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Levi condition and analytic regularity for quasi-linear
weakly hyperbolic equations of second order
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Abstract. We are concerned with the problem of global analytic regularity of solutions
of quasi-linear weakly hyperbolic equations. Assuming a Levi condition on the nonlinear
term, we prove that real analytic data and the existence of a domain of dependence lead
to the analyticity of the smooth solutions. Similar problems are discussed also in [S],
[Mal], [RY1], where analogous tools are employed. Here we introduce estimates on cusp
shaped domains. Next, a similar result is established in the Gevrey classes.
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1. Introduction

We will consider on [0, T) \cross R_{x} the second order quasi-linear equation

u_{tt}-(a(t, x)u_{x})_{x}=f(t, x, u, u_{t}, u_{x}) (1.1)

assuming that it is weakly hyperbolic and that a(t, x) and the nonlinear term
f(t, x, u, p, q) are real analytic functions satisfying a s0-called nonlinear Levi
condition. More precisely, we will assume

\{

0\leq a(t, x)\leq\lambda \forall(t, x)\in[0, T)\cross R_{x} (a)
(1.1)

|\partial_{q}f(t, x, u, p, q)|\leq L(K)\sqrt{a(t,x)} \forall(t, x, u, p, q)\in K(b)

\forall K\subset\subset[0, T)\cross R_{x}\cross R_{u}\cross R_{p}\cross R_{q} , without further hypotheses on the
principal part.

It is known (see [D2]; see also [N1],[N2] ) that the above assumptions
are sufficient for the globally well posedness in C^{\infty} of the Cauchy problem
for the linearized of Eq.(l.l), which takes the form:

u_{tt}-(a(t, x)u_{x})_{x}+b_{1}(t, x)u_{x}+b_{2}(t, x)u_{t}+c(t, x)u=g(t, x) ,
(1.1)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x)

and that the finite speed of propagation property holds; in fact, from
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(1.2)(b), it follows that the coefficient b_{1}(t, x) satisfies the Levi condition,

|b_{1}(t, x)|\leq M(K)\sqrt{a(t,x)} \forall(t, x)\in K \forall K\subset\subset[0, T)\cross R_{x} .

Hence, it is interesting to study the regularity of solutions for the quasi-
linear Eq.(l.l). Using the above hypotheses we are able to prove the fol-
lowing:

Theorem 1.1 Consider u(t, x)\in C^{\infty}([0, T)\cross R_{x}) a solution of Eq.(l.l),
such that the initial data u(0, x) , u_{t}(0, x) are analytic on some interval D=
\{x : |x-x_{0}|<\delta\} . Then, u(t, x) is analytic on the triangle of R_{t}\cross R_{x} with
base D and slope \sqrt{\lambda} :

\{(t, x) : |x-x_{0}|<\delta-\sqrt{\lambda}t , 0 \leq t<\min(T, \delta/\sqrt{\lambda})\} .

The problem of the analytic regularity was already investigated in [M]
and in [AM], [J] for linear and nonlinear strictly hyperbolic equations, re-
spectively. In particular, it was proved that real analytic data lead to the
analyticity of the solution as soon as it is of class C^{k} with k sufficiently
large with respect to the space dimension.

As to the weakly hyperbolic case, this problem was considered in [S] for
a semi-linear equation of type

u_{tt}- \sum_{h,k=1}^{n}\partial_{x_{h}}(a_{hk}(t, x)\partial_{x_{k}}u)=f(t, x, u) (1.4)

under one of the following conditions:
(i) the coefficients, a_{hk} , have the special form a_{hk}(t, x)=b(t) \tilde{a}_{hk}(x) ;
(ii) the solution is a priori assumed to belong to some Gevrey class of

order s<2 .

Later, the analytic regularity for the solutions of Eq.(1.4) was proved
in [Mal] assuming the Oleinik condition, that is for some A\geq 0

A \sum_{h,k}a_{hk}(t, x)\xi_{h}\xi_{k}+\sum_{h,k}\partial_{t}a_{hk}(t, x)\xi_{h}\xi_{k}\geq 0
\forall\xi\in R^{n} (1.5)

instead of (i) and in [Ma2] assuming only weak hyperbolicity (that is (1.2)
(a) ) , but n=1 .

Finally, the regularity in Gevrey class of order s>1 (in dimension n=
1) is considered in [RY1] (see also [RY2]), for quasi-linear weakly hyperbolic



Analytic regularity for hyperbolic equations 409

equations of type (1.1), assuming as Levi conditions on the nonlinear term:

|\partial_{q}^{l}f(t, x, u,p, q)|\leq C_{K}M_{K}^{l}l!^{s’}\sqrt{a(t,x)}

(1.6)
\forall(t, x, u, p, q)\in K (s’<s) ,

(\forall K\subset\subset[0, T)\cross R_{x}\cross R_{u}\cross R_{p}\cross R_{q}) and the following condition on a(t, x)

0\leq Aa(t, x)-a_{t}(t, x) \forall(t, x)\in[0, T)\cross R_{x} (1.7)

(with A being a suitable positive constant).
These results are based on a priori estimates for the solutions, by the

energy method, on the uniqueness property with respect to the initial value
problem, in the function space where the solution u(t, x) exists a priori and,
finally, on local existence results such as the well known Cauchy-Kovalewsky
theorem.

In this paper, we assume only the weak hyperbolicity (1.2)(a) of the
principal part and the Levi condition (1.2)(b) on the nonlinear term, but
we are able to prove the analytic regularity only if u(t, x) is a priori assumed
to belong to C^{\infty} and n=1 . In particular, we require n=1 because if

a(t, x)\in A(R_{t}\cross R_{x}) and a(t, x)\geq 0 , (1.8)

then, given any point (t_{0}, xo)\in R_{t}\cross R_{x} we can find \beta>1 and \delta>0 such
that the cusp condition (2.6), (2.7) holds (see Appendix A for more details)
for the domain \Gamma given by,

\Gamma=\{(t, x) : |x-x_{0}|\leq|t-t_{0}|^{\beta} for t_{0}-\delta\leq t\leq t_{0}\} (1.8)

(where \beta , \delta depend on (t_{0} , x_{0} )).
Furthermore, we remark that it is essential for our methods to assume

the coefficients to be analytic with respect to the variable t . Indeed, assum-
ing only the condition (1.2)(a) on the principal part, the linearized equation
of (1.1) at some C^{\infty} solution is a weakly hyperbolic equation whose coeffi-
cients are merely C^{\infty} functions, and this could present the phenomena of
non-existence or non-uniqueness (see [CS], [CJS]).

By the same methods, it is possible to extend the result of Th. 1.1 to
prove the Gevrey regularity of the solutions for 1\leq s<2 . In fact, in \S 3 we
define of the Gevrey energies,
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\mathcal{E}^{N}(t)=\rho(t)+\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}\sqrt{E_{j}(t)} , (1.10)

for N\geq k+1 , \rho(t)>0 , and then we prove that, for a suitable \rho(t) ,

\frac{d}{dt}\mathcal{E}^{N}\leq\Phi(\mathcal{E}^{N}) \forall N (1.11)

where \Phi is an analytic function which vanishes at 0 and does not depend
on N .

Nevertheless, since in the proof of the above theorem a crucial step is
the analysis of the behaviour of the analytic coefficient a(t, x) near its zeroes
(see Lemma A.2), in the Gevrey case we are forced to make some further
hypotheses on the function a(t, x) , see Remark4.2 at the end of \S 4.

This is the layout of the paper. In \S 2 we consider the linearized equation
of (1.1) and prove the basic energy estimates on a domain of dependence.
Then, in \S 3 we complete the estimates of \S 2, taking into account the con-
tribution of the nonlinear term. Finally in \S 4 we prove Theorem 1.1.

Appendix A serves to verify the cusp condition for analytic functions,
while in Appendix B and C we provide the L^{2}-estimates for linear and
nonlinear differential operators.

Notations In the following, we will denote by A(\Omega) the space of analytic
functions on \Omega (with \Omega\subseteq R^{n} an open set) and \mathcal{G}^{(s)}(\Omega) the space of Gevrey
functions of order 1\leq s<\infty , that is the space of functions v(x)\in C^{\infty}

which satisfy

|\partial^{\alpha}v(x)|\leq C_{K}\Lambda_{K}^{|\alpha|}\alpha!^{s} \forall x\in K , \forall\alpha\in N^{n}

for all compact sets K\subset\Omega . We write v(x)\in A(K) , v(x)\in \mathcal{G}^{(s)}(K) if
v(x)\in A(\Omega) , v(x)\in \mathcal{G}^{(s)}(\Omega) respectively for some open neighborhood \Omega of
the set K .

2. Derivation of energy estimates in a domain of dependence

We consider here a real C^{\infty} solution on [0, T)\cross R_{x} of the linear equation

u_{tt}-(a(t, x)u_{x})_{x}+b_{1}(t, x)u_{x}+b_{2}(t, x)u_{t}+c(t, x)u=f(t, x)(2.1)

where the coefficients a(t, x) , b_{1}(t, x) , b_{2}(t, x) , c(t, x) and f(t, x) are smooth
functions on R_{t}\cross R_{x} . We assume equation (2.1) to be weakly hyperbolic
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and the first order term, b_{1}(t, x)u_{x} , to satisfy a Levi condition, namely

\{

a(t, x)\geq 0\forall(t, x)\in R_{t}\cross R_{x}

(2.2)
|b_{1}(t, x)|\leq M(K)\sqrt{a(t,x)}(t, x)\in K\forall K\subset\subset[0, T)\cross R_{x} .

Fixed (t_{0}, x_{0})\in(0, T)\cross R_{x} , let \gamma_{1} , \gamma_{2} : [0, t_{0}] – R_{x} be differentiable maps
satisfying

\{

\gamma_{1}(t_{0})\leq x_{0}\leq\gamma_{2}(t_{0}) , \gamma_{1}(t)<x_{0}<\gamma_{2}(t) for 0\leq t<t_{0}

\gamma_{1}’(t)\geq 0 and \gamma_{2}’(t)\leq 0 .
(2.3)

For 0\leq t , s\leq t_{0} we define the sets

B_{t}=\{x\in R_{x} : \gamma_{1}(t)\leq x\leq\gamma_{2}(t)\} , (2.4)

\Gamma_{s}=\{(t, x) : x\in B_{t} , 0\leq t\leq s\} . (2.5)

Besides we require the following:
\underline{Cusp}condition: the curves t\mapsto(\gamma_{i}(t), t) are “ at most characteristic” for
the linear equation (2.1), more precisely we assume

a(t, x)|_{x=\gamma_{i}(t)}\leq\gamma_{i}’(t)^{2} . for i=1,2 (2.6)

and there exists a constant C=C(\Gamma_{t_{0}}) such that

a_{t}(t, x)\leq Ca(t, x) \forall(t, x)\in\Gamma_{t_{0}} . (2.7)

Assuming the hypotheses (2.2) and the cusp condition (2.6) (2.7) we
will derive the basic energy estimates inside the domain \Gamma_{t_{0}} . To begin with,
we consider the energy functions (\alpha\in N^{2}, \partial^{\alpha}=\partial_{t}^{\alpha_{1}}\partial_{x}^{\alpha_{2}}) ,

F_{\alpha}(t)= \int_{B_{t}}\{a(t, x)|\partial^{\alpha}u_{x}|^{2}+|\partial^{\alpha}u_{t}|^{2}+j^{2}|\partial^{\alpha}u|^{2}\}dx (2.8)

for j\geq 1,0\leq t<t_{0} , |\alpha|=j-1 and

E_{\alpha}(t)=F_{\alpha}(t)+ \int_{0}^{t}F_{\alpha}(s)ds , (2.8)

finally, let us define the \dot{\mathcal{F}}th energies F_{j}(t) , E_{j}(t) of a solution u(t, x) to
(2.1), by setting

\sqrt{E_{j}(t)}=\sum_{|\alpha|=j-1}\sqrt{E_{\alpha}(t)}
, \sqrt{F_{j}(t)}=\sum_{|\alpha|=j-1}\sqrt{F_{\alpha}(t)}

(2.10)
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With the notations introduced in (2.3), (2.4), (2.5), we can state the
following.

Proposition 2.1 Let u(t, x) be a smooth solution of (2.1) on [0, T) \cross R_{x}

and assume that conditions (2.2), (2.6), (2.7) are satisfified. Moreover, \sup-

pose that the coefficients in (2.1) belong to \mathcal{G}^{(s)}([0, T)\cross R_{x})(1\leq s<\infty) ,
namely we may assume the following upper bounds:

|\partial^{\alpha}a(t, x)| , |\partial^{\alpha}b_{i}(t, x)| , |\partial^{\alpha}c(t, x)|\leq C_{0}\Lambda_{0}^{|\alpha|}(|\alpha|!)^{s} , (2.11)

\forall(t, x)\in\Gamma_{t_{0}} , for some C_{0} , \Lambda_{0} independent of \alpha . Then, for any \Lambda>\Lambda_{0} ,
there exists a constant C_{1}=C_{1}(C_{0}, \Lambda_{0}, \Lambda, \Gamma_{t_{0}}) such that for j\geq 1 and
0\leq t<t_{0} ,

\frac{d}{dt}\sqrt{E_{j}(t)}\leq C_{1}(j+1)!^{s}\sum_{h=1}^{j}\frac{\Lambda^{j-h}}{h!^{s}(h+1)^{\sigma}}\sqrt{E_{h}(t)}

+ \sum_{|\alpha|=j-1}(\int_{B_{t}}|\partial^{\alpha}f|^{2}dx)^{1/2} , (2.12)

where \sigma=s-1 .

Proof Applying the operator \partial^{\alpha} to both sides of (2.1), we have

(\partial_{t}^{2}+A_{o})\partial^{\alpha}u=[A_{o}, \partial^{\alpha}]u+\partial^{\alpha}Bu+\partial^{\alpha}f (2.13)

where,

A_{o}=-\partial_{x} (a(t, x)\partial_{x} ) , B=b_{1}\partial_{x}+b_{2}\partial_{t}+c . (2.14)

On the other hand, differentiating (2.8), for 0<t<t_{0} , we find

\frac{d}{dt}F_{\alpha}(t)=\int_{B_{t}}a_{t}|\partial^{\alpha}u_{x}|^{2}dx

+2 \int_{B_{t}}\{a\partial^{\alpha}u_{x}\partial^{\alpha}u_{xt}+\partial^{\alpha}u_{t}\partial^{\alpha}u_{tt}+j^{2}\partial^{\alpha}u\partial^{\alpha}u_{t}\}dx

+\{*\}(t, \gamma_{2}(t)) \gamma_{2}’(t)-\{*\}(t, \gamma_{1}(t))\cdot\gamma_{1}’(t) (2.15)

where we have used the symbol \{*\} to indicate the quadratic form in (2.8).
Now integrating by part the second term in (2.15) we get:

\int_{B_{t}}a\partial^{\alpha}u_{x}\partial^{\alpha}u_{xt}dx
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=- \int_{B_{t}}(a\partial^{\alpha}u_{x})_{x}\partial^{\alpha}u_{t}+[a(t, \cdot)\partial^{\alpha}u_{x}(t, \cdot)\partial^{\alpha}u_{t}(t, \cdot)]_{\gamma 1(t)}^{\gamma_{2}(t)} (2.16)

and taking into account the inequality

|a \partial^{\alpha}u_{x}\partial^{\alpha}u_{t}|\leq\frac{1}{2}\sqrt{a}(|\partial^{\alpha}u_{t}|^{2}+a|\partial^{\alpha}u_{x}|^{2})

in view of condition (2.6) on \gamma_{i}(t) , i=1,2 we obtain that the total con-
tribution of the integral on \partial B_{t} is non-positive. Thus, from (2.13), (2.15),
(2.16) we derive the estimate

\frac{d}{dt}F_{\alpha}(t)\leq\int_{B_{t}}a_{t}|\partial^{\alpha}u_{x}|^{2}dx+2j^{2}\int_{B_{t}}\partial^{\alpha}u\partial^{\alpha}u_{t}dx

+2 \int_{B_{t}}\{[A_{o}, \partial^{\alpha}]u+\partial^{\alpha}Bu+\partial^{\alpha}f\}\partial^{\alpha}u_{t}dx .

Taking into account condition (2.7) and the definition (2.8) of F_{\alpha}(t) , we
have

\frac{d}{dt}\sqrt{F_{\alpha}(t)}\leq(j+C)\sqrt{F_{\alpha}(t)}

+ \{\int_{B_{t}}([A_{o}, \partial^{\alpha}]u+\partial^{\alpha}Bu+\partial^{\alpha}f)^{2}dx\}^{1/2} (2.17)

To proceed, we use the results of Appendix B , with \Omega=B_{t} . Applying
Lemma B.I to the quadratic form given by the relations

a_{11}=a_{12}=a_{21}=0 , a_{22}=a(t, x) (2.16)

and recalling (2.2),(2.11) we can estimate the L^{2} norm of [A_{o}, \partial^{\alpha}]u . We
have:

\sum ( \int_{B_{t}}([A_{o}, \partial^{\alpha}]u)^{2}dx)^{1/2}

|\alpha|=j-1

\leq Cj\sum_{|\alpha|=j-1}(\int_{B_{t}}a(t, x)|\partial^{\alpha}u_{x}|^{2}dx)^{1/2}

+C(j+1)!^{s} \sum_{h=0}^{j-1}\frac{\Lambda^{j+1-h}}{h!^{s}(h+1)^{2\sigma}}||\partial^{h}u||_{L^{2}(B_{t})} (2.19)

and, from the definition (2.8) of F_{\alpha}(t) , we deduce that:

\sum_{|\alpha|=j-1}(\int_{B_{t}}([A_{o}, \partial^{\alpha}]u)^{2}dx)^{1/2}
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\leq C(j+1)!^{s}\sum_{h=0}^{j-1}\frac{\Lambda^{j+1-h}}{(h+1)!^{s}(h+1)^{\sigma}}\sqrt{F_{h+1}(t)} . (2.20)

To estimate the sum for |\alpha|=j –1 of the other terms in (2.17) we use
Lemma B.2 and B.3. It easily follows that

\sum_{|\alpha|=j-1}||\partial^{\alpha}b_{2}u_{t}||_{L^{2}(B_{t})}\leq C(j-1)!^{s}\sum_{h=0}^{j-1}\frac{\Lambda^{j-1-h}}{h!^{s}}||\partial^{h}u_{t}||_{L^{2}(B_{t})}

\leq C(j-1)!^{s}\sum_{h=1}^{j}\frac{\Lambda^{j-h}}{(h-1)!^{s}}\sqrt{F_{h}} (2.21)

and in the same way we can estimate the L^{2} –norm of \partial^{\alpha}cu . It remains
now to estimate the first order term b_{1}(t, x)u_{x} ; writing

\partial^{\alpha}b_{1}u_{x}=b_{1}\partial^{\alpha}u_{x}+[\partial^{\alpha}, b_{1}\partial_{x}]u (2.22)

and using the Levi condition (see (2.2)) on \Gamma_{t_{0}} we have

||\partial^{\alpha}b_{1}u_{x}||_{L^{2}(B_{t})}\leq M(\Gamma_{t_{0}}) \sqrt{F_{\alpha}}+||[\partial^{\alpha}, b_{1}\partial_{x}]u||_{L^{2}(B_{t})} ; (2.23)

moreover, the sum for |\alpha|=j-1 of the L^{2} –norm of the commutators
[\partial^{\alpha}, b_{1}\partial_{x}]u , that is

\sum ||[\partial^{\alpha}, b_{1}\partial_{x}]u||_{L^{2}(B_{t})} ,
|\alpha|=j-1

can be estimated like the terms of order \leq j of [A_{o}, \partial^{\alpha}]u (see Lemma B.3
of Appendix B). Thus, by the estimates (2. 17), (2.20), (2.21) and (2.23) we
finally have, for 0\leq t<t_{0} ,

\frac{d}{dt}\sqrt{F_{j}(t)}\leq C(j+1)!^{s}\sum_{h=1}^{j}\frac{\Lambda^{j-h}}{h!^{s}(h+1)^{\sigma}}\sqrt{F_{h}(t)}

+ \sum_{|\alpha|=j-1}(\int_{B_{t}}|\partial^{\alpha}f|^{2}dx)^{1/2} (2.24)

Taking into account that F_{\alpha}(t)\leq E_{\alpha}(t) and E_{\alpha}’(t)=F_{\alpha}’(t)+F_{\alpha}(t) we
obtain

\frac{d}{dt}\sqrt{E_{j}(t)}\leq\frac{d}{dt}\sqrt{F_{j}(t)}+\sqrt{E_{j}(t)} (2.25)
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and we easily derive a similar estimate for \sqrt{E_{j}(t)}’ \square

To conclude this section, we will prove that, under suitable assumptions
on the domain \Gamma_{t_{0}} , it is possible to estimate the L^{\infty} norm of u(t, \cdot) over B_{t}

using the energy E_{j}(t) .
Assume that the domain \Gamma_{t_{0}} , defined in (2.5), be a standard cusp (see

the remark in Appendix A). For example, let \Gamma_{t_{0}} be the domain

\Gamma_{t_{0}}=\{(t, x) : |x-x_{0}|\leq\lambda|t-t_{0}|^{\beta} , for 0\leq t\leq t_{0}\}

(2.26)
(\beta>1 , \lambda>0 and t_{0}>\delta>0 ),

then the following result holds.

Lemma 2.2 Let u(t, x) be a smooth function on the domain \Gamma_{t_{0}} given by
(2.26). Then, there exists an integer r_{0}=r_{0}(\beta, \lambda, \delta) such that for any h\geq 0 ,
the following estimate holds:

|| \partial^{h}u(t, \cdot)||_{L^{\infty}(B_{t})}\leq C\sum_{j=1}^{r_{0}}\frac{\sqrt{E_{h+j}(t)}}{h+j} , 0\leq t<t_{0} , (2.27)

where C=C(r_{0}, \beta, \lambda, \delta) does not depend on h\in N and t\in[0, t_{0}) .

Proof By (2.26) and the remark at the end of Appendix A , there exists
an integer p_{0}=p_{0}(\beta, \lambda, \delta) such that, for 0\leq t<t_{0} ,

||u(t, \cdot)||_{L^{\infty}(B_{t})}\leq C(||u(t, x)||_{W^{p_{0},2}(\Gamma_{t})}+||u(t, \cdot)||_{W^{p_{0},2}(B_{t})})

for some constant C=C(\beta, \lambda, \delta) independent of t\in[0, t_{0}] . With this in
mind, for r_{0}=p_{0}+1 , we have

||\partial^{h}u(t, \cdot)||_{L(B_{t})}\infty

\leq C\sum_{|\beta|=h}(||\partial^{\beta}u(t, x)||_{W^{r}o^{-1,2}(\Gamma_{t})}+||\partial^{\beta}u(t, \cdot)||_{W^{r}o^{-1,2}(B_{t})})

\leq C\sum_{|\alpha|\leq r_{0}-1}\sum_{|\beta|=h}(||\partial^{\alpha+\beta}u||_{L^{2}(\Gamma_{t})}+||\partial^{\alpha+\beta}u||_{L^{2}(B_{t})})
. (2.28)

Now, observing that the sum in the right hand side of (2.28) satisfies

\sum_{|\alpha|\leq r_{0}-1}\sum_{|\beta|=h}\leq C(r_{0})\sum_{j=0}^{r_{0}-1}\sum_{|\beta|=h+j} (2.29)
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we deduce (2.27) immediately from the definition (2.8), (2.9) of E_{j}(t) . \square

3. Analytic and Gevrey energies in a cusp

In this section we will consider the quasi-linear equation

u_{tt}-(a(t, x)u_{x})_{x}+b_{1}(t, x)u_{x}+b_{2}(t, x)u_{t}+c(t, x)u

=f(t, x, u_{x}) , (3.1)

with f : ([0, T)\cross R_{x}) \cross Rarrow R being a C^{\infty} function satisfying the upper
bounds

|\partial_{tx}^{\alpha}\partial_{p}^{\nu}f(t, x,p)|\leq C_{0}M_{0}^{|\alpha|}P_{0}^{\nu}|\alpha|!^{s}\nu!^{s’} (3.2)

(with 1\leq s’\leq s ) and the nonlinear Levi condition:

|\partial_{p}f(t, x,p)|\leq \mathcal{L}(K, \rho)\sqrt{a(t,x)} \forall(t, x,p)\in K\cross\{|p|\leq\rho\} , (3.3)

\forall K\subset\subset[0, T)\cross R_{x} and \forall\rho>0 . Let us introduce the Gevrey energies

\mathcal{E}^{N}(t)=\rho(t)+\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}\sqrt{E_{j}(t)} , (3.4)

where N\geq k+1 , \rho(t)>0 ; the function \rho(t) and the integer k , appearing
in the definition of \mathcal{E}^{N}(t) , will be chosen later. Assuming the conclusions
of Lemma 2.1 and 2.2, we will prove an estimate (independent of N) for
(\mathcal{E}^{N})’ .

Differentiating (3.4) termwise, we have

\frac{d}{dt}\mathcal{E}^{N}=\rho’+\sum_{j=k+1}^{N}\frac{\rho^{J^{-k-1}}}{(j-1)!^{s}}j^{ks-\sigma}\frac{j-k}{j}\rho’\sqrt{E_{j}}

+ \sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}(\sqrt{E_{j}})’ (N\geq k+1) . (3.5)

Introducing now the estimate (2.12) of Proposition 2.1 (applied to a
smooth solution u(t, x) to Eq.(3.1) ) into (3.5), it is not difficult to see that,
for

\rho(t)\leq\min\{1/2,1/2\Lambda\} ,
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one has

\frac{d}{dt}\mathcal{E}^{N}\leq\rho’+C_{2}\rho+\sum_{j=k+1}^{N}\frac{\rho^{j-k-1}}{(j-1)!^{s}}j^{ks-\sigma}\{\frac{j-k}{j}\rho’+C_{2}\rho\}\sqrt{E_{j}}

+ \sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks} \sum ( \int_{B_{t}}|\partial^{\alpha}f(t, x, u_{x})|^{2}dx)^{1/2} (3.6)
|\alpha|=j-1

where the constant C_{2} depends only on C_{1} , k , s and E_{j}(t) for 1\leq j\leq k .
Now, we will consider the contribution of the nonlinear term in the

estimate of (\mathcal{E}^{N})’ ; using the definitions in (C.I) of Appendix C (with p\equiv

u_{x}) , we write

\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}||\partial^{j-1}f(t, x, u_{x})||_{L^{2}(B_{t})}

=\mathcal{E}_{I}+\mathcal{E}_{II}+\mathcal{E}_{III}+\mathcal{E}_{IV} , (3.6)

where

\mathcal{E}_{I}=\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks} \sum ||I_{\alpha}||_{L^{2}(B_{t})}

|\alpha|=j-1

and \mathcal{E}_{II} , \mathcal{E}_{III} , \mathcal{E}_{IV} are defined in the same way.
To begin with, let us consider \mathcal{E}_{I} . Using (3.2) and (C.5) of Appendix

C , taking M>M_{0} , we have

\sum ||\partial_{tx}^{\alpha}f(t, x, u_{x})||_{L^{2}(B_{t})}\leq CM^{j-1}(j-1)!^{s}\sqrt{|B_{t}|} ,
|\alpha|=j-1

hence, having by definition |B_{t}|\leq|B_{0}| (where |B_{t}| is the length of the
interval B_{t} , see (2.3), (2.4) ) , if \rho(t)\leq 1/2M , it is easy to see that

\mathcal{E}_{I}\leq C\rho(t) , (3.8)

for some constant C=C(M_{0}, M, |B_{0}|) . To estimate the term \mathcal{E}_{II} we need
the nonlinear Levi condition (3.3) (with \mathcal{L}=\mathcal{L}(\Gamma_{t_{0}}, ||u_{x}||_{L^{\infty}(\Gamma_{t_{0}})}) . Recalling
the definition of E_{j}(t) , we have immediately,

\sum_{|\alpha|=j-1}||\partial_{p}f(t, x, u_{x})\partial^{\alpha}u_{x}||_{L^{2}(B_{t})}\leq \mathcal{L}\sqrt{E_{j}}
, (3.9)
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hence, we find

\mathcal{E}_{II}\leq \mathcal{L}\sum_{j=k+1}^{N}\frac{\rho^{J}-k-1}{(j-1)!^{s}}j^{ks-\sigma_{\frac{\rho}{j}\sqrt{E_{j}}}} (3.10)

Furthermore, using (B.7) in Appendix B (or the first estimate in (C.4)), we
have, for M>M_{0} ,

\sum_{|\alpha|=j-1}||III_{\alpha}||_{L^{2}(B_{t})}\leq C(j-1)!^{s}\sum_{h=1}^{j}\frac{M^{j+1-h}}{(h-1)!^{s}}\sqrt{E_{h}} .

Thus, for \rho(t)\leq\min\{1/2,1/2M\} , we obtain (exactly as in the estimate of
the linear part):

\mathcal{E}_{III}\leq C\rho+C\sum_{j=k+1}^{N}\frac{\rho^{l^{-k-1}}}{(j-1)!^{s}}j^{ks-\sigma}\rho\sqrt{Ej} . (3.10)

Finally, let us consider \mathcal{E}_{IV} .

Lemma 3.1 Let u(t, x) be a smooth solution to Eq.(3.1) and assume that
Lemma 2.1 and 2.2 hold. Besides, let us suppose that f(t, x,p) satisfifies (3.2)
(with 1\leq s’\leq s ) and the nonlinear Levi condition (3.3). Then, if \rho(t)>0

and \mathcal{E}^{N}(t) are sufficiently small,

\mathcal{E}_{IV}(t)\leq C\rho(t)+\Phi(\mathcal{E}^{N}(t)) (N\geq k+1) (3.12)

where \mathcal{E}^{N} is the Gevrey energy defifined in (3.4); \Phi(\mathcal{E}) is an analytic function
which vanishes at 0. Moreover the constant C and \Phi(\mathcal{E}) are independent of
N\tau

Proof Taking M>M_{0} , P>P_{0} , we can find C=C(C_{0}, M_{0}, P_{0}, M, P)

such that (C. IO) of Appendix C holds (see Lemma C. I ). Hence, from the
definition of \mathcal{E}_{IV} , we can write (with p\equiv u_{x} ):

\mathcal{E}_{IV}\leq C\sum_{j=k+1}^{N}\rho^{?}j-k(k-1)s\sum_{2\leq\iota/\leq h\leq j-1}\frac{M^{j-h-1}P^{\mathfrak{l}J}}{l/!^{s-s}},

0<h_{1} \leq h_{i}\leq h_{\nu}\sum_{h_{1}+\cdot+h_{\mathcal{U}}=h}\frac{||\partial^{h_{1}}p||_{L\infty}\cdot\cdot||\partial^{h_{\nu-1}}p||_{L\infty}}{h_{1}!^{s}\cdots h_{\nu-1}!^{s}}

\frac{||\partial^{h_{\nu}}p||_{L^{2}}}{h_{I/}!^{s}h_{\nu}^{\sigma}}

\equiv \mathcal{E}_{IV}^{(1)}+\mathcal{E}_{IV}^{(2)}+\mathcal{E}_{IV}^{(3)} , (3.13)
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where, the terms \mathcal{E}_{IV}^{(1)} , \mathcal{E}_{IV}^{(2)} , \mathcal{E}_{IV}^{(3)} represent the three possible cases:

\{

(1) h_{\nu}<k ,

(2) h_{1}\leq k\leq h_{\nu} ,

(3) h_{1}>k and consequently k<h_{1}\leq h_{i}\leq h_{\nu} .

In the first case, having h_{\nu}<k , it is not difficult to prove that (taking \rho(t)

sufficiently small):

\mathcal{E}_{IV}^{(1)}\leq C_{3}\rho(t) (3.14)

where C_{3} depends only on k , C, M, P and on the norms ||\partial^{h}u||_{L(B_{t})}\infty for
1\leq h\leq k .

Let us consider the second case, h_{1}\leq k\leq h_{\nu} . Here, we can estimate
the corresponding terms in the third sum on the right hand side of (3.13)
in the following way:

0< \leq h_{1}\leq h_{i}\leq h_{v}\sum_{h_{1}++h_{U}=h}\{*\}_{h_{1}\leq k\leq h_{\nu}}\leq C(k)\sum_{m=1}^{k}

(3.15)

h_{2}++h_{\mathcal{U}}=h-m \sum_{m\leq h_{i}\leq h_{\mathcal{U}}}\frac{||\partial_{p}^{h_{2}}||_{L\infty}}{h_{2}!^{s}}

. .
||\partial_{p}^{h_{\nu-1}}||_{L\infty}h_{\nu-1}!^{s-1}

\frac{||\partial_{p}^{h_{\nu}}||_{L^{2}}}{h_{\nu}!^{s}h_{\nu}^{\sigma}}

where again h_{\nu}\geq k and

C(k)= \max\{||\partial^{i}p||_{L\infty}\} 1\leq i\leq k .

Moreover, keeping the variables z/ , h_{1} , \ldots , h_{\nu} , h fixed and performing
the sum in j , for j\geq h+1 , we have (with 0<\rho\leq 1/2M )

\sum N \rho^{2}M-kj-h-1j(k-1)s\leq C\rho(h-k+1h+1)(k-1)s ;
j=h+1

hence, noting that in (3. 15) we have

lJ (h_{\nu}+1)\geq h+1 and

h-k+1=h_{2}+\cdot\cdot+h_{\nu-1}+(h_{\nu}+m-k+1) ,
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we find

\mathcal{E}_{IV}^{(2)}\leq C\sum_{2\leq\nu\leq h\leq N-1}\frac{P^{\nu}\nu^{(k-1)s}}{\nu!^{s-s’}}\sum_{m=1}^{k}

h_{2}++h_{U}=h-m \sum_{m\leq h_{i}\leq h_{\nu}}\frac{||\partial^{h_{2}}p||_{L\infty}}{h_{2}!^{s}}\rho^{h_{2}}

\frac{||\partial^{h_{\nu-1}}p||_{L\infty}}{h_{\nu-1}!^{s}}\rho^{h_{\nu}-1}

\frac{||\partial^{h_{\nu}}p||_{L^{2}}\rho^{h_{\nu}+m-k+1}}{h_{\nu}!^{s}h_{\nu}^{\sigma}}(h_{\nu}+1)^{(k-1)s} (3.16)

Now, we will estimate the terms ||\partial^{h_{i}}p||_{L(B_{t})}\infty using the energies E_{j}(t) ,
1\leq j\leq N . Recalling (2.27) of Lemma 2.2 one has

|| \partial^{h}p||_{L(B_{t})}\infty\leq||\partial^{h+1}u||_{L(B_{t})}\infty\leq C\sum_{i=2}^{r_{0}+1}\frac{\sqrt{E_{h+i}}}{h+i} .

To proceed, we introduce the following notations

\eta(j)=\frac{\rho^{J}-k}{j!^{s}}j^{ks}\sqrt{E_{j}} for j\geq k+1 , \eta(j)=\frac{\rho}{k} for 1\leq j\leq k , (3.17)

thus \mathcal{E}^{N}=\eta(1)+\cdot\cdot+\eta(N) . Observing that for r\geq 1 ,

\frac{\sqrt{E_{h+r}}}{h!^{s}(h+r)}\rho^{h}\leq\eta(h+r)\rho^{k-r}\frac{(h+r)^{s}\cdots(h+1)^{s}}{(h+r)^{ks}(h+r)} (3.18)

if h+r>k
\frac{\sqrt{E_{h+r}}}{h!^{s}(h+r)}\rho^{h}\leq\eta(h+r)\frac{k\rho h-1}{h!^{s}(h+r)}\max\sqrt{E_{j}}1\leq j\leq k (3.19)

if h+r>k ; we easily see that, if

k\geq r_{0}+1

(and \rho\leq 1 ), then there exists a constant C such that

\frac{\rho^{h}}{h!^{s}}\sum_{i=2}^{r_{0}+1}\frac{\sqrt{E_{h+i}}}{h+i}\leq C (\eta(h+r_{0}+1)+ \cdot . +\eta(h+2) ), (3.20)

Moreover, since m\geq 1 in (3.16), it is easy to see that

\frac{\rho^{h_{\nu}+m-k+1}}{h_{\nu}!^{s}h_{\nu}^{\sigma}}(h_{\nu}+1)^{(k-1)s}||\partial^{h_{\nu}}p||_{L^{2}}\leq\eta(h_{\nu}+2) . (3.21)
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Summarizing up we have:

\mathcal{E}_{IV}^{(2)}\leq C\sum_{2\leq\nu\leq h\leq N-1}\frac{P^{\nu}C^{\nu-2}\nu^{(k-1)s}}{\nu!^{s-s}},\sum_{m=1}^{k}

h_{2}++h_{\nu}=h-m \sum_{m\leq h_{i}\leq h_{U}}(\sum_{i=2}^{r_{0}+1}\eta(h_{2}+i))\cdots(\sum_{i=2}^{r_{0}+1}\eta(h_{\nu-1}+i))

\eta(h_{\nu}+2) (3.22)

Now, having r_{0}+1\leq k\leq h_{\nu} , it follows that

h_{i}+r_{0}+1\leq h_{i}+h_{\nu}\leq h-m\leq N-m-1\leq N-2

h_{\nu}+2\leq N

hence, summing over the variables h , h_{1} , \ldots , h_{\nu} , we find

\sum_{h=(\nu-1)m+k}^{N-1}\sum_{m\leq h_{i}\leq h_{\mathcal{U}}}[mathring]_{\sum_{ih_{2}+\cdot+h_{U}=h-m=2}^{r+1}}\eta(h_{2}+i)

\sum_{i=2}^{r_{0}+1}\eta(h_{\nu-1}+i)\eta(h_{\nu}+2)\leq(r_{0}\mathcal{E}^{N})^{\nu-1} (3.23)

and we conclude that

\mathcal{E}_{IV}^{(2)}\leq Ck\sum_{2\leq\nu\leq\infty}\frac{P^{\nu}C^{\nu-2}\nu^{(k-1)s}}{\nu!^{s-s}},(r_{0}\mathcal{E}^{N})^{\nu-1}

def= \Phi_{1}(\mathcal{E}^{N}) (3.24)

with \Phi_{1} being an analytic function (independent of N) the radius of con-
vergence of which is:

\{

\infty , if s’<s ,
1/(r_{0}PC) , if s’=s .

Finally, having the condition \nu\geq 2 in (3.24), it follows that \Phi_{1}(0)=0 .
Let us now come to the case (3), k<h_{1}\leq h_{i}\leq h_{\nu} . As before, we will

have to estimate the terms

\frac{1}{h!^{s}}||\partial^{h}p||_{L\infty(B_{t})^{Q^{h}}}

but in this case, having h>k , we will always use (3.18) (instead of (3.19)).
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Hence, if

k\geq r_{0}+2

we may write

\frac{1}{h!^{s}}||\partial^{h}p||_{L(B_{t})}\infty\rho^{h}\leq C\rho\sum_{i=2}^{r_{0}+1}\eta(h+i) (h>k) . (3.25)

Thus, we can estimate \mathcal{E}_{IV}^{(3)} as follows:

\mathcal{E}_{IV}^{(3)}\leq C\sum_{2\leq\nu\leq h\leq N-1}\frac{P^{\nu}C^{\nu-1}\nu^{(k-1)s}}{\nu!^{s-s}},

k<h_{1} \leq h_{i}\leq h_{U}\sum_{h_{2}++h_{U}=h}\sum_{i=2}^{r_{0}+1}\eta(h_{1}+i)

. . \sum_{i=2}^{r_{0}+1}\eta(h_{\nu-1}+i)

\frac{\rho^{h_{\nu}+\nu-k}}{h_{\nu}!^{s}h_{\nu}^{\sigma}}(h_{\nu}+1)^{(k-1)s}||\partial^{h_{\nu}}p||_{L^{2}} . (3.26)

Again, having \nu\geq 2 and \rho\leq 1 ,

\frac{\rho^{h_{\nu}+\nu-k}}{h_{\nu}!^{s}h_{\nu}^{\sigma}}(h_{\nu}+1)^{(k-1)s}||\partial^{h_{\nu}}p||_{L^{2}}\leq\eta(h_{\nu}+2) ,

and like before, if we perform the sum in h , h_{1} , . . ’
h_{\nu} we find

\mathcal{E}_{IV}^{(3)}\leq C\sum_{2\leq\nu\leq\infty}\frac{P^{\nu}C^{\nu-1}\nu^{(k-1)s}}{\nu!^{s-s}},(r_{0}\mathcal{E}^{N})^{\nu}

def= \Phi_{2}(\mathcal{E}^{N}) .

Finally, keeping track of all the cases discussed, we have

\mathcal{E}_{IV}\leq C\rho+\Phi_{1}(\mathcal{E}^{N})+\Phi_{2}(\mathcal{E}^{N}) (3.27)

where, \Phi_{1}(\mathcal{E}) , \Phi_{2}(\mathcal{E}) are analytic functions which vanish at 0. The constant
C and \Phi_{i}(\mathcal{E}) , i=1,2 do not depend on N. \square

Summarizing up the results of this section, we have the following.

Lemma 3.2 Let u(t, x)\in C^{\infty}([0, T)\cross R_{x}) be a smooth solution to Eq.(3.1)
and assume that, defifining the (local) energies E_{j}(t) as in (2.4) –(2.10);
the conclusions of Lemma 2.1 and 2.2 hold. Moreover, let us suppose that
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f : ([0, T)\cross R_{x}) \cross R_{p}arrow R satisfifies (3.2), (3.3). Then, defifining

\mathcal{E}^{N}(t)=\rho(t)+\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}\sqrt{E_{j}(t)} , (N\geq k+1, \rho(t)>0)(3.28)

with k\geq r_{0}+2 , we can fifind \rho_{0} , \mathcal{E}_{0}>0 , independent ofN , such that assuming

\rho(t)\leq\rho_{0} for 0\leq t\leq t_{0} , and \mathcal{E}^{N}\leq \mathcal{E}_{o} ,

the following inequality holds

\frac{d}{dt}\mathcal{E}^{N}\leq\rho’+C\rho+\Phi(\mathcal{E}^{N})

+ \sum_{j=k+1}^{N}\frac{\rho^{J^{-k-1}}}{(j-1)!^{s}}j^{ks-\sigma}\{\frac{j-k}{j}\rho’+C\rho\}\sqrt{E_{j}} (3.29)

where the constant C and the analytic function \Phi(\mathcal{E}) do not depend on
t\in(0, t_{0}) , and N\in N .

Remark 3.1 The result of Lemma 3.2 holds even in the case that the non-
lines term f depends on u and u_{t} too, namely: f=f(t, x, u, u_{t}, u_{x}) . The
proof follows the same lines as above. Here, we just sketch the idea when f
depends explicitly on u , u_{x} .

As usual, we have to estimate:

\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}\sum_{|\alpha|=j-1}||\partial^{\alpha}f(t, x, u, u_{x})||_{L^{2}(B_{t})} , (3.30)

where f(t, x, u, p) satisfies

|\partial_{tx}^{\alpha}\partial_{u^{1}}^{\nu}\partial_{p^{2}}^{\nu}f(t, x, u,p)|\leq C_{0}M_{0}^{|\alpha|}P_{0}^{\nu_{1}+\nu_{2}}|\alpha|!^{s}\nu_{1}!^{s’}\nu_{2}!^{s’} (3.31)

and \partial^{\alpha}f(t, x, u, u_{x}) is given by (C.ll) (see Appendix C).
As above, introducing the expression (C.ll) into (3.30) we shall divide

the terms in several groups. More precisely, we consider following cases:

\{

(1) \mu_{1}=0

(2) |\mu_{1}|>0 \mu_{2}=0

(3) |\mu_{1}| , |\mu_{2}|>0 .

(3.32)

The term (1) can be dealt exactly as in Lemma 3.2 getting a conclusion
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similar to (3.29). The term (2) corresponds, in some sense, to the semi-
linear case of Eq.(l.l). Hence, we can estimate the group of terms in (2)
following the the same lines as in Prop. 4.1 of [Ma2].

Finally, let us come to the terms in (3). For any \alpha\in N^{2} , we have to
consider the sum

Y^{\alpha}=| \mu_{1}|,|\mu_{2}|>0\sum_{\mu_{1}+\mu_{2}\leq\alpha}\frac{\alpha!}{\mu_{1}!\mu_{2}!(\alpha-\mu_{1}-\mu_{2})!}

\sum_{1\leq\nu_{1}\leq|\mu_{1}|}\sum_{1\leq\nu_{2}\leq|\mu_{2}|}\frac{\partial_{u^{1}}^{\nu}\partial_{p^{2}}^{\nu}\partial_{tx}^{\alpha-\mu_{1}-\mu 2}f(t,x,u,p)}{\nu_{1}!\nu_{2}!}

\beta_{1}++\beta_{\nu_{1}}=\mu_{1}\sum_{0<|\beta_{i}|}\frac{\mu_{1}!}{\beta_{1}!\cdot\cdot\beta_{\nu_{1}}!}\partial^{\beta_{1}}u

. . \partial^{\beta_{\nu_{1}}}u

\eta_{1}++\sum_{0<|\eta_{i}|}\eta_{\nu_{2}}=\mu_{2}\frac{\mu_{2}!}{\eta_{1}!\cdots\eta_{\nu_{2}}!}\partial^{\eta_{1}}p\cdots\partial^{\eta_{\nu_{2}}}p

, (3.33)

with p=u_{x} . Putting,

\mu=\mu_{1}+\mu_{2} , \nu=\nu_{1}+\nu_{2}

we observe that,

| \mu_{1}|,|\mu_{2}|>0\sum_{\mu_{1}+\mu_{2}\leq\alpha}\sum_{1\leq\nu_{1}\leq|\mu_{1}|}\sum_{1\leq\nu_{2}\leq|\mu_{2}|}=\sum_{\mu\leq\alpha}\sum_{2\leq\nu\leq|\mu|}

( \sum_{\mu_{1}+\mu_{2}=\mu}
1 \leq\nu_{i}\leq|\mu_{i’}|\sum_{\nu_{1}+\nu_{2}=\nu}

),

besides, we have the elementary inequality

\sum_{\mu_{1}+\mu_{2}=\mu} \sum_{\nu_{1}+\nu_{2}=\nu}(\sum_{0<|\beta_{i}|}\beta_{1}+\cdot+\beta_{\nu_{1}}=\mu_{1}\frac{|\partial^{\beta_{1}}u||\partial^{\beta_{\nu_{2}}}u|}{|\beta_{1}|!\cdot|\beta_{\nu_{1}}|!})

( \sum_{0<|\eta_{i}|} \eta_{1}++\eta_{\nu_{2}}=\mu_{2},

\frac{|\partial^{\eta_{1}}p|\cdot|\partial^{\eta_{\nu_{2}}}p|}{|\eta_{1}|!|\eta_{\nu_{2}}|!})

\leq lJ

\beta_{1}++\beta_{\nu}=\mu\sum_{|\beta_{i}|>0}

(3.34)\frac{(|\partial^{\beta_{1}}u|+|\partial^{\beta_{1}}p|)\cdots(|\partial^{\beta_{\nu}}u|+|\partial^{\beta_{\nu}}p|)}{|\beta_{1}|!\cdot|\beta_{\nu}|!} .
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Hence, using (3.31) we obtain

|Y^{\alpha}|=C_{0}| \alpha|!\sum_{\mu\leq\alpha}\sum_{2\leq\nu\leq|\mu|}M_{0}^{|\alpha-\mu|}P_{0}^{\nu}|\alpha-\mu|^{s-1}\nu!^{s’-1}\nu

\beta_{1}++\beta_{\mathcal{U}}=\mu\sum_{|\beta_{i}|>0}

\frac{(|\partial^{\beta_{1}}u|+|\partial^{\beta_{1}}p|)\cdots(|\partial^{\beta_{\nu}}u|+|\partial^{\beta_{\nu}}p|)}{|\beta_{1}|!|\beta_{\nu}|!} .

and now it is clear that the sum

\sum_{j=k+1}^{N}\frac{\rho(t)^{j-k}}{j!^{s}}j^{ks}\sum_{|\alpha|=j-1}||Y^{\alpha}||_{L^{2}(B_{t})} (3.35)

can be estimated as in Lemma 3.1 because in (3.35) we still have the con-
dition \nu\geq 2 .

4. Proof of Theorem 1.1 (Analytic regularity)

For sake of simplicity, we will prove in detail Theorem 1.1 in the par-
ticular case the nonlinear term in Eq.(l.l), f=f(t, x, u, u_{x}, u_{t}) , doesn’t
depend explicitly on u , u_{t} . To handle the general case, it is only necessary
to show that the estimate (3.29), given in Lemma 3.2, keeps holding when f
depends also on u(x, t) and u_{t}(t, x) . See Remark 3.3. Thus, we will consider
here the quasi-linear equation

L(u)\equiv u_{tt}-(a(t, x)u_{x})_{x}+b(t, x)u_{t}+c(t, x)u=f(t, x, u_{x}) (4.1)

where a , b , c\in A([0, T)\cross R_{x});f(t, x,p)\in A([0, T)\cross R_{x}\cross R_{\varphi});a(t, x) and
f(t, x,p) satisfy the inequalities

\{

0\leq a(t, x)\leq\lambda \forall(t, x)\in[0, T)\cross R_{x} , (a)
|\partial_{p}f(t, x,p)|\leq L(K)\sqrt{a(t,x)} \forall(t, x,p)\in K (b)

(1.2)’

\forall K\subset\subset[0, T)\cross R_{x}\cross R_{p} .
Assuming u\in C^{\infty}([0, T)\cross R_{x}) to be a smooth solution to Eq.(4.1)

with initial data, u(0, x) and u_{t}(0, x) , analytic on some closed interval

D_{0}=\{x\in R_{x} : |x-\overline{x}|\leq\delta\} (\delta>0,\overline{x}\in R_{x}) , (4.2)

we shall prove that u(t, x) is uniformly analytic in the domain D(h) ,

D(h)^{d}=^{ef}\{(t, x)\in R_{t}\cross R_{x} : 0\leq t\leq h , |x-\overline{x}|\leq\delta-t\sqrt{\lambda}\} , (4.3)
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for every 0<h< \min(T, \delta/\sqrt{\lambda}) .

Remark. It will be essential for our method to show that Eq.(4.1) has
the uniqueness property (in the C^{\infty} -class) with respect to the initial value
problem. This is an easy consequence of the following result.

Theorem 4.1 Assume that a(t, x) is real analytic on [0, T) \cross R_{x} and the
following conditions hold

\{

0\leq a(t, x)\leq\lambda \forall(t, x)\in[0, T)\cross R_{x}

(4.4)
|b_{1}(t, x)|\leq M(K)\sqrt{a(t,x)}(t, x)\in K\forall K\subset\subset[0, T)\cross R_{x} .

Then the linear Cauchy problem
t

u_{tt}-(a(t, x)u_{x})_{x}+b_{1}(t, x)u_{x}+b_{2}(t, x)u_{t}+c(t, x)u=g(t, x) ,
u(0, x)=u_{0}(x) u_{t}(0, x)=u_{1}(x) ,

(with b_{1} , b_{2} , c , f, \in C^{\infty} ) is globally well posed in C^{\infty} . Moreover, the fifinite
speed of propagation property holds, with speed \leq\sqrt{\lambda} .

Proof. See [D2]. \square

In fact, if the nonlinear Levi condition (1.2)’ (b) holds, it is enough
to apply Th.4.1 to the linearized equation, to obtain that Eq.(4.1) has the
uniqueness property.

Now, thanks to the well known Cauchy-Kovalewsky theorem and the
uniqueness property, we deduce that u(t, x) is analytic on D(\epsilon) for some
\epsilon>0 and then it is possible to define:

\tau=\sup\{s>0 : u(t, x)\in A(D(s))\} . (4.5)

Clearly, to prove that u(t, x)\in A(D(s))\forall s , 0 \leq s<\min(T, \delta/\sqrt{\lambda}) , it is suf-
ficient to show that, if \tau<\min(T, \delta/\sqrt{\lambda}) , then u(t, x) is uniformly analytic
on D(\tau) , that is

||\partial^{\alpha}u(t, x)||_{L^{2}(D(\tau))}\leq C\Lambda^{|\alpha|}|\alpha|! , \forall\alpha , \alpha=(\alpha_{t}, \alpha_{x}) (4.6)

for some constants C, \Lambda\geq 0 . In fact (4.6) implies that u(\tau, \cdot) , u_{t}(\tau, \cdot) are
analytic on D(\tau)\cap\{t=\tau\} ; thus, applying again the theorem of Cauchy-
Kovalewsky, we can solve (at least locally) the problem

L(v)=f(t, x, v_{x}) ,
v(\tau, x)=u(\tau, x) , v_{t}(\tau, x)=u_{t}(\tau, x) onD(\tau)\cap\{t=\tau\}
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in a neighborhood of D(\tau)\cap\{t=\tau\} . Then, thanks to the well-posedness
result of Th.4.1 (applied to the linearized of Eq.(4.1)), we deduce that u(t, x)

is analytic on D(\tau+\epsilon) for some \epsilon>0 , and this contradicts the definition
of \tau .

Proof of 4.6 Assume \tau<\min(T, \delta/\sqrt{\lambda}) . To prove the estimate (4.6), it is
sufficient to verify the following.

Given (\tau, x_{0})\in D(\tau)\cap\{t=\tau\} it is possible to fifind a neighborhood
U(\tau, x_{0}) of (\tau, x_{0}) such that

u(t, x)\in A(D(\tau)\cap U(\tau, x_{0})) . (4.7)

If a(\tau, xo)>0 , then Eq.(4.1) is strictly hyperbolic in a neighborhood of
(\tau, x_{0}) . Hence, from the results of [AM] it follows that u(t, x) is analytic in
a neighborhood of (\tau, x_{0}) in D(\tau) .

Finally, assume a(\tau, x_{0})=0 . Thanks to Lemma A.2, of Appendix A ,
we can find \beta\geq 1 (see (A.13)) and \delta sufficiently small, 0<\delta<\tau . such
that, defining the curves

\gamma_{1}(t)=x_{0}-\sqrt{\lambda}|t-\tau|^{\beta} .
\gamma_{2}(t)=x_{0}+\sqrt{\lambda}|t-\tau|^{\beta} (4.8)

and a dependence domain \Gamma_{\tau} as in (2.5), namely

\Gamma_{\tau}^{d}=^{ef}\{(t, x) : \gamma_{1}(t)\leq x\leq\gamma_{2}(t) , \tau-\delta\leq t\leq\tau\}\subset D(\tau) , (4.8)

one has \Gamma_{\tau}\subseteq D(\tau) , and the conditions (2.6), (2.7) are satisfied. Moreover,
since the interior of the domain \Gamma_{\tau} is a standard cusp, we know that Lemma
2.2 holds for some integer r_{0} . Hence, performing eventually the change of
variables (t, x) – (t-\tau+\delta, x) , we can apply Lemma 3.2 (in the case
s=s’=1) and assume, in the following,

\tau=\delta .

Since, from the definition (4.5) of \tau , u(t, x) is uniformly analytic on
D(s) for every s<\tau , and

\mathcal{E}^{N}(0)=\rho(0)+\sum_{j=k+1}^{N}\frac{\rho(0)^{j-k}}{j!}j^{k}\sqrt{E_{j}(0)} , (N\geq k+1) (4.10)
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there exists \rho_{1},0<\rho_{1}\leq\rho_{0} (see Lemma 3.2) such that

\mathcal{E}^{N}(0)\leq \mathcal{E}_{o} , \forall N\geq k+1 if 0\leq\rho(0)\leq\rho_{1} . (4.11)

Hence, choosing the decreasing function \rho(t)>0 as the solution of the
linear differential equation

\frac{\rho’}{k+1}+C\rho=0 , \rho(0)=\overline{\rho} (0<\overline{\rho}\leq\rho_{1}) (4.12)

where k , C are the constants appearing in (3.29), it follows that

\mathcal{E}^{N}(0)\leq \mathcal{E}_{o} , \frac{d}{dt}\mathcal{E}^{N}(0)\leq\Phi(\mathcal{E}^{N}(0)) \forall N\geq k+1 . (4.13)

moreover, assuming \mathcal{E}^{N}\leq \mathcal{E}_{o} and applying again (3.29), we have

\frac{d}{dt}\mathcal{E}^{N}\leq\rho’+C\rho+\Phi(\mathcal{E}^{N})+\sum_{j=k+1}^{N}\frac{\rho^{J}-k-1}{(j-1)!}j^{k}\{\frac{j-k}{j}\rho’+C\rho\}\sqrt{E_{j}}

\leq\Phi(\mathcal{E}^{N}) . (4.14)

Recalling that \Phi(\mathcal{E}) is analytic in a neighborhood of 0 and vanishes at
0, we can find \rho_{2} , a positive real number, such that the solution y(t) of the
ordinary differential equation

\frac{dy}{dt}=\Phi(y) , y(0)= \rho_{2}+\sum_{j=k+1}^{\infty}\frac{\rho_{2}^{j-k}}{j!}j^{k}\sqrt{E_{j}(0)} ,

exists for 0\leq t\leq\tau and satisfies

y(t)<\mathcal{E}_{0} .

Thus, making the final assumption that \rho(0)=\overline{\rho}\leq\min\{\rho_{1}, \rho_{2}\} and using
(4.13), (4.14), it follows that

\mathcal{E}^{N}(t)\leq \mathcal{E}_{o} , \forall t\in[0, \tau] \forall N\geq k+1 . (4.15)

Finally, from (4.15) and the definition of \mathcal{E}^{N}(t) we have, for 0\leq t<\tau

and \forall\alpha ,

||\partial^{\alpha}u(t, \cdot)||_{L^{2}(B_{t})}+||\partial^{\alpha}u(t, x)||_{L^{2}(\Gamma(t,x_{0}))}\leq C\Lambda^{|\alpha|}|\alpha|! (4.16)

for some constants C, \Lambda\geq 0 . Now, applying the embedding inequality of
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Lemma 2.2 and taking into account that

u\in A(D(t)) for t<\tau

we deduce that u(t, x) is uniformly analytic (that is |\partial^{\alpha}u(t, \cdot)|\leq C\Lambda^{|\alpha|}|\alpha|!

uniformly) in a neighborhood of (\tau, x_{0}) in D(\tau) , thanks to the unique con-
tinuation principle for analytic functions. \square

Remark 4.2 Using the estimates proved in Lemma 3.2 (in the case 1\leq

s<2) we can extend the results of [RY1]. Actually, we are able to prove
the Gevrey regularity of a given C^{\infty} solution u(t, x) under some additional
conditions:
(I) assumption (A) of [D2] holds; namely, denoting by G_{R} the rectangle

[0, T] \cross[-R, R] , for any R>0 we can find k functions 0\equiv\phi_{0}(x)\leq

\phi_{1}(x)\leq \leq\phi_{k-1}(x)\equiv T , \phi_{i}(x)\in \mathcal{G}^{(s)}(R_{x}); ( k depending on R)
such that, defining

G_{R}^{j}=\{(t, x) : \phi_{j-1}(x)<t\leq\phi_{j}(x)\} , j=1 , \ldots , k

the following holds:
(1) a(\phi_{j}(x), x)\phi_{j}’(x)^{2}<1 on [-R, R] ;
(2) in each region G_{R}^{j} , one of the following inequalities holds, for

some constant C (depending on j ):

a_{t}\geq-Ca or a_{t}\leq Ca ;

(II) (cusp condition) fixed any (t_{0}, xo)\in(0, T)\cross R_{x} there exist positive
real numbers \lambda , \delta , \beta and C\geq 0 , such that, defining

\gamma(t)=\lambda|t-t_{0}|^{\beta}

we have

a_{t}(t, x)\leq Ca(t, x) for |x-x_{0}|\leq\gamma(t) , (t_{0}-\delta)\leq t\leq t_{0} ,

a(t, x)|_{x=\pm\gamma(t)}\leq\gamma’(t)^{2} for (t_{0}-\delta)\leq t<t_{0} , (4.17)

and \lambda , \delta , \beta and C can be chosen constant on every compact set X , such
that, for some j\geq 1 ,

K\subset G_{R}^{j} .

Taking into account the well posedness in the Gevrey class \mathcal{G}^{(s)}(R_{x})



430 R. Manfrin and F. Tonin

(s<2) of Cauchy problem for the quasi-linear equation (1.1) (see [DM]) if
the condition (4.18) below holds, we can now state the following:

Theorem 4.3 Assume (1.2) holds and a(t, x) is a Gevrey function of or-
der 1 <s<2 . Moreover, let the nonlinear term f(t, x, u, p, q) satisfy
the following estimate: \forall\rho\geq 0\forall K\subset\subset[0, T)\cross R_{x} we can fifind constants
P_{\rho} , M_{K} , C\geq 0 such that, whenever |u| , |p| , |q|\leq\rho , (t, x)\in K ,

|\partial_{tx}^{\alpha}\partial_{upq}^{\beta}f(t, x, u, p, q)|\leq CM_{K}^{|\alpha|}P_{\rho}^{|\beta|}|\alpha|!^{s}|\beta|!^{s’} , \forall\alpha
\forall\beta (4.18)

with 1\leq s’<s;\alpha\in N^{2} , \beta\in N^{3} . Finally, assume that conditions (I) and
(II) hold.

Then, every real solution u(t, x)\in C^{\infty}([0, T)\cross R_{x}) to Eq.(l.l) with
initial data

u(0, x) , u_{t}(0, x)\in \mathcal{G}^{(s)}(R_{x})

belongs to \mathcal{G}^{(s)}([0, T)\cross R_{x}) .

Remark 4.4 Condition (4.18) is sufficient to prove local existence and uni-
queness of solutions in the Gevrey classes to the nonlinear Cauchy problem:

u_{tt}-(a(t, x)u_{x})_{x}=f(t, x, u, u_{t}, u_{x}) ,
u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) .

Clearly, in the analytic case, s=s’=1 , we have only to apply the Cauchy-
Kovalewsky theorem. See [DM] Th.1; see also [K] where the question is
investigated in a more general situation.

To obtain the well posedness in C^{\infty} for the linearized equation, it is
enough to require that the coefficient a(t, x) satisfies assumption (A). See
[D2], Th.1. This condition is automatically verified if a(t, x) is a non-
negative real analytic function.

As it is well known, Levi conditions are not necessary for the well posed-
ness in the C^{\infty} class. Necessary and sufficient conditions can be found in
[N2].
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Appendix

A. Cusp Condition

In this section we shall verify the cusp condition for non-negative real
analytic functions in two variables. The proof (see Lemma A.2 below) is
based on the Weierstrass preparation theorem and expansion in Puiseux
series. Then, following [A], we state an embedding theorem for domain
with cusps.

We start with a special case.

Lemma A.l Let \mathcal{P}(t, x) be the polynomial in |t|^{p} , |t|^{q} and x given by

\mathcal{P}(t, x)=(x-(a|t|^{p}+ib|t|^{q})) (x-(a|t|^{p}-ib|t|^{q})) (A. 1)

where a , b , p , q\in R and p , q>0 . Then, fifixing \lambda>0 , we can fifind \delta , \beta>0
such that, defifining \gamma(t)=\lambda|t|^{\beta} . we have

\frac{\partial}{\partial t}\mathcal{P}(t, x)\leq 0 for -\delta\leq t<0 , |x|\leq\gamma(t) (A.2)

and

\mathcal{P}(t, \gamma(t)) , \mathcal{P}(t, -\gamma(t))\leq C(t)\gamma’(t)^{2} , for -\delta\leq t<0 (A.2)’

where C(t)\geq 0 , C(t) is a decreasing function such that C(t)arrow 0 as tarrow 0 .
Moreover, it is sufficient to assume

2 min (p, q)-p<\beta and \beta<\min(p, q)+1 (A.3)

to obtain, for \delta>0 sufficiently small, (A.2) and (A.2’) respectively.

Proof To begin with, we consider the case q\geq p or b=0. Since

\mathcal{P}_{t}(t, x)=2pax|t|^{p-1}-2pa^{2}|t|^{2p-1}-2qb^{2}|t|^{2q-1} for t<0 , (A.4)

to obtain (A.2) (for \delta>0 sufficiently small), it is enough to assume that
\beta>p . To verify the other inequality, substituting the expression of \gamma(t)

into (A.2)’ , we have

\lambda^{2}|t|^{2\beta}\pm 2a\lambda|t|^{\beta+p}+a^{2}|t|^{2p}+b^{2}|t|^{2q}\leq\lambda^{2}\beta^{2}|t|^{2\beta-2} (A.5)

hence, it is sufficient to require that \beta<p+1 to obtain the inequality (A.2)’

with a decreasing C(t) such that C(t) –0 as tarrow 0 . Thus, for q\geq p we
have the condition
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p<\beta<p+1 . (A.6)

Consider now the case q<p and b\neq 0 . From (A.4) we deduce the condition
\beta>2q-p , while from (A.5) we have \beta<q+1 . Thus, in the second case
we find

2q-p<\beta<q+1 . (A.7)

Clearly, from (A.6) and (A.7) we obtain (A.3). \square

Lemma A.2 Let A(t, x) be a real analytic function in a neighborhood of
the origin in R_{t}\cross R_{x} and assume that

A(t, x)\geq 0 , A(0,0)=0.

Then fifixed \lambda>0 , there are constants \delta , \beta>0 and C\geq 0 , such that, defifining
\gamma(t)=\lambda|t|^{\beta}j we have

\frac{\partial}{\partial t}A(t, x)\leq CA(t, x) for -\delta\leq t\leq 0 , |x|\leq\gamma(t) (A.8)

and

A(t, x)|_{x=\pm\gamma(t)}\leq\gamma’(t)^{2} for -\delta\leq t<0 . (A.8)

Proof Suppose that A(t, x) does not vanish identically, then by the Weier-
strass’ preparation theorem and the non-negativity of A(t, x) , the set

\{(t, x)\in R\cross C : A(t, x)=0\}

can be described in a neighborhood U of the origin in R\cross C as a union of
a finite number of curves, x_{1}(t),\overline{x}_{1}(t) , \ldots , x_{m}(t),\overline{x}_{m}(t) , m\geq 0 , and possibly
the lines \{t=0\} , \{x=0\} . Thus, we decompose A(t, x) as follows

A(t, x)=t^{2k}x^{2l} \Phi(t, x)\prod_{j=1}^{m}(x-x_{j}(t)) (x-\overline{x}_{j}(t)) (A.6)

with k , l , m\in N , where \Phi(0,0)>0 , \Phi(t, x) is real analytic in U and (if
m>0 and 1\leq j\leq m ) x_{j}(t) does not vanish identically. Moreover, each
x_{j}(t) is expressed by the Puiseux series of the real variable t<0 or t >0 ,

x_{j}(t)= \sum_{\nu=1}^{\infty}C_{\nu,j}^{\pm}(\pm t)^{\nu/r(j)} , (A. 11)
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with C_{\nu,j}^{\pm}\in C and r(j)\in N\backslash \{0\} . It is not difficult to see that Lemma A.2
holds for m=0. Thus, in the following, we will consider the case m\geq 1 .
Assuming m\geq 1 we observe that, for t<0 and 1\leq j\leq m , it is possible to
find a_{j} , b_{j}\in R , |a_{j}|+|b_{j}|>0 , and two real Puiseux series R_{j}(t) , I_{j}(t) such
that

x_{j}(t)=a_{j}|t|^{p_{j}}+ib_{j}|t|^{q_{j}}+|t|^{p_{j}+\epsilon_{j}}R_{j}(t)+i|t|^{q_{j}+\epsilon_{j}}I_{j}(t) (A. 12)

where R_{j}(t)\equiv 0 if a_{j}=0;I_{j}(t)\equiv 0 if b_{j}=0 ; p_{j} , q_{j} , \epsilon_{j}>0 . Now, we take
\beta>0 such that

l\leq j\leq mmax
\{2 min (p_{j}, q_{j})-p_{j}\}<\beta<1\leq j\leq mmax\{ min (p_{j}, q_{j})\}+1 (A. 13)

hence, from the results of Lemma A.I and the representation (A.13), by
standard arguments it is easy to conclude that, for 1\leq j\leq m and \delta>0

sufficiently small,

\frac{\partial}{\partial t}(x-x_{j}(t)) (x-\overline{x}_{j}(t))\leq 0 for -\delta\leq t<0 , |x|\leq\gamma(t) (A.14)

where \gamma(t)=\lambda|t|^{\beta} . Thus, from (A.10) and (A.14) we obtain (A.8) for a
suitable constant C . To verify (A.9), we observe that

2 min (p_{jo}, q_{jo})-p_{jo}< \beta<\min(p_{jo}, q_{jo})+1

for some j_{0},1\leq jo\leq m . Hence, from (A.2’) of Lemma A.1, we have

(x-x_{jo}(t)) (x-\overline{x}_{jo}(t))\leq C(\delta)\gamma’(t)^{2}

(A.15)
for -\delta<t<0 , x=\pm\gamma(t)

where C(\delta)\geq 0 , and C(\delta) -arrow 0 as \delta –0. Now, (A.9) follows from the
expression (A.1O) of A(t, x) and the inequality (A.15) if \delta>0 is sufficiently
small. \square

To conclude this section, we recall the following embedding theorem for
a domain with cusps.

If 1\leq k\leq n-1 and \beta>1 , let Q_{k,\beta} denote the standard cusp in R^{n} ,
given by the inequalities

x_{1}^{2}+\cdot\cdot+x_{k}^{2}<x_{k+1}^{2\beta} , x_{k+1}>0 , \ldots , x_{n}>0 ,
(A.12)

(x_{1}^{2}+\cdot\cdot+x_{k}^{2})^{1/\beta}+x_{k+1}^{2}+\cdot\cdot+x_{n}^{2}<\rho ( \rho>0 fifixed)
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Theorem 1.3 Let \Omega be a domain in R^{n} having the following property:
there exists a family D of open subsets of \Omega such that
(i) \Omega=\bigcup_{G\in D}G ;
(ii) D has the fifinite intersection property;
(iii) at most a fifinite number of elements G\in D have the cone property;
(iv) there exist positive constants lJ >mp-- n and A such that for any

G\in D not having the cone property there exists a one to one function
\psi mapping G onto a standard cusp Q_{k,\beta} , where (\beta-1)k\leq\nu and such
that for all i , j , (1 \leq i, j\leq n) , all x\in G , and all y\in Q_{k,\beta}

| \frac{\partial\psi_{j}}{\partial x_{i}}|\leq A and | \frac{\partial(\psi^{-1})_{j}}{\partial y_{i}}|\leq A (A.17)

Then

W^{m,p}(\Omega) – L^{q}(\Omega) , p \leq q\leq\frac{(\nu+n)p}{\nu+n-mp} . (A.18)

If \nu=mp-n , (A.18) holds for p\leq q<\infty and q=\infty if p=1 . If
\nu<mp-n , (A. 18) holds for p\leq q\leq\infty . Moreover, if lJ <(m-j)p-n
where 0\leq j\leq m-1 , then

W^{m,p}(\Omega)arrow C_{B}^{j}(\Omega) .

Proof. See [A], Th.5.35, Th.5.36 \square

Remark. It is always possible to choose \beta>1 in the statement of Lemma
A.2. This follows from 13). Let us consider now the cusp \Gamma of R_{t}\cross R_{x}

given by (\beta>1 and \lambda , \delta>0 )

\Gamma=\{(t, x) : |x|<\lambda|t|^{\beta} . for -\delta\leq t<0\} (A.19)

and let us define B_{\tau}=\Gamma\cap\{t=\tau\} , \Gamma_{\tau}=\Gamma\cap\{-\delta\leq t\leq\tau\} for -\delta\leq\tau\leq 0 .
Using the Sobolev embedding theorem for -\delta\leq t\leq-\delta/2 and the result of
TheoremA.l for -\delta/2\leq t<0 , it is easy to see that there exist p_{0}\in N and
C\geq 0 (which depends only on \beta , \lambda , \delta ) such that

||u(t, \cdot)||_{L(B_{t})}\infty\leq C(||u(t, x)||_{W^{p_{0},2}(\Gamma_{t})}+||u(t, \cdot)||_{W^{p_{0},2}(B_{t})})

for -\delta\leq t<0 .
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B. Estimates of Partial Differential Operators

We quote here the fundamental L^{2} -estimates for partial differential op-
erators with coefficients in Gevrey class \mathcal{G}^{s} (with s\geq 1 ) referring to [AS]
and [D1] for more details and the proofs.

Lemma B.I Let us consider a real symmetric n\cross n matrix \{a_{hk}\} such
that the quadratic form R^{n}\ni\xi\mapsto\sum a_{hk}\xi_{h}\xi_{k} is positive semidefifinite. More-
over, suppose that a_{hk}\in \mathcal{G}^{(s)}(R^{n})(h, k=1, \ldots, n) ,

|\partial^{\alpha}a_{hk}(x)|\leq C_{o}\Lambda_{o}^{|\alpha|}(|\alpha|!)^{s} on R^{n} , \alpha\in N^{n}

(where \partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} . . \partial_{x_{n}}^{\alpha_{n}} ) for some C_{o} , \Lambda_{O} independent of \alpha and denote by
A the operator

A(v)=- \sum_{h,k=1}^{n}\partial_{x_{h}}(a_{hk}(x)\partial_{x_{k}}v) (B. 1)

Let \Omega be a l -dimensional domain contained in a l -dimensional plane in R^{n} ,
1\leq l\leq n ; then, for any \Lambda>\Lambda_{0} there exists a constant C=C(n, C_{o}, \Lambda_{o}, \Lambda)

such that for every v\in H^{\infty}(R^{n})

\sum_{|\alpha|=j}||[A, \partial^{\alpha}]v||_{L^{2}(\Omega)}\leq Cj\sum_{|\alpha|=j}(\int_{\Omega}a(\partial^{\alpha}v, \partial^{\alpha}v)dx’)^{1/2}

+C(j+2)!^{s} \sum_{h=0}^{j}\frac{\Lambda^{j+2-h}}{h!^{s}(h+1)^{2\sigma}}||\partial^{h}v||_{L^{2}(\Omega)} (B.2)

where \sigma=s-1 and a(v, v) is the quadratic form defifined by

a(v, v)= \sum_{h,k=1}^{n}a_{h,k}v_{x_{h}}v_{x_{k}} and

|| \partial^{h}v||_{L^{2}(\Omega)}=\sum_{|\beta|=h}||\partial^{\beta}v||_{L^{2}(\Omega)}
(h\in N) .

Remark. The second summation in the right hand side of (B.2) estimates
the L^{2}

– norm of the terms of order \leq j in [A, \partial^{\alpha}]u while the first one
estimates the L^{2} –norm of the terms of order j+1 (see [D1]), to this end
it is sufficient to apply the following inequality due to O. Oleinik (see [O2]):

Let \{a_{hk}\} be a hermitian non-negative matrix of functions in
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W^{2,\infty}(R^{n}) . Then for every n\cross n real symmetric matrix \{\xi_{hk}\} , for j=
1 , \ldots , n

( \sum_{h,k=1}^{n}\partial_{x_{j}}a_{hk}(x)\xi_{hk})^{2}\leq C_{1}(n)C_{2}(a_{hk})\sum_{h,k,q}a_{hk}(x)\xi_{hq}\xi_{kq} (B.3)

where C_{2} is the W^{2,\infty} norm of the a_{hk} .

Proof of Lemma B.I (see [D1]). Fixed \alpha , and denoting by e_{1} , \ldots e_{n} the
canonical base of R^{n} , we write

[A, \partial^{\alpha}]v=I_{\alpha}+II_{\alpha}+III_{\alpha}

where

I_{\alpha}= \sum_{h,k}\sum_{\beta<\alpha}

(\begin{array}{l}\alpha\beta\end{array})
\partial^{\alpha+e_{h}-\beta}a_{hk}\partial^{\beta+e_{k}}v

II_{\alpha}= \sum_{h,k}|\beta|\leq|\alpha|-2\sum_{\beta<\alpha}

(\begin{array}{l}\alpha\beta\end{array})
\partial^{\alpha-\beta}a_{hk}\partial^{\beta+e_{h}+e_{k}}v

III_{\alpha}= \sum_{h,k}|\beta|=|\alpha|-1\sum_{\beta<\alpha}

(\begin{array}{l}\alpha\beta\end{array})
\partial^{\alpha-\beta}a_{hk}\partial^{\beta+e_{h}+e_{k}}v .

Using the upper bounds on the coefficients a_{hk} and noting that

|\alpha+e_{h}-\beta|=j+1-|\beta| , (\begin{array}{l}\alpha\beta\end{array})\leq(\begin{array}{l}|\alpha||\beta|\end{array})

we have

\sum_{|\alpha|=j}||I_{\alpha}||_{L^{2}(\Omega)}\leq nC_{o}\sum_{|\alpha|=j}\sum_{k}

\sum_{\beta<\alpha}

(\begin{array}{l}j|\beta|\end{array}) (j+1-|\beta|)!^{s}\Lambda_{o}^{j+1-|\beta|}||\partial^{\beta+e_{k}}v||_{L^{2}(\Omega)} .

Now, applying the elementary inequality, for x_{\beta}\geq 0 , K>1 ,

\sum ( \sum x_{\beta}) \leq C(K, n)\sum_{r=0}^{l}K^{j-r}(\sum_{|\beta|=r}x_{\beta})

|\alpha|=j \beta\leq\alpha,|\beta|\leq l
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with l=j-1 , K=\Lambda/\Lambda_{o}>1 and

x_{\beta}= \sum_{k}
(\begin{array}{l}j|\beta|\end{array}) (j+1-|\beta|)!^{s}\Lambda_{o}^{j+1-|\beta|}||\partial^{\beta+e_{k}}v||_{L^{2}(\Omega)}

we obtain

\sum_{|\alpha|=j}||I_{\alpha}||_{L^{2}(\Omega)}\leq C\sum_{\nu=1}^{j} (\begin{array}{l}j\nu-1\end{array}) (j+2-\nu)!^{s}\Lambda^{j+2-\nu}

( \sum||\partial^{\beta}v||_{L^{2}(\Omega)}) .
|\beta|=\nu

The terms II_{\alpha} yield an analogous inequality, with (\begin{array}{l}j\nu-2\end{array}) instead of (\begin{array}{l}j\nu-1\end{array}) .
Summing up and observing that

(\begin{array}{l}j\nu-1\end{array}) + (\begin{array}{ll} jU -2\end{array})=(\begin{array}{ll}j +1\nu-1 \end{array}) \leq C\frac{(j+2)!^{s}}{\nu!^{s}(\nu+1)^{2\sigma}}

we get the estimate of the terms I_{\alpha} and II_{\alpha} . Finally, to estimate the terms
Ilia, we apply inequality (B.3). With this estimate, it is not difficult to see
that, taking \xi_{hk}=\partial^{\beta+e_{h}+e_{k}}u ,

\sum_{|\alpha|=j}||III_{\alpha}||_{L^{2}(\Omega)}\leq Cj\sum_{|\alpha|=j}(\int_{\Omega}a(\partial^{\alpha}v, \partial^{\alpha}v)dx’)^{1/2}

\square

Lemma B.2 With the same notations as in Lemma B. I , let

Q= \sum_{|\gamma|\leq m}a_{\gamma}(x)\partial^{\gamma}

(B.4)

be a partial differential operator on R^{n} such that

|\partial^{\alpha}a_{\gamma}|\leq C_{o}\Lambda_{o}^{|\alpha|}(|\alpha|!)^{s} |\gamma|\leq m . (B.5)

Then, for any \Lambda>\Lambda_{o} , there exists a constant C=C(n, C_{o}, \Lambda_{o}, \Lambda) such that

for every v\in H^{\infty}(R^{n})

\sum_{|\alpha|=j}||\partial^{\alpha}Qv||_{L^{2}(\Omega)}\leq C(j+m)!^{s}\sum_{h=0}^{j+m}\frac{\Lambda^{j+m-h}}{h!^{s}}||\partial^{h}v||_{L^{2}(\Omega)} . (B.4)

Remark. In Lemma B.I and B.2 we give the L^{2}-estimates on an arbitrary
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l-dimensional domain \Omega in R^{n} . This is an easy generalization of the re-
sults proved in [AS],[DI] due to the fact that the estimates are completely
independent of the domain.

Finally, following the same line of the estimates of the terms of order
\leq j of [A, \partial^{\alpha}]v in Lemma B. I , we give an estimate for the commutator
[Q, \partial^{\alpha}]v when Q is a first order differential operator.

Lemma B.3 Consider the fifirst order differential operator Q= \sum_{i}b_{i}\partial_{x_{i}}

and assume that:

|\partial^{\alpha}b_{i}(x)|\leq C_{o}\Lambda_{o}^{|\alpha|}|\alpha|!^{s} 1\leq i\leq n .

Then for arbitrary \Lambda>\Lambda_{o} there exists a constant C=C(n, C_{o}, \Lambda_{o}, \Lambda) such
that

\sum_{|\alpha|=j}||[\partial^{\alpha}, Q]v||_{L^{2}(\Omega)}\leq Cj!^{s}\sum_{h=1}^{j}\frac{\Lambda^{j+1-h}}{(h-1)!^{s}h^{\sigma}}||\partial^{h}v||_{L^{2}(\Omega)} . (B.7)

C. Estimates of the nonlinear term

Throughout this section we shall prove some technical estimates of the
L^{2} norm of the nonlinear term. More precisely, we shall first consider a
nonlinear term of the form f(x,p(x)) where f : R^{n}\cross Rarrow R and p : R^{n}arrow

R are smooth functions.
Recalling Leibniz’ formula, for \alpha\in N^{n} , |\alpha|>0 , we have,

\partial^{\alpha}f(x,p(x))=I_{\alpha}+II_{\alpha}+III_{\alpha}+IV_{\alpha} .

where

I_{\alpha}=\partial_{x}^{\alpha}f(x, p) , II_{\alpha}=\partial_{p}f(x, p)\partial^{\alpha}p ,

III_{\alpha}= \sum_{0<\mu<\alpha}

(\begin{array}{l}\alpha\mu\end{array}) \partial_{x}^{\alpha-\mu}\partial_{p}f(x,p)\partial^{\mu}p , (C.1)

IV_{\alpha}= \sum_{\mu\leq\alpha}2\leq\nu\leq|\mu|

(\begin{array}{l}\alpha\mu\end{array})\frac{\partial_{x}^{\alpha-\mu}\partial_{p}^{\nu}f(x,p)}{\nu!}\sum_{0<|\beta_{i}|}\beta_{1}++\beta_{U}=\mu\frac{\mu!}{\beta_{1}!\cdot\cdot\beta_{\nu}!}\partial^{\beta_{1}}p\cdots\partial^{\beta_{\nu}}p .

Assuming f(x, p) be a Gevrey function of its arguments, we can prove the
following.
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Lemma C.l Let f : R^{n}\cross Rarrow R and p:R^{n}arrow R be smooth functions.
Let f satisfy the following condition (with 1\leq s’\leq s):

|\partial_{x}\partial_{p}^{\nu}f(x,p)|\leq C_{o}M_{o}^{|\alpha|}P_{o}^{\nu}|\alpha|!^{s}\nu!^{s’} \forall\alpha\in N^{n} , \forall\iota/\in N (C.2)

for some constants C_{o} , M_{o} , P_{O} independent of \alpha . Then, for arbitrary M>
M_{o} , P>P_{o} there exists a constant C=C(n, C_{o}, M_{o}, P_{o}, M, P) such that
the following estimate holds

\sum_{|\alpha|=j}||III_{\alpha}||_{L^{2}}\leq Cj!^{s}\sum_{h=1}^{j-1}\frac{M^{j-h}}{h!^{s}(h+1)^{\sigma}}||\partial^{h}p||_{L^{2}} ,

\sum_{|\alpha|=j}||IV_{\alpha}||_{L^{2}}\leq Cj!\sum_{2\leq\nu\leq h\leq j}\frac{M^{j-h}P^{\nu}}{(j-h)!^{1-s}\nu!^{1-s}}, (C.2)

0<h_{1} \leq h_{i}\leq h_{U}\sum_{h_{1}++h_{U}=h}\frac{||\partial^{h_{1}}p||_{L\infty}||\partial^{h_{\nu-1}}p||_{L\infty}}{h_{1}!\cdots h_{\nu-1}!}

\frac{1}{h_{\nu}!}||\partial^{h_{\nu}}p||_{L^{2}}

and, if f(x, 0)=0 ,

\sum||I_{\alpha}||_{L^{2}}\leq CM^{j}j!^{s}||p||_{L^{2}} \forall j\geq 1 (C.4)
|\alpha|=j

where we have adopted the simplifified notation

|| \partial^{h}w||_{L^{2}}\equiv\sum_{|\alpha|=h}||\partial^{\alpha}w||_{L^{2}} for h\in N .

Proof. Since f(x, 0)=0 , applying (C.2) and the elementary inequality

\sum 1=(\begin{array}{ll}n+j -1-n1 \end{array}) \leq Cj^{n} (\eta\in N^{n}) , (C.5)
|\eta|=j

taking M>M_{o} we obtain

\sum||\partial_{x}f(x, p)||_{L^{2}}\leq CM^{j}P_{o}j!^{s}||p||_{L^{2}}

|\alpha|=j

for some constant C depending on M/M_{o} . Then, to estimate the L^{2} -norm
of the terms IV_{\alpha} , we recall the inequalities

(\begin{array}{l}\alpha\mu\end{array})\leq\frac{|\alpha|!}{|\alpha-\mu|!|\mu|!} and
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\frac{\mu!}{\beta_{1}!\cdot\beta_{\nu}!}\leq\frac{|\mu|!}{|\beta_{1}|!\cdots|\beta_{\nu}|!} if \mu=\beta_{1}+ . +\beta_{U} . (C.8)

Moreover, for every nonnegative symmetric function \xi defined on a sym-
metric set B \subseteq(N^{n})^{\nu} , with \nu\geq 2 ,

\sum_{(\beta_{1},\cdots,\beta_{\nu})\in B}\xi(\beta_{1}, \ldots, \beta_{\nu})\leq\nu(\nu-1) | \beta_{1}|\leq|\beta_{i}|\leq|\beta_{\nu}|\sum_{(\beta_{1},,\beta_{\nu})\in B}\xi(\beta_{1}, \ldots, \beta_{\nu})

.

Hence, we have

\sum_{|\alpha|=j}||IV_{\alpha}||_{L^{2}}\leq Cj
!

| \alpha|=j\sum_{2\leq}\sum_{\nu\leq|\mu|} \mu\leq\alpha’ M_{o}^{|\alpha-\mu|}P_{o}^{\nu}|\alpha-\mu|!^{s-1}\nu!^{s’-1}\nu(\nu-1)

0<| \beta_{1}|\leq|\beta_{i}|\leq|\beta_{U}|\sum_{\beta_{1}++\beta_{\mathcal{U}}=\mu}\frac{1}{|\beta_{1}|!\cdots|\beta_{\nu}|!}||\partial^{\beta_{1}}p||_{L(B_{t})}\infty

. ||\partial^{\beta_{\nu-1}}p||_{L(B_{t})}\infty

||\partial^{\beta_{\nu}}p||_{L^{q}(B_{t})} . (C.7)

Now, observing that

\sum\sum=\sum \sum and
|\alpha|=j\mu\leq\alpha |\mu|\leq j|\eta|=j-|\mu|

(C.8)
\sum_{|\mu|=h}

0<| \beta_{1}|\leq|\beta_{i}|\leq|\beta_{U}’|\sum_{\beta_{1}++\beta_{\mu}=\mu}=0<h_{1}\leq h_{i}\leq h_{U}\sum_{h_{1}++h_{\nu}=h}\sum_{|\beta_{1}|=h_{1}}

. 1

\sum_{|\beta_{\nu}|=h_{\nu}}

thanks to (C.5) and the first identity in (C.8), taking M>M_{o} , P>P_{o} , we
have

\sum_{|\alpha|=j}||IV_{\alpha}||_{L^{2}}\leq Cj
!

2\leq

| \mu|\leq j\sum_{\nu\leq|\mu|},

M^{j-|\mu|}P^{\nu}(j-|\mu|)!^{s-1}\nu!^{s’-1}

0<| \beta_{1}|\leq|\beta_{i}|\leq|\beta_{\mathcal{U}}|\sum_{\beta_{1}++\beta_{\nu}=\mu}\{*\}

; (C.9)

applying the second identity in (C.8) we easily obtain the second estimate
in (C.3).

Finally, we remark that the estimate of the terms III_{\alpha} follows easily
from Lemma B.3. \square

Remark. Let us now observe that, if \nu\geq 2 and h_{1}+ +h_{\nu}=h , with
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1\leq h_{i}\leq h_{\nu} , then:

\underline{h_{1}!}. .
h_{\nu-1}!(h_{\nu}+1)!_{\nu!}h!\leq 2

so that

\underline{(j-h)!h_{1}!}.
|j!h_{\nu-1}!(h_{\nu}+1)!_{\nu!}\leq 2

if h=h_{1}+\cdot\cdot+h_{\nu}\leq j , h_{i}\geq 1 , \nu\geq 2 . With this in mind, we can easily
derive that

\sum_{|\alpha|=j}||IV_{\alpha}||_{L^{2}}\leq Cj
!
^{s} \sum_{2\leq\nu\leq h\leq j}\frac{M^{j-h}P^{\nu}}{\nu!^{s-s}},0<h_{1}\leq h_{i}\leq h_{\nu}\sum_{h_{1}++h_{U}=h}

\frac{||\partial^{h_{1}}p||_{L\infty}\cdot\cdot||\partial^{h_{\nu-1}}p||_{L\infty}}{h_{1}!^{s}\cdot h_{\nu-1}!^{s}} \frac{||\partial^{h_{\nu}}p||_{L^{2}}}{h_{\nu}!^{s}h_{U}^{\sigma}} (C. 10)

where \sigma=s-1 .
Finally, we recall the Leibniz’ formula for a composite function of the

form f(x, u, p) . In this case, we have

\partial^{\alpha}f(x, u, p)=\sum_{\mu_{1}+\mu_{2}+\mu s=\alpha}\frac{\alpha!}{\mu_{1}!\mu_{2}!\mu_{3}!}\sum_{0\leq\nu_{1}\leq|\mu_{1}|0\leq}\sum_{\nu_{2}\leq|\mu_{2}|}

\frac{\partial_{u^{1}}^{\nu}\partial_{p^{2}}^{\nu}\partial_{x^{3}}^{\mu}f(x,u,p)}{\nu_{1}!\nu_{2}!}

\beta_{1}++\beta_{\nu_{1}}=\mu_{1}\sum_{0<|\beta_{i}|}\frac{\mu_{1}!}{\beta_{1}!\cdots\beta_{\nu_{1}}!}\partial^{\beta_{1}}u\cdots\partial^{\beta_{\nu_{1}}}u

\eta_{1}++\eta_{\nu_{2}}=\mu_{2}\sum_{0<|\eta_{i}|}\frac{\mu_{2}!}{\eta_{1}!\cdot\eta_{\nu_{2}}!}\partial^{\eta_{1}}p

. . \partial^{\eta_{\nu_{2}}}p (C.ll)

where we use the agreement that, if \nu_{i}=0 , then the corresponding sum is
absent.
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