)$$
 for $f \in \mathcal{D}(\overline{G})$.

Then we have

(1.5)
$$\lim_{\lambda \downarrow 0} J_{\lambda} f(x) = \overline{G} f(x) \quad \text{on } X$$

and $\overline{G}f \in C_b(X)$ for and $f \in \mathcal{D}(\overline{G})$.

We define

$$E_0 = \{ \sum_{k=1}^{l} J_{\lambda_k} f_k | f_k \in C_0(X) \ (1 \le k \le l) ; \ l = 1, 2, \dots \},$$

and $E = \overline{E}_0$ (the closure of E_0 with respect to the supremum norm in $C_b(X)$). Then E is a Banach space and $E \supset \overline{C_0(X)}$, and the operator J_{λ} (for any $\lambda > 0$) maps E into E. The main result of [6] reads as follows: ([6; Theorems 2 and 3], see [14]).

THEOREM. i)

(1.6)
$$\lim_{\lambda \uparrow \infty} ||\lambda J_{\lambda} f - f|| = 0 \text{ and } \lim_{\lambda \downarrow 0} ||\lambda J_{\lambda} f|| = 0 \text{ for any } f \in E;$$

- ii) there exists a closed linear operator A with domain $\mathcal{D}(A)$ and range $\mathcal{R}(A)$ both dense in E with respect to the supremum norm such that $A = \lambda J_{\lambda}^{-1}$, and A is the infinitesimal generator of a uniquely determined contraction semigroup $\{T_t; t \geq 0\}$ of class (C_0) of bounded linear operator in E. Furthermore there exists A^{-1} such that $\widehat{G} = -A^{-1} = s \lim_{\lambda \downarrow 0} J_{\lambda}$ and \widehat{G} is a Green operator associated with L;
 - iii) A is an extension of L restricted to $\mathcal{D}(L) \cap C_0(X)$. Furthermore, the following relation between \widehat{G} and J_{λ} holds:

$$f - \lambda J_{\lambda} f \in \mathcal{D}(\widehat{G})$$
 and $\widehat{G}(f - \lambda J_{\lambda} f) = J_{\lambda} f$

for any $f \in \mathcal{D}(\overline{G}) \cap E$ [6; Lemma 4. 2].

We close this section by introducing a sequence of functions in $C_0(X)$ for later use. Let $\{D_n\}_{n=0,1,2,\cdots}$ be a sequence of subdomains of X satisfying that \overline{D}_n is compact and $\overline{D}_n \subset D_{n+1}$ for each n and that $\bigcup_{n=0}^{\infty} D_n = X$; such sequence $\{D_n\}$ is called an exhaustion of X. Since X is locally compact and σ -compact, such an exhaustion always exists. Here we may assume every D_n to be a regular domain. With any such exhaustion, we associate a sequence of functions $\{\varphi_n\}_{n=1,2,\cdots} \subset C_0(X)$ such that

(1.7)
$$0 \le \varphi_n(x) \le 1$$
 on X , $\varphi_n(x) = 1$ on \overline{D}_{n-1} and $\varphi_n(x) = 0$ on $X \setminus D_n$ $(n=1, 2, \cdots)$.

§ 2. A family of seminorms in $C_b(X)$.

This section gives a family of seminorms to $C_b(X)$ so that $C_b(X)$ is a locally convex topological vector space. The metric is different from usual metric which comes from supremum norm in $C_b(X)$.

Let $\Gamma = \{ \gamma \in \overline{C_0(X)} \mid \gamma(x) > 0 \text{ on } X \}$. For example the function

(2.1)
$$\gamma(x) = \sum_{n=1}^{\infty} 1/2^n \varphi_n(x)$$

belongs to Γ where $\{\varphi_n\}$ is the sequence of functions mentioned in the last paragraph of § 1. We introduce a family of seminorms $\{p_r|\gamma\in\Gamma\}$ defined by $p_r(f) = \sup_{x\in X} \gamma(x)|f(x)|$ for $f\in C_b(X)$. We often suppress subscript γ .

This family of seminorms defines in C(X) the topology of uniform convergence on compact sets. Let F be the space $C_b(X)$ topologized by the family of seminorms defined above. Hereafter we denote by "s-lim" the convergence in F with respect to the strong topology defined by the family of seminorms, while ||f|| denotes the supremum norm of $f \in C_b(X)$ as in the preceding section.

LEMMA 2.1. If $\{f_n\}$ is a Cauchy sequence in F, then $\{f_n\}$ is uniformly bounded on X.

PROOF. We argue by contradiction. Suppose that $\{f_n\}$ were not uniformly bounded on X. Then we could choose a subsequence $\{f'_n\}$ of $\{f_n\}$ satisfying that

$$||f_n'|| > ||f_{n-1}'|| + 2^n + 1 \quad (n = 1, 2, \dots).$$

For each n, there exists $x_n \in X$ such that $||f_n|| - 1 < f_n(x_n) \le ||f_n||$. We consider an exhaustion $\{D_n\}$ of X satisfying $x_n \in D_n$ for every n, and associated sequence of functions $\{\varphi_n\}$ as mentioned in § 1. Then the function $\gamma(x)$

in (2.1) defines a seminorm p_r . If m > n, then we have

$$p_{\gamma}(f'_{m}-f'_{n}) \geq \gamma(x_{m})|f'_{m}(x_{m})-f'_{n}(x)|$$

$$\geq \gamma(x_{m})\{(\|f'_{m}\|-1)-\|f'_{n}\|\} \geq \gamma(x_{m})\cdot 2^{m} \geq 1.$$

This is a contradiction since $\{f_n\}$ is a subsequence of the Cauchy sequence $\{f_n\}$ in F.

PROPOSITION 2.2. A sequence $\{f_n\}$ converges in F if and only if $\{f_n\}$ is uniformly bounded on X and converges uniformly on every compact subset of X.

PROOF. First we assume that $\{f_n\}$ converges in F. Then there exists $f \in F$ such that $\limsup_{n \to \infty} \gamma(x) |f_n(x) - f(x)| = 0$ for any $\gamma \in \Gamma$. Let $\gamma(x) = \gamma_0(x) = \sum_{n=1}^{\infty} 1/2^n \varphi_n(x)$. Then for any compact subset K of X, there exists M_K such that $0 < M_K \le \gamma_0(x)$ for any $x \in K$. Hence $\limsup_{n \to \infty} |f_n(x) - f(x)| = 0$, that is, $\{f_n\}$ converges uniformly on every compact subset of X. Uniform boundedness follows from Lemma 2.1.

Next we prove the converse. Assume that $\{f_n\}$ is uniformly bounded, and converges uniformly on every compact subset of X. Then there exists M such that $|f_n(x)| < M$ for any n and any $x \in X$. For any $\gamma \in \Gamma$, we put $M_r = \max\{\|\gamma\|, M\}$. Then, for any $\varepsilon > 0$, there exists a compact set $K_{r,\varepsilon}$ such that $\gamma(x) < \varepsilon/2M_r$ for $x \in X \setminus K_{r,\varepsilon}$; furthermore there exists n_0 such that $\sup_{x \in K_{r,\varepsilon}} |f_n(x) - f(x)| < \varepsilon/M_r$ for any $n > n_0$. Hence we get $\gamma(x)|f_n(x) - f(x)| < \varepsilon$ for any $x \in X$, which implies $p_r(f_n - f) < \varepsilon$. Thus we have proved that $\{f_n\}$ converges to f in F.

PROPOSITION 2.3. The space F is sequentially complete.

PROOF. Let $\{f_n\}$ be a Cauchy sequence. Then, for any $\varepsilon > 0$ and any p_r , there exists n_0 such that $p_r(f_m - f_n) < \varepsilon$ whenever $m, n > n_0$. For any compact subset K of X, there exists M such that $0 < M < \gamma(x)$ on K. Hence $\sup_{x \in K} |f_m(x) - f_n(x)| < \varepsilon / M$ whenever $m, n > n_0$. Therefore $\{f_n\}$ converges uniformly on every compact subset of X. Accordingly $f(x) = \lim_{n \to \infty} f_n(x)$ exists and is continuous on X. Uniform boundedness of $\{f_n\}$ is already shown in Lemma 2.1. Hence we see $f \in F$, and accordingly F is sequentially complete.

PROPOSITION 2.4. $C_0(X)$ is dense in F.

PROOF. For any $f \in F$, we put $f_n(x) = \varphi_n(x)f(x)$ $(n=1, 2, \cdots)$. Then $f_n \in C_0(X)$, and $\limsup_{n \to \infty} |f_n(x) - f(x)| = 0$ for each m. Hence $\{f_n\}$ converges uniformly on every compact subset of X. Uniform boundedness of $\{f_n\}$ is obvious. Therefore $\{f_n\}$ converges to f in F by Proposition 2. 2.

COROLLARY. $C_0(X) \cap \mathcal{D}(L)$ is dense in F.

It follows from Proposition 2.2 that the space F is continuously imbedded into the space C(X) topologized by the uniform convergence on every compact set. Hence any $\rho \in C(X)'$ is considered as a continuous linear functional on F.

§ 3. Green operator.

This section constructs the Green operator \widetilde{G} of L by formally defining $\widetilde{G} = \lim_{\lambda \downarrow 0} J_{\lambda}$. Here we understand the convergence as the strong topology of F. It turns out that \widetilde{G} is a natural extension of G defined in § 1.

In the sequel, we fix an exhaustion $\{D_n\}_{n\geq 0}$ of X and associated sequence of functions $\{\varphi_n\}$ as mentioned in §1; we also define the following functions on X:

$$\varphi_{\infty}(x) \equiv 1$$
 and $\psi_n(x) = 1 - \varphi_n(x)$ $(n=1, 2, \dots)$.

We put $I_{\lambda} = \lambda J_{\lambda}$ to simplify notations.

LEMMA 3.1. For any $f \in F$, $I_{\lambda}f$ is continuous as an F-valued function of $\lambda > 0$.

PROOF. By means of the resolvent equation (1.3), we have

$$||I_{\lambda}f - I_{\lambda_{0}}f|| = ||\lambda(J_{\lambda} - J_{\lambda_{0}})f + (\lambda - \lambda_{0})J_{\lambda_{0}}f||$$

$$= ||\lambda(\lambda - \lambda_{0})J_{\lambda}J_{\lambda_{0}}f + (\lambda - \lambda_{0})J_{\lambda_{0}}f||$$

$$\leq \frac{1}{\lambda_{0}}|\lambda - \lambda_{0}|(||\lambda J_{\lambda}|| \cdot ||\lambda_{0}J_{\lambda_{0}}|| \cdot ||f|| + ||\lambda_{0}J_{\lambda_{0}}|| \cdot ||f||)$$

$$\leq \frac{2}{\lambda_{0}}|\lambda - \lambda_{0}|||f|| \to 0 \quad \text{as} \quad \lambda \to \lambda_{0}.$$

Hence $I_{\lambda}f$ is continuous in $\lambda > 0$ with respect to supremum norm. Accordingly $I_{\lambda}f$ is continuous with respect to the strong topology in F.

LEMMA 3.2. The function $\varphi_{\infty}(x) \equiv 1$ satisfies $s = \lim_{\lambda \to \infty} I_{\lambda} \varphi_{\infty} = \varphi_{\infty}$.

PROOF. We fix an arbitrary n. Theorem i) in §1 implies that, for any $\varepsilon > 0$, there exists λ_0 such that $||I_{\lambda}\varphi_n - \varphi_n|| < \varepsilon$ for any $\lambda > \lambda_0$. Since φ_n

=1 on \overline{D}_n , we have $I_{\lambda}\varphi_n > 1 - \varepsilon$ on \overline{D}_n ; accordingly $1 \equiv \varphi_{\infty} \geq I_{\lambda}\varphi_{\infty} \geq I_{\lambda}\varphi_n > 1 - \varepsilon$ on \overline{D}_n . Since n is arbitrary, we may conclude that $I_{\lambda}\varphi_{\infty}$ converges to φ_{∞} as $\lambda \to \infty$ uniformly on every compact subset of X. Uniform boundedness of $\{I_{\lambda}\varphi_{\infty}\}$ is obvious. Hence $s-\lim_{\lambda \to \infty} I_{\lambda}\varphi_{\infty} = \varphi_{\infty}$.

From this lemma and (1.6), we get the following:

LEMMA 3.3.
$$s=\lim_{\lambda\to\infty}I_{\lambda}\phi_{n}=\phi_{n}$$
 for any n .

LEMMA 3.4. s-
$$\lim_{n\to\infty} I_{\lambda} \psi_n = 0$$
 for every $\lambda > 0$.

PROOF. It follows from (1.2) that
$$(I_{\lambda}\psi_n)(x) = \int_X \lambda \psi_n(y) d\rho_{\lambda}^x(y)$$
.

Since $\lambda \rho_{\lambda}^{x}(X) \leq 1$ and $\lim_{n \to \infty} \psi_{n}(y) = 0$ monotone decreasingly, we obtain by bounded convergence theorem that $(I_{\lambda}\psi_{n})(x)$ decreases to 0 as $n \to \infty$. This convergence is uniform on every compact subset of X by Dini's theorem. Since $\{I_{\lambda}\psi_{n}\}$ is uniformly bounded, we now obtain Lemma 3. 4 from Proposition 2. 2.

LEMMA 3.5. $\lim_{n\to\infty} p(I_{\lambda}\psi_n) = 0$ uniformly in $\lambda \ge \beta$ for any fixed $\beta > 0$ and any seminorm β .

PROOF. It follows from Lemma 3. 3 that

$$\lim_{\lambda\to\infty}|p(I_{\lambda}\psi_n)-p(\psi_n)|\leq\lim_{\lambda\to\infty}p(I_{\lambda}\psi_n-\psi_n)=0.$$

Define
$$h_n(\lambda) = \int p(I_\lambda \psi_n)$$
 if $\beta \leq \lambda < \infty$ $p(\psi_n)$ if $\lambda = \infty$.

Then $\{h_n(\lambda)\}$ decreases monotonously as n increases and each $h_n(\lambda)$ is continuous on the "compact" interval $[\beta, \infty]$. $\lim_{n\to\infty} p(I_\lambda\psi_n)=0$ by Lemma 3. 4 and $\lim_{n\to\infty} p(\psi_n)=0$. Hence by Dini's theorem $h_n(\lambda)$ converges to 0 as $n\to\infty$ uniformly in $\lambda\in[\beta,\infty]$.

PROPOSITION 3.6. For a fixed $\beta > 0$ and any seminorm β , there exists a seminorm q such that $p(I_{\lambda}f) \leq q(f)$ for any $\lambda \geq \beta$ and any $f \in F$, that is, I_{λ} is equi-continuous in $\lambda \geq \beta$.

PROOF. By Lemma 3.5, there exists an increasing sequence $\{n_{\nu}\}$ such that $p(I_{\lambda}\psi_{n_{\nu}}) \leq 1/2^{2(\nu+1)}$ for any $\lambda \in [\beta, \infty]$. For simplicity, we denote $D_{n_{\nu}}$, $\varphi_{n_{\nu}}$ and $\psi_{n_{\nu}}$ by D_{ν} , φ_{ν} and ψ_{ν} respectively. We represent f as

$$f = \varphi_0 f + \psi_0 f = \varphi_0 f + \sum_{\nu=1}^{N} (\psi_{\nu-1} - \psi_{\nu}) f + \psi_N f.$$

For each $\nu \ge 0$, let x_{ν} be a point in $\overline{D}_{\nu+1} \setminus D_{\nu-1}$ such that $|f(x_{\nu})| = \max_{\overline{D}_{\nu+1} \setminus D_{\nu-1}} |f(x)|$ where we put $D_{-1} = \phi$. Then, by virtue of positivity of I_{λ} , we have

$$|I_{\lambda}f| = |I_{\lambda}(\varphi_{0}f) + \sum_{\nu=1}^{N} I_{\lambda}[(\psi_{\nu-1} - \psi_{\nu})f] + I_{\lambda}(\psi_{N}f)|$$

$$\leq |f(x_{0})|I_{\lambda}\varphi_{0} + \sum_{\nu=1}^{N} |f(x_{\nu})|I_{\lambda}(\psi_{\nu-1} - \psi_{\nu}) + ||f||I_{\lambda}\psi_{N}.$$

Hence, for any seminorm $p \equiv p_r(\gamma \in \overline{C_0(X)})$, we get

$$p(I_{\lambda}f) \leq |f(x_{0})|p(I_{\lambda}\varphi_{0}) + ||f||p(I_{\lambda}\psi_{N}) + \sum_{\nu=1}^{N} |f(x_{\nu})|p(I_{\lambda}\psi_{\nu-1})|$$

$$\leq K|f(x_{0})| + 1/2^{2N+1}||f|| + \sum_{\nu=1}^{N} 1/2^{2\nu}|f(x_{\nu})|$$

where $K=\max\{\|\gamma\|, 1\}$. Define $q=p_{\gamma_1}$ where γ_1 is a function in $\overline{C_0(X)}$ satisfying that

$$\gamma_1(x) = 2K$$
 on D_1 , $2K \ge \gamma_1(x) \ge 1$ on $\overline{D}_2 \setminus D_1$, $1/2^{\nu-2} \ge \gamma_1(x) \ge 1/2^{\nu-1}$ on $\overline{D}_{\nu+1} \setminus D_{\nu}$ $(\nu \ge 2)$.

Then

$$K|f(x_0)| = \frac{1}{2}\gamma_1(x_0)|f(x_0)| \le \frac{1}{2}q(f)$$

and

$$\sum_{\nu=1}^{N} 1/2^{2\nu} |f(x_{\nu})| \leq \sum_{\nu=1}^{N} 1/2^{\nu+1} \gamma_{1}(x_{\nu}) |f(x_{\nu})|$$
$$\leq q(f) \sum_{\nu=1}^{N} 1/2^{\nu+1} \leq 1/2 q(f).$$

Hence it follows that $p(I_{\lambda}f) \le q(f) + 1/2^{2N+2} ||f||$; here N may be chosen arbitrarily large. Thus we obtain $p(I_{\lambda}f) \le q(f)$.

COROLLARY. s-
$$\lim_{\lambda \to \infty} I_{\lambda} f = f$$
 for any $f \in F$.

PROOF. For any $f \in F$, the sequence $\{f_n\} \subset C_0(X)$ defined by

$$f_n(x) = \varphi_n(x)f(x)$$
 $(n=1, 2, \cdots),$

satisfies s- $\lim_{n\to\infty} f_n = f$. For any seminorm p, let q be a seminorm as mentioned in Proposition 3. 6. Then

$$p(I_{\lambda}f-f) \le p(I_{\lambda}f-I_{\lambda}f_n) + p(I_{\lambda}f_n-f_n) + p(f_n-f)$$

$$\leq q(f-f_n) + ||\gamma|| ||I_{\lambda}f_n - f_n|| + p(f_n - f).$$

Since $\lim_{l\to\infty} ||I_{\lambda}f_n - f_n|| = 0$ for every n by (1.6), we get

$$\overline{\lim}_{\lambda \to \infty} p(I_{\lambda} f - f) \le q(f - f_n) + p(f_n - f) \quad \text{for any } n.$$

Let $n\to\infty$, and we have $\overline{\lim_{\lambda\to\infty}} p(I_{\lambda}f-f)=0$, which implies $\sup_{\lambda\to\infty} I_{\lambda}f=f$ since p is arbitrary.

THEOREM 1. The inverse of the operator J_{λ} exists for any $\lambda > 0$, and $\lambda - J_{\lambda}^{-1}$ is independent of λ . The operator $\widetilde{A} = \lambda - J_{\lambda}^{-1}$ is a closed operator in F, and the domain $\mathscr{D}(\widetilde{A})$ is dense in F.

PROOF. From the resolvent equation (1.3), it follows that the null space $\mathcal{N}(J_{\lambda})$ of J_{λ} is independent of λ . Hence Corollary to Proposition 3. 6 implies that $\mathcal{N}(J_{\lambda})$ consists of zero vector only, and accordingly that J_{λ}^{-1} exists. By the resolvent equation (1.3),

$$J_{\lambda}J_{\mu}\{(\lambda-J_{\lambda}^{-1})-(\mu-J_{\mu}^{-1})\}=(\lambda-\mu)J_{\lambda}J_{\mu}-J_{\lambda}J_{\mu}(J_{\lambda}^{-1}-J_{\mu}^{-1})=0.$$

Hence $\lambda - J_{\lambda}^{-1}$ is independent of λ , and we may define $\widetilde{A} = \lambda - J_{\lambda}^{-1}$. Since J_{λ} is continuous in F, \widetilde{A} is a closed operator in F. For any $f \in F$, $g_{\lambda} = \lambda J_{\lambda} f$ $\in \mathcal{R}(J_{\lambda}) = \mathcal{D}(\widetilde{A})$ and s- $\lim_{\lambda \to \infty} g_{\lambda} = f$ by Corollary to Proposition 3. 6. Hence $\mathcal{D}(\widetilde{A})$ is dense in F.

THEOREM 2. $C_0(X) \cap \mathcal{D}(L) \subset \mathcal{D}(\widetilde{A})$, and $\widetilde{A}u = Lu$ for any $u \in C_0(X) \cap \mathcal{D}(L)$; namely \widetilde{A} is an extension of L restricted to $C_0(X) \cap \mathcal{D}(L)$.

PROOF. For any $u \in C_0(X) \cap \mathcal{D}(L)$, we put $f = (\lambda - L)u$. Then, since $J_{\lambda}f = J_{\lambda}(\lambda - L)u = u$ by (1.4), we have $f = J_{\lambda}^{-1}u$. Hence $Lu = \lambda u - J_{\lambda}^{-1}u$. Therefore, by the definition of \widetilde{A} , we get $u \in \mathcal{D}(\widetilde{A})$ and $\widetilde{A}u = Lu$.

Let $F_1 = \{ f \in F \mid \text{s-}\lim_{\lambda \downarrow 0} J_{\lambda} f \text{ exists} \}$. We define $\widetilde{G}f = \text{s-}\lim_{\lambda \downarrow 0} J_{\lambda} f$ for $f \in F_1$. We shall prove that \widetilde{G} is an extension of \overline{G} defined in § 1.

THEOREM 3. $F_1\supset \mathscr{D}(\overline{G})\supset C_0(X)$, and $\operatorname{s-lim}_{\lambda\downarrow 0}J_{\lambda}f=\overline{G}f$ for any $f\in \mathscr{D}(\overline{G})$.

PROOF. For any $f \in \mathcal{D}(\overline{G})$, $\lim_{\lambda \downarrow 0} J_{\lambda} f(x) = \overline{G} f(x)$ holds pointwise from (1.5). It is sufficient to prove our assertion for $f \geq 0$. For such f, the above convergence holds monotone increasingly as $\lambda \downarrow 0$ by the resolvent equation (1.3). Hence the convergence holds uniformly on every compact subset of X by Dini's theorem. The uniform boundedness of $\{J_{\lambda}f\}_{\lambda>0}$ is

clear. Hence we have $\operatorname{s-lim}_{\lambda \downarrow 0} J_{\lambda} f = \overline{G} f$. Therefore we get $F_1 \supset \mathscr{D}(\overline{G})$. The relation $\mathscr{D}(\overline{G}) \supset C_0(X)$ is shown by the same argument as we have derived (5.2) in the proof of Theorem 2 in [4].

THEOREM 4. If $f \in \mathcal{D}(\widetilde{G})$, then $\widetilde{G}f \in \mathcal{D}(\widetilde{A})$ and $\widetilde{A}\widetilde{G}f = -f$.

PROOF. For any $f \in \mathscr{D}(\widetilde{G}) = F_1$, we have $J_{\lambda}f \in \mathscr{D}(\widetilde{A})$ and $s - \lim_{\lambda \downarrow 0} J_{\lambda}f = \widetilde{G}f$; accordingly $s - \lim_{\lambda \downarrow 0} \widetilde{A}J_{\lambda}f = s - \lim_{\lambda \downarrow 0} (\lambda J_{\lambda}f - f) = -f$. Since \widetilde{A} is a closed operator, we obtain that $\widetilde{G}f \in \mathscr{D}(\widetilde{A})$ and $\widetilde{A}\widetilde{G}f = -f$.

THEOREM 5. For any $f \in C_0(X) \cap \mathcal{D}(L)$, $\widetilde{A}f \in \mathcal{D}(\widetilde{G})$ and $\widetilde{G}\widetilde{A}f = -f$.

PROOF. For $f \in C_0(X) \cap \mathcal{D}(L)$, we have $f \in \mathcal{D}(\widetilde{A})$ and $\widetilde{A}f = Lf \in C_0(X)$ by Theorem 2. Hence it follows from Theorem 3 and the definition of \widetilde{G} that $\widetilde{A}f = Lf \in \mathcal{D}(\widetilde{G})$ and $\operatorname{s-lim}_{\lambda \downarrow 0} J_{\lambda} Lf = \widetilde{G}Lf = \widetilde{G}\widetilde{A}f$. On the other hand, we know by ii) and iii) of Theorem mentioned in §1 that $Lf = Af \in \mathcal{D}(\widehat{G})$, $\widehat{G}Lf = -f$ and $\lim_{\lambda \downarrow 0} \|J_{\lambda} Lf - \widehat{G}Lf\| = 0$, and accordingly that $\lim_{\lambda \downarrow 0} \|J_{\lambda} Lf - \widehat{G}Lf\| = 0$. Therefore we may conclude that $\widetilde{G}\widetilde{A}f = -f$.

§ 4. Generation of semigroups.

In this section, we shall show that the operator \widetilde{A} (defined in § 3) generates a unique quasi-equicontinuous (C_0) -semigroup $\{\widetilde{T}_t\}$ in F, and that $\{\widetilde{T}_t\}$ is an extension of the semigroup $\{T_t\}$ in E mentioned in § 1.

By the theory of semigroups, we get $\lim_{\lambda \to \infty} ||T_t f - e^{-t\lambda} e^{t\lambda^2 J_{\lambda}} f|| = 0$. Here $e^{t\lambda^2 J_{\lambda}} f = \sum_{n=0}^{\infty} \frac{(t\lambda^2)^n}{n!} J_{\lambda}^n f$; the series in the right hand side converges with respect to the supremum norm. We can conclude T_t is a positive operator since J_{λ} is a positive operator for any $\lambda > 0$. Hence, for the restriction of the operator T_t to $C_0(X)$, there exists a family of Borel measures $\{P(t, x, \cdot) | x \in X\}$ in X such that $P(t, x, X) \leq 1$ and that

$$(T_t f)(x) = \int_X P(t, x, dy) f(y)$$
 for any $f \in C_0(X)$.

Therefore $J_{\lambda}f$ is represented by

$$(J_{\lambda}f)(x) = \int_0^{\infty} e^{-\lambda t} dt \int_X P(t, x, dy) f(y) \quad \text{for } f \in C_0(X).$$

For any $f \in C_b(X)$, we define

(4.1)
$$u_f(t, x) = \int_X P(t, x, dy) f(y)$$

and

$$(4.2) v_f(\lambda, x) = \int_0^\infty e^{-\lambda t} u_f(t, x) dt.$$

LEMMA 4.1. $v_f(\lambda, x) = (J_{\lambda}f)(x)$ holds for any $f \in C_b(X)$.

PROOF. We first notice that $J_{\lambda}f(x)$ for any $f \in C_b(X)$ is expressed by

(4.3)
$$(J_{\lambda}f)(x) = \int_{X} f(y) d\rho_{\lambda}^{x}(y)$$
 (see (1.2)).

For any $f \in C_b(X)$, there exists a sequence $\{f_n\} \subset C_0(X)$ such that $s = \lim_{n \to \infty} f_n$ = f holds in F and that $|f_n(x)| \le |f(x)|$ on X for any n. Hence we conclude by (4.1), (4.2), (4.3) and bounded convergence theorem that

$$\lim_{n\to\infty} (J_{\lambda}f_n)(x) = J_{\lambda}f(x) \quad \text{and} \quad \lim_{n\to\infty} v_{f_n}(\lambda, x) = v_f(\lambda, x).$$

These are pointwise convergences on X. Since

$$(J_{\lambda}f_{n})(x) = \int_{0}^{\infty} e^{-\lambda t} dt \int_{X} P(t, x, dy) f_{n}(y) = v_{f_{n}}(\lambda, x) \quad (n = 1, 2, \dots),$$

we get $(J_{\lambda}f)(x) = v_f(\lambda, x)$.

LEMMA 4.2. For any $f \in F$ and any $k \ge 1$, we have

$$(4.4) (J_{\lambda}^{k}f)(x) = \frac{1}{(k-1)!} \int_{0}^{\infty} t^{k-1} e^{-\lambda t} u_{f}(t,x) dt ;$$

accordingly

$$(4.5) p([\lambda-\beta)J_{\lambda}]^{k}f) \leq \frac{(\lambda-\beta)^{k}}{(k-1)!} \int_{0}^{\infty} t^{k-1} e^{-(\lambda-\beta)t} p(e^{-\beta t} u_{f}(t, \cdot)) dt$$

for any seminorm p.

PROOF. It follows from (4.2) that

$$\frac{\partial^{k} v_{f}(\lambda, x)}{\partial \lambda^{k}} = \int_{0}^{\infty} (-t)^{k} e^{-\lambda t} u_{f}(t, x) dt \quad (k=1, 2, \cdots).$$

We use the resolvent equation (1.3) and induction on k to obtain

$$\left(\frac{d}{d\lambda}\right)^{k}(J_{\lambda}f) = (-1)^{k}k!J_{\lambda}^{k+1}f.$$

Combining this formula with Lemma 4.1 and the identity above, we conclude (4.4). The inequality (4.5) follows immediately from (4.4).

LEMMA 4.3. For any $f \in E$ and any $\lambda > 0$, $u = J_{\lambda} f$ belongs to $\mathcal{D}(A)$

and satisfies $\langle Au, \rho \rangle = \langle u, L^*\rho \rangle$ for any $\rho \in \mathfrak{M}_0(X) \cap \mathcal{D}(L^*)$.

PROOF. We divide the proof of the this lemma into three steps. We first notice the following facts which we use in step i).

Let D be an arbitrary subdomain of X. If $f \in C_0(X) \cap \mathscr{D}(L)$ and $\operatorname{supp} f \subset D$, then $f \in C_0(D) \cap \mathscr{D}(L_D)$ by virtue of Lemma 1. 1. If $\rho \in \mathfrak{M}_0(X) \cap \mathscr{D}(L^*)$ and $\operatorname{supp} \rho \subset D$, then $\rho \in \mathfrak{M}_0(D) \cap \mathscr{D}(L_D^*)$ by virtue of Proposition 1. 3.

i) Assume that $f \in C_0(X) \cap \mathcal{D}(L)$. Since $A = \lambda - J_{\lambda}^{-1}$ in E, we have

(4.6)
$$u = J_{\lambda} f \in \mathcal{D}(A)$$
 and $Au = (\lambda - J_{\lambda}^{-1})J_{\lambda} f = \lambda u - f$.

Let D be an arbitrary regular domain containing $\operatorname{supp} f \cup \operatorname{supp} \rho$, and put $u^D = J_{\lambda}^D f$. Then $(\lambda - L)u^D = f$ since $f \in C_0(X) \cap \mathcal{D}(L)$. Hence, for any $\rho \in \mathfrak{M}_0(X) \cap \mathcal{D}(L^*)$, we have

$$\langle \lambda u^D - f, \rho \rangle = \langle L u^D, \rho \rangle = \langle u^D, L^* \rho \rangle.$$

Passing to the limit as $D \uparrow X$, we get $\langle \lambda u - f, \rho \rangle = \langle u, L^* \rho \rangle$, which implies $\langle Au, \rho \rangle = \langle u, L^* \rho \rangle$ by means of (4.6).

ii) Assume that $f = J_{\mu}h$ with $h \in C_0(X)$ and $\mu > 0$.

When $\mu \neq \lambda$, it follows from the resolvent equation and the result of i) that

$$u = J_{\lambda}J_{\mu}h = \frac{1}{\lambda - \mu}(J_{\mu}h - J_{\lambda}h) \in \mathscr{D}(A)$$
 and $Au = -J_{\mu}h + \lambda u$

and that

$$\langle Au, \rho \rangle = \langle u, L^*\rho \rangle$$
 for any $\rho \in \mathfrak{M}_0(X) \cap \mathfrak{D}(L^*)$.

When $\mu=\lambda$, we take a sequence $\{\lambda_n\}$ such that $\lambda_n\neq\lambda$ and $\lim_{n\to\infty}\lambda_n=\lambda$. If we put $u_n=J_\lambda J_{\lambda n}h$, then $\lim_{n\to\infty}\|u_n-u\|\leq\lim_{n\to\infty}\|J_\lambda\|\|J_{\lambda n}h-J_\lambda h\|=0$. It follows from the above result that $u_n\in\mathscr{D}(A)$ and $Au_n=-J_{\lambda n}h+\lambda u_n$; accordingly Au_n converges to $-f+\lambda u$ as $n\to\infty$ with respect to the supremum norm. Since A is a closed operator in E, we obtain that $u\in\mathscr{D}(A)$ and $Au=-f+\lambda u$. This fact implies that Au_n converges to Au as $n\to\infty$ with respect to the supremum norm. As we have shown just above, $\lambda_n\neq\lambda$ implies that $u_n=J_\lambda J_{\lambda n}h$ satisfies $\langle Au_n,\ \rho\rangle=\langle u_n,L^*\rho\rangle$ for any $\rho\in\mathfrak{M}_0(X)\cap\mathscr{D}(L^*)$. Passing to the limit as $n\to\infty$, we get $\langle Au,\ \rho\rangle=\langle u,L^*\rho\rangle$.

iii) It follows from the result of ii) that the assertion of Lemma 4.3 holds for any $f \in E_0$ and any $\lambda > 0$. Since E_0 is dense in E with respect to the supremum norm and since A is a closed operator in E, the similar

argument to that in ii) shows that $u=J_{\lambda}f\in \mathcal{D}(A)$ and $\langle Au, \rho \rangle = \langle u, L^*\rho \rangle$ for any $f\in E$.

LEMMA 4.4. For any $f \in F$, the function $u_f(t, \cdot)$ defined in (4.1), is continuous in t > 0 with respect to the seminorm topology in F.

PROOF. For any $f \in F$, there exists a sequence $\{f_n\} \subset C_0(X)$ satisfying that $s-\lim_{n\to\infty} f_n = f$. Then, for every n and $\lambda > 0$, $J_{\lambda} f_n \in \mathscr{D}(A)$ by Lemma 4.3. Hence $T_t J_{\lambda} f_n$ is differentiable in t with respect to the norm in E and we have $\frac{d}{dt} T_t J_{\lambda} f_n = A T_t J_{\lambda} f_n = A J_{\lambda} T_t f_n$. Accordingly, for any $\rho \in \mathfrak{M}_0(X) \cap \mathscr{D}(L^*)$, we get $\frac{d}{dt} \langle T_t J_{\lambda} f_n, \rho \rangle = \langle A J_{\lambda} T_t f_n, \rho \rangle = \langle J_{\lambda} T_t f_n, L^* \rho \rangle$ by Lemma 4.3. Hence

$$\langle \lambda J_{\lambda} T_{t} f_{n}, \rho \rangle - \langle \lambda J_{\lambda} T_{s} f_{n}, \rho \rangle = \int_{s}^{t} \langle \lambda J_{\lambda} T_{\tau} f_{n}, L^{*} \rho \rangle d\tau \quad (t > s > 0).$$

Passing to the limit as $\lambda \rightarrow \infty$, we obtain by (1.6)

$$\langle T_t f_n, \rho \rangle - \langle T_s f_n, \rho \rangle = \int_s^t \langle T_\tau f_n, L^* \rho \rangle d\tau.$$

By the definition (4.1) of $u_f(t, x)$, we may rewrite the above equality as follows:

$$\langle u_{fn}(t, \cdot), \rho \rangle - \langle u_{fn}(s, \cdot), \rho \rangle = \int_{s}^{t} \langle u_{fn}(\tau, \cdot), L^* \rho \rangle d\tau.$$

Let $n \to \infty$, and we get, by means of bounded convergence theorem,

$$\langle u_f(t, \cdot), \rho \rangle - \langle u_f(s, \cdot), \rho \rangle = \int_s^t \langle u_f(\tau, \cdot), L^* \rho \rangle d\tau.$$

Since $\langle u_f(t, \cdot), L^*\rho \rangle$ is bounded in t, the above equality implies that $\frac{d}{dt}\langle u_f(t, \cdot), \rho \rangle$ exists and is equal to $\langle u_f(t, \cdot), L^*\rho \rangle$ for almost all t>0. Hence, for any function $\chi \in C_0^1((0, \infty))$, we get

$$\langle u_f(t, \cdot), \rho \rangle \chi(t) - \langle u_f(s, \cdot), \rho \rangle \chi(s)$$

$$= \int_s^t \frac{d}{d\tau} \{ \langle u_f(\tau, \cdot), \rho \rangle \chi(\tau) \} d\tau$$

$$= \int_s^t \{ \langle u_f(\tau, \cdot), L^* \rho \rangle \chi(\tau) + \langle u_f(\tau, \cdot), \rho \rangle \chi'(\tau) \} d\tau.$$

Let $s \downarrow 0$ and $t \uparrow \infty$, and we obtain

$$\int_0^\infty \{\langle u_f(\tau, \cdot), L^* \rho \rangle \chi(\tau) + \langle u_f(\tau, \cdot), \rho \rangle \chi'(\tau)\} d\tau = 0.$$

Hence, by Axiom (δ') , $u_f(t,x)$ is differentiable in t, $u_f(t,\cdot) \in \mathscr{D}(L)$ for any t > 0 and $\frac{\partial u_f}{\partial t} = Lu_f \in C((0,\infty) \times X)$. For any $t_0 > 0$ and any compact subset K of X, we consider a bounded interval $[t_1, t_2]$ such that $0 < t_1 < t_0 < t_2 < \infty$. Then $Lu_f(t,x)$ is bounded on $[t_1, t_2] \times K$ and we have

$$u_f(t,x) - u_f(t_0,x) = \int_{t_0}^t Lu_f(\tau,x)d\tau \quad (t_1 < t < t_2).$$

Hence $u_f(t, \cdot)$ converges to $u_f(t_0, \cdot)$ as $t \to t_0$ uniformly on every compact subset of X. Furthermore we have $|u_f(t, x)| \le ||f||$, which means that $\{u_f(t, \cdot); t > 0\}$ is uniformly bounded. Hence we get s- $\lim_{t \to t_0} u_f(t, \cdot) = u_f(t_0, \cdot)$, namely $u_f(t, \cdot)$ is continuous in t > 0 with respect to the seminorm topology in F.

LEMMA 4.5. $s=\lim_{t\downarrow 0} u_{\phi_n}(t,\cdot) = \psi_n \text{ in } F \text{ for each } n.$

PROOF. Since $\varphi_n \in C_0(X)$, we have

$$\lim_{t\downarrow 0} \|u_{\varphi_n}(t,\cdot) - \varphi_n\| = \lim_{t\downarrow 0} \|T_t\varphi_n - \varphi_n\| = 0.$$

Using this fact, we may prove by the same argument as in the proof of Lemma 3. 2 that $s-\lim_{t\downarrow 0} u_{\varphi_{\infty}}(t,\cdot) = \varphi_{\infty}$ in F, and accordingly we get $s-\lim_{t\downarrow 0} u_{\varphi_{n}}(t,\cdot) = \psi_{n}$ in F for each n.

LEMMA 4.6. For any seminorm p, $p([(\lambda - \beta)J_{\lambda}]^{k}\psi_{n})$ converges to 0 as $n \to \infty$ uniformly in $\lambda \geq \beta$ and $k \geq 0$.

PROOF. The sequence $\{u_{\psi_n}(t, \cdot)\}$ decreases to 0 pointwise as $n \to \infty$. For given seminorm p, we put

$$g_n(t) = \begin{cases} p(e^{-\beta t}u_{\phi_n}(t, \cdot)) & \text{if } 0 \le t < \infty \\ 0 & \text{if } t = \infty. \end{cases}$$

Then $g_n(t)$ decreases to 0 as $n\to\infty$ for each $t\in[0,\infty]$, and we see by Lemma 4.4 and Lemma 4.5 that $g_n(t)$ is continuous in $t\in[0,\infty]$ for each n. Hence $g_n(t)$ tends to 0 uniformly in $t\in[0,\infty]$ by Dini's theorem. Therefore, for any $\varepsilon>0$, there exists n_0 such that $p(e^{-\beta t}u_{\psi_n}(t,\cdot))<\varepsilon$ for any $n>n_0$. Hence, by Lemma 4.2, we get for $n>n_0$

$$p([(\lambda - \beta)J_{\lambda}]^{k}f) \leq \frac{(\lambda - \beta)^{k}}{(k-1)!} \int_{0}^{\infty} t^{k-1} e^{-(\lambda - \beta)t} p(e^{-\beta t} u_{\psi_{n}}(t, \cdot)) dt$$
$$\leq \varepsilon \frac{(\lambda - \beta)^{k}}{(k-1)!} \int_{0}^{\infty} t^{k-1} e^{-(\lambda - \beta)t} dt = \varepsilon ;$$

the last equality follows from a direct calculation. Therefore $p([(\lambda -\beta)J_{\lambda}]^{k}\phi_{n})$ converges to 0 as $n\to\infty$ uniformly in $\lambda \geq \beta$ and $k\geq 0$.

PROPOSITION 4.7. For any fixed $\beta > 0$ and any seminorm p, there exists a seminorm q such that $p([(\lambda - \beta)J_{\lambda}]^{k}f) \leq q(f)$ for any $\lambda > \beta$, $k \geq 0$ and $f \in F$, that is, $[(\lambda - \beta)J_{\lambda}]^{k}$ is equicontinuous in $\lambda > \beta$ and $k \geq 0$.

The proof of this proposition is parallel to that of Proposition 3. 6, so is omitted.

THEOREM 6. The operator \tilde{A} is the infinitesimal generator of a uniquely determined quasi-equicontinuous (C_0) -semigroup $\{\tilde{T}_t\}$ in F, and we have

$$J_{\lambda}f = (\lambda - \widetilde{A})^{-1}f = \int_{0}^{\infty} e^{-\lambda t} \widetilde{T}_{t}fdt$$
 for any $f \in F$.

PROOF. We define $A_{\beta} = \widetilde{A} - \beta$ and $J_{\beta,\lambda} = J_{\beta+\lambda}$ for any given $\beta > 0$. Then $J_{\beta,\lambda} = (\lambda - A_{\beta})^{-1}$. Since $(\lambda J_{\beta,\lambda})^k$ $(\lambda > 0, k \ge 0)$ is equi-continuous by Proposition 4.7, A_{β} is the infinitesimal generator of a uniquely determined equicontinuous (C_0) -semigroup $\{S_{\beta,t}\}_{t\ge 0}$ by Hille-Yosida theorem on semigroups of operators in locally convex spaces ([7], [8], [15]). If $0 < \beta_1 < \beta_2$, then $\{e^{-(\beta_2 - \beta_1)t}S_{\beta_1,t}\}_{t>0}$ is the equicontinuous (C_0) -semigroup, whose generator is $A_{\beta_1} - (\beta_2 - \beta_1)$; this is identical with A_{β_2} . Hence we have $e^{-(\beta_2 - \beta_1)t}S_{\beta_1,t} = S_{\beta_2,t}$, namely $e^{\beta_1 t}S_{\beta_1,t} = e^{\beta_2 t}S_{\beta_2,t}$. We thus see that $e^{\beta_1 t}S_{\beta_1,t}$ is independent of β . Therefore, if we define $\widetilde{T}_t = e^{\beta_t t}S_{\beta_t,t}$, $\{\widetilde{T}_t\}$ is the quasi -equicontinuous (C_0) -semigroup whose generator is \widetilde{A} . For any fixed $\beta > 0$, we have

$$J_{\lambda+\beta} = \int_0^\infty e^{-\lambda t} S_{\beta,t} dt = \int_0^\infty e^{-(\lambda+\beta)t} \widetilde{T}_t dt$$

for any $\lambda > 0$, that is,

$$J_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} \widetilde{T}_{t} dt$$
 for any $\lambda > \beta$.

Since β is arbitrary, this equality holds for any $\lambda > 0$.

THEOREM 7. The semigroup $\{\tilde{T}_t\}$ in F is an extension of $\{T_t\}$ in E, and $(\tilde{T}_t f)(x) = \int_X P(t, x, dy) f(y)$ for any $f \in F$.

PROOF. Since J_{λ} is written as $(\lambda - A)^{-1}$ in the Banach space E where A is the infinitesimal generator of semigroup $\{T_t\}$, we get $J_{\lambda}f = \int_0^{\infty} e^{-\lambda t} T_t f dt$

for any $f \in E$. On the other hand, $J_{\lambda}f = \int_{0}^{\infty} e^{-\lambda t} \widetilde{T}_{t}fdt$ for any $f \in F$ by Theorem 6. For any $f \in E$, $(T_{t}f)(x)$ and $(\widetilde{T}_{t}f)(x)$ are continuous function of t for every $x \in X$, and accordingly $T_{t}f = \widetilde{T}_{t}f$ by the unicity theorem of Laplace transforms. Hence $\{\widetilde{T}_{t}\}$ is an extension of $\{T_{t}\}$. For any $f \in F$, we have

$$\int_0^\infty e^{-\lambda t} dt \int_X P(t, x, dy) f(y) = \int_0^\infty e^{-\lambda t} \widetilde{T}_t f dt$$

by Lemma 4.1 and Theorem 6, and $\int_X P(t, x, dy) f(y)$ is continuous in t for every $x \in X$ by Lemma 4.4. Hence, again using the unicity theorem of Laplace transforms, we get $(\tilde{T}_t f)(x) = \int_X P(t, x, dy) f(y)$ for any $f \in F$.

References

- [1] D. GILBARG and N. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag 1977.
- [2] F. HIRSCH, Familles résolvents générateurs, cogénérateurs, potentiels, Ann. Inst. Fourier 22 (1972), 89-210.
- [3] G. HUNT, Markov processes and potentials, I, II, III, III. J. Math. 1 (1957), 44-93, 316 -362; 2 (1958), 151-213.
- [4] M. ITO, The existence of positive harmonic functions and Green operators, Natural Sci. Report, Ochanomizu Univ., 29 (1978), 137-146.
- [5] M. ITO, On existence of Green operator and positive superharmonic functions, ibid. 34 (1983), 15-18.
- [6] M. ITO, Abstract Green operators and semigroups, ibid. 34 (1983), 1-13.
- [7] H. KOMATSU, Semigroups of operators on locally convex spaces. J. Math. Soc. of Japan 16, (1964), 230-262.
- [8] T. KÔMURA, Semigroups of operators in locally convex spaces. J. Funct. Anal. 2 (1968), 258-296.
- [9] P. A. MEYER, Probability and potentials, Blaisdell Publ. Co. 1966.
- [10] A. MORI, On the existence of harmonic functions on a Riemann surface, J. Fac. Sci., Univ. Tokyo, Sec. I, 6 (1951), 247-257.
- [11] A. YAMADA, On the correspondence between potential operators and semigroups associated with Markov processes, Z. Wahrscheinlichkeitstheorie u. verw. Gebiete, 15(1970), 230-238.
- [12] K. YOSIDA, Positive resolvents and potentials, ibid. 8 (1967), 210-218.
- [13] K. YOSIDA, The pre-closedness of Hunt's potential operators and its applications, Proc. Intern, Conf. on Funct. Anal. Related Topics, Tokyo (1969), 324-331.
- [14] K. YOSIDA, On the existence and a characterization of abstract potential operators, Proc. Colloq. Funct. Anal., Liège (1970), 129-136.
- [15] K. YOSIDA, Functional Analysis, 6th ed. Springer 1980.

Nihon Medical School 2-297-2 Kosugi Nakahara-Ku Kawasaki 211, JAPAN