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Existence and asymptotic behavior of weak solutions to
strongly damped semilinear hyperbolic systems

Takeyuki NAGASAWA! and Atsushi TACHIKAWA?
(Received September 14, 1994)

Abstract. Weak solutions to a strongly damped semilinear hyperbolic system are con-
structed by the method of semi-descretization in time variable combining with variational
calculus. The asymptotic behavior of solutions is also investigated and the decay property
under the homogeneous boundary condition is shown by the discrete energy method.
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1. Introduction

Let 2 be a bounded domain of RF with Lipschitz boundary 5.
We consider the following system of hyperbolic equations for a map
u:Q x (0,00) — R

aij(z) Dju'(z,t) = Dy (b3 (x) Dot (2, )

+ cij(@)||u(e, O *ui (2, t) — DD (£’ () Do’ (z, 1)) = 0
in 2x(0,00), j=1, -, £, (1.1)

where D; = 0/0t, D, = 8/9z%, ||u(z,t)|. = (cij(:r:)ui(ac,t)uj(:v,t))l/2 and
m > 1. Here and in the following, summation over repeated indices is
understood, the greek indices run from 1 to k, and the latin ones from 1
to £. We assume that the coefficients a;;(x), b?jﬂ(:c), cij(x) and fgﬂ are
bounded functions defined on €2 and satisfy the conditions

aij(2)€¢ > Molé|* for all €€ RS,
b2 (z)miary > Malnf? for all 5 € R¥,

cij(2)E€7 > Xo[€? forall €€ RS,
\ fg-ﬁ(a:)ngnjﬁ > A3|n|? for all n € R¥,

(1.2)
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aij(2) = ajo(z), b3 (z) = b7 (),
cij(x) = cji(x), . fiojﬂ(x) = fﬁa($)> (1.3)

for some positive constants Ag, A;, A2 and A3. The initial and boundary
conditions are

u(z,0) = up(x), Diu(z,0) =vo(z) in £, (1.4)

u(z,t) =w(z) on 9N x (0,00), (1.5)

where ug(z), vo(x) and w(z) are given maps such that ug(r) = w(z) and
vo(x) = 0 on O9.

In §2 we shall construct global weak solutions to (1.1), (1.4) and (1.5) by
the semi-discretization in time variable combining the variational method
((Cheorem 2.1)). Using this method, the second author has constructed weak
solutions of semilinear hyperbolic system without the strongly damping
term —D;Dg( fic;ﬁ (z)Dout(z,t)) ([19]), and the authors have constructed
weak solutions of semilinear wave equations with the damping term
aij(z)Dyu'(z,t) which have exponential decay properties ([11]).

It is very powerful tool to construct global weak solutions, because
we need not distinguish technically between single-valued equations and

systems of equations. It applied to other various evolution equations in
14, 15, 16, 7, 1, 10, N1].

The method of semi-discretization in time variable, so-called Rothe’s
method, has been used to construct solutions of parabolic equations since
about 60 years ago (see Rothe ) Moreover, by Rektorys and Kacur
[4], Rothe’s method was applied to hyperbolic equations also.

Though the Faedo-Galerkin method is very common to construct weak
solutions, it would be fruitful to consider various constructions, since weak
solutions of hyperbolic systems are not uniquely determined in general.

In §3 we shall investigate the exponential decay property of solutions
in case of w = 0 (Theorem 3.1)). It is known that the weak solutions which
are given as limit functions of smooth approximate solutions satisfy the
exponential decay property. (See ) For example, the Faedo-Galerkin
method gives us the weak solutions satisfying the exponential decay prop-
erty. On the other hand, the weak solutions constructed in §2 are not
given as limits of smooth approximate solutions. We shall utilize the dis-
crete energy method to approximate solutions, and pass to the limit. In
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the time-discretized form we can employ various test functions and easily
derive discrete energy method.

There are many results about existence and asymptotic behavior of
solutions to strongly damped nonlinear scalar wave equations. Cleménts
proved existence and uniqueness of a strong global solution of the initial-
boundary problem for the equation

n
Dyu — Z Dyoo(Dou) — ADwu = f(z,t),
a=1

0<t, z€QCR", (1.6)
with 04(p), @ = 1, ..., n satisfying
oa(p) € C1(—00,00), 4(0)=0, 0<o(p) < Ko.

In the two space dimension case, Pecher [13] proved global existence of
classical solution of the Cauchy problem for the equation with f =0
under some growth order condition on the derivatives of o,. In particular
relevance to the equations (1.1), Webb proved the existence of unique
strong solution to the initial-boundary value problem for the following equa-
tion and investigated its asymptotic behavior.

Dyu — aADiyu — Au = f(u), 0<t, e QCR",

where n = 1,2 or 3, a > 0, f € CY(R,R) with f'(u) < C (C > 0) for all
u € R, limsup,| 4o % <0 and f(0) =0.

For further information about strongly damped wave equations see
Kawashima-Shibata @ and references cited therein.

2. Construction of weak solutions

In this article we denote Rf-valued Sobolev and Lebesgue spaces
HL2(Q; RY), LP(Q;RY) etc. simply by HY2(Q), LP(Q) etc. We define a
weak solution of (1.1) satisfying the initial and boundary conditions (1.4)
and (1.5) as follows.

Definition Let v,, and v,_, denote the trace operators to 9 and Q2 x {0}
respectively. For up, w € HY2(Q) N L™()) and vy € L%() satisfying
Yoq U0 = VoW, @ map u : Q x [0,T) — R? is called a weak solution of
(1.1) on [0,T) with the initial and boundary conditions (1.4) — (1.5), if the
following conditions are satisfied:
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(i) we L*®0,T;L™(Q2)) N L=(0,T; HY%(Q)),

Dyu € L=(0,T; L2(Q)) N L2(0,T; Hy % ().
(i) v, ou(z,t) = uo(x) and v,qu(z,t) = y,qw(z) for 0 <t < T.
(iif) For any ¢(z,t) € C5([0,T); Co(Q2)) N C([0,T); CH(R)),

T ‘ .
[ [ (~aite) D) D 0

+ bgfg(:c)Daui (x, t)Dﬁqu(:c, t)

+ cij(@)[luz, )| 7~ (, £ (x, )

+ 3P (2) Dy Do (2, t) Dy (z, t)) dudt

_ / aii (2)vd (2)9 (z, 0)da. (2.1)
Q

We say u is a global weak solution if “|Q><[0 ) is a weak solution on
[0,T) for any T > 0.

Remark. It follows from (i) that u € C([0,T]; H12(£2)) (see [20, Chapter
III, Lemma 1.1]).

To construct a weak solution of (1.1), we proceed as in [19]. First we

assume vy € Hy'* ()N L™(Y). Given h > 0, we determine a family {un} as
follows:

(I) (n=1). Let us define u;(x) = up(x) + hvo(z).

(1) (n >2). Given up—2, up—1 € HX2(Q)NL™(Q) and h > 0, we consider
the functional

1w —2up—1 +up—2|? 1
Falw) = [ (—” L tle y Lpug

2 h?
1. . 1||Du— Dun_1||?c
+ R“u”c + 2 ; dx

for u € H?() N L™(Q) with u = w on 9Q. Here ||u|? = a;;(z)ute/,
Il = b3 (z)niy and [Inl|% = £2° (z)ni). For n > 2, let un(z) be a

minimizer of F,, in the class {u € HY2(Q)NL™(Q) : u = w on dN}.

The Euler-Lagrange equation of F,,(u) is

d
O = — n
de]: (u+ep) »
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1 ; j ' ]
B /Q {}ﬁam(ﬂ?)(uz = 2up_y + up_g)¢’
+ b7 (2) Dot Dgg? + cij () u]| ™2l
1 ., i ' /
+ ﬁfz'jﬁ(x)(Dau = Dot 1) D’ } o
for all ¢ € Hé’Q(Q) nL™(). (2:2)

The lower semicontinuity of LP-norms guarantees the existence of a mini-
mizer of F,,. Moreover one can see that a minimizer satisfies (2.2) by means
of differentiability of the integrand of F,, with respect to Du and u. About
general theory of the direct method of calculus of variations see [3, Chapter
.

Thus u, (n > 2) satisfies (2.2) and we get the following lemma.

Lemma 2.1 Let {u,} be as above. Then we have the energy estimates

Du, — Du,,_1]|2
+Z/QH P - b 1Hfd:n§C{5(uo)+gh(U0)} (2.3)

for some positive constant C, where

1 1
E — - 2 - m
W = [ (FIDulf + - luli) da,

G1(v) = | (Il + KIDvIE + B Dol + A ol7) d

Proof. Since u, and u,_; coincide on 0, u, — u,—; (n > 2) is an
admissible test function for (2.2). Thus using Young’s inequality, we get

0 = —Fn(un +e(un — un-1))

d
de e=0
:/ {hzaw — 2up,_q +ul o) (v, ‘U] 1)

+ bz‘jﬁDaui(DﬁU?l — Dgul_,)

+ cijl|unl| T2l (ud, — ) +

Du,, — Du,_1||?
1D ! 1||f} L
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Jitn =t a2 L g
> [ {( e 1 ) Dunl +

| Dun — Dun_1||?c
h

|1 — un—2| 1 1
_< e || D+ ;1-||un_1\|gn>} dz. (2.4)

Now, let

/Hun Un— 1”
2h2

1
b= [ (31DuallE+ - uunnm) -

=/ | Du,, — Dun_ledCE
h

N

Then (2.4) implies

n—1
an + by +Zcp<an 14bno14+ Y <o <ar+b+er
p=1 p=1

On the other hand, it is easy to see that

1
=5 | Ivoli2aa,

b < € { o)+ [ (IDuoll + B uoll) o}

7

c] = h/ HDvoH?da:.
\ Q

Thus, we get (2.3). ]

Now, using {u,(z)}, we construct two maps uj and @ which approxi-
mate to a weak solution of (1.1). Let us define
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( up(x) for t =0,
ap(z,t) =
up(z) for (n—1)h <t <nh, n>1,
[ up(x) + tuo(z)
< for —1<t<h,
) =
h n h n—1
\ \ for (n —1)h <t <nh, n>2.

Then, we can proceed as in [19, §3] and see that 4, and uj converge to a
weak solution of the equation (1.1) which satisfies the conditions (1.4) and
(1.5).
From (2.2), we can see that
/ / { a;j(z DtuZ(x, t) — Dyul (z,t — h)) ¢ (z)
+ b,ij (x)Dauﬁl(m,t)Dgapj(x)
+ cij(@)|an (=, O ah (2, 1)@ ()
1 . .
+ 5 15 (@) DuDavy (2, 1) Dy’ (:c)} n(t)dadt

/ / { azj Dtuh(fb‘ t) Dt”u,;.l(a:,t — h)) QOj(:E)
+bz‘j (2) Dol (z,t) D’ (z)
+Cz’j( Man (=, 17 ah (, )¢’ (z)
- 757 (2) DD (¢, 1) Dz )}n(t)da:dt:O (2.5)

for any T > 0 and n € C§°[0,T).
On the other hand, from (2.3), we get the estimates

ess sup/ | Dyup||2dz < C (€(uo) + Gu(vo)), (2.6)
—1<t<T JQ
/T | I1Dsunl2dadt < € (E(uo) + Gulo)) (T +1), @7

/OT /Q | Dt Dug | 3dadt < C (€(uo) + Gr(vo)), (2.8)
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—1Slltp<T8(Uh) < C(E(uo) + Gr(vo)), (2.9)
/_7; €(uh)dt <C (5(”&0) + Qh(vo)) (T —+ 1), (2.10)
/OTS(ah)dt < C (&(uo) + Gn(wo)) T. (2.11)

Using the Banach-Alaoglu theorem, from (2.6), (2.7}, [2.8), (2.9) and (2.10)
we can deduce that

Dyup, — Dyu, Doup, — Dou  weakly in - L*(Q x (—1,T)), (2.12)

weakly in L™ (Q x (=1,T)),
Up — U weakly star in (2.13)
L*(0,T; HY*(Q)) N L=(0,T; L™ (%)),

Dyup, — v’ weakly star in  L°°(—1,T; L*(Q)), (2.14)

DiDoup, — Gq weakly in  L*(Q x (0,T)), (2.15)

for some u € L™(Q x (—1,T)) N HY?(2 x (=1,T)) N L*>(0,T; H-*(Q)) N
L0, T; L™(2)), v’ € L*°(—1,T; L?(2)) and G, € L2(Qx (=1,T)) as h | 0
taking a subsequence if necessary. Here m’ = max{2,m}. In what follows
h | 0 means always a limit along a suitable subsequence. Since (2.12) and
(2.14) imply that Dyu = v’ almost everywhere on Q x (—1,T), we can see
that Dyu € L°°(—1,T; L%(Q)). Moreover (2.12) and (2.15) imply that Dau
are weakly differentiable with respect to ¢ and D;Dyu = 1, for t € [0,T).
Therefore, D;Dqu;, — D;Dyu weakly in L2(2 x (0,T)). On the other
hand, using Rellich’s compactness theorem, from (2.12) and (2.13), we get

up, — u strongly in L*(Q x (—1,T)) as h | 0. (2.16)
Using the Banach-Alaoglu theorem again, by we obtain that

Dotap — Dot weakly in - L2(Q2 x (0,T)),
ip, — 4  weakly in L™ (Q x (0,T))
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as h | 0 for some @& € L™ (Q x (0,T)) with D@ € L2(2 x (0,T)) taking a
subsequence if necessary.
Moreover, by the definition of u, and @, and [2.6), we have

T
/ / | — up||2dzdt < CR2T — 0 as h |0 (2.17)
0 Q

for some constant C' depending only on the matrix (a;;). Hence, using
(2.16) and (2.17), we see that i, — u in L%(Q2 x (0,T)). This implies that
u = u almost everywhere and therefore D,u = Dyu almost everywhere on
2 x (0,T). Thus we obtain

ap — u weakly in L™ (Q x (0,T)),
), (2.13)
)

Up — u strongly in L?(Q x (0,T
Doty — Dou  weakly in - L?(Q x (0,T

as h | 0.
For any n(t) € C§°[0,T), if h is small so that spt n C [0,T — h), then

/OT/Q 75 (@) (Drth (@,1) = Do (o, = ) o (@)n(t)doct

= /T /Q aij (:U)Dtu%(x’ t)(pj(x)n(t) —n(t+ h) drdt
_ % /_Oh /Q aij (2)vh(z)(x, 1)@’ (z)n(t + h)dzdt. (2.19)
It is clear that
1 /0 , ‘
B ) @i (@ve@)e @t + h)dedt
- /Q aij ()vs ()¢’ (z)n(0)de (2.20)

as h | 0. From (2.19) and [2.20), we obtain

T 1 . . .
| ess(@) (D@ 1) = Dt = 1)) o @)n(t)dac
— / / a;j(z) )Dyu'(z, 1)’ (x )Dyn(t)dzdt

- [ ay@pi@ei@n@)de  ashlo. @221)
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Because of (2.18), by means of Egoroff’s theorem, we get

T y N T . .
Qc'ij”ﬂh”?_za;ﬁpjndxdt—/o Lcijlfull?_2uz¢ndmdt

—0 as B0,  (2.22)

taking a subsequence if necessary.
Since DtDauﬁl — DiDyut, we get

/ / z) Dy Doty (z,t) Da (x)n(t) dd
N /0 /Q f;;ﬂ(m)DtDaui(x,t)Dﬂw(x)n(t)da;dt as h10. (2.23)

Moreover, it is easy to see that

/ / b (@)D ) Do}, (,t) Dpep? (z)+cij () | an (2,0 |2 2@, (2,t)7 (x)

+f (:L')DtDau;'l(m,t)Dﬁwj(z)}n(t)dmdt—»O as hlo0. (2.24)

Now, letting h | 0in (2.5) and using (2.12), (2.18), (2.21), (2.22), (2.23)
and (2.24) we obtain

T
| (Cas@patops@pat s @puteopasen
teis(@) e 720 (@09 @n(e)+ 15 (2)DeDas? D! @n(1) ) dade

= [ ay(@pi(a)e (@)n(0)dz, (2.25)

for all ¢ € C§°(€2), and for all n € C§°[0,T). Since functions of the form
©(z)n(t) are total in the space C*([0,T); Co(2)) N C([0,T); C1(Q)),
means that u satisfies [2.1) ‘

On the other hand, since up(z,0) = up(z), Un|aax[-1,00) = w and up —
u in H?(Q x (-=1,T)) as h | 0, we can see that u satisfies the initial
condition u(z,0) = up(z) and the boundary condition u| 80 (0,00) = W also.
Using diagonal argument, we get a global weak solution. It follows from
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(2.7), (2.8), (2.11) and the lower semicontinuity of weak limits that

/ /IIDtuuast( )<c( (uo) +/ ”UO”zdx)
<
| /OT /Q ||DtDu||}dxdtsc(5(uo)+ /Q ||vo;|3dx).

Next we construct solutions for vg € L2(f2). There exists a sequence
{vg} € Hy*(Q) N L™(€2) such that

(2.26)

lvo — vgllz2) <& Ilvglie) < 2llvoll L2y (2.27)

Let u. be a weak solution satisfying
u(z,0) = uo(z), Dyu(z,0) = vj(z),

which is constructed by the above procedure. It satisfies ( ) and (2.26)
with v = u® and vy = v§. We deduce from (2.26) and that {uf}
contains a subsequence of ¢ | 0 which converges to u in a sense similar to
(2.12) - (2.15). Passing to the limit € | 0 along the subsequence of
with u = u® and v = vfj, we conclude that u solves our problem in the weak
sense on [0,T"). Moreover it is a global weak solution because the diagonal
argument is applicable.

Theorem 2.1 Let Q be a bounded domain of R* with Lipschitz boundary
0. Suppose that (1.2) and (1.3) are satisfied. For any vo € L?(Q) and uo,
w € HY2(Q)NL™(Q) with Ysquo = Yeaw, there exists a global weak solution
of (1.1) which satisfies the initial and boundary conditions (1.4) and (1.5).

3. Asymptotic behavior

In this section we show the exponential decay property for the weak
solution of (1.1) with the homogeneous Dirichlet condition

u(z,t) =0 on 90 x (0,00) (3.1)

which is constructed in the previous section.
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In what follows we use the following notations.

(
wln:/ ren 2:2” e g > o,
Q

D(uy — up— 2
win:/ “ T Mg
Q

1
'lpZn = / —HDuandfc >0,
Q2

1
Dan = / ~ un||dz > 0,
Qm

J _
w . i Un un—ld
4n = amun——‘ Z,

w4n /faBDOtu
o= [y, — )y )

Yen = /Q 5|1 Dunl[zdz > 0.

\

First we assume vy € HS’Q(Q) N L™(§2) as before. Since we are posing
the homogeneous boundary condition, u,, is an admissible test function for
(2.2). Therefore we can see that

d

0= gfn(un + euy)

e=0
1
:/ {h2%( — 2up,_y + up_o)ul, + || Dug 1§ + [Jun |7

1 . .
+ 1707 Dol — 1)Dﬁu%} o
1 -Uj_“j—l “j—1—“j—2
1 ) : . .
—ﬁaz’j(uz — tp 1) (Up_y — Up_y)

1 ) 1 ]
+ 1Dl + [l + 57 Dalul, — ) Dges, |

Then we have

¢4n - 1/}477,— 1
h

— Ysn + 299, + mip3, + wfln = 0. (32)
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We test (2.2) by ¢ = u, — u,_1 to get

d _
0= E}—n(un + e(up — Un—1))

e=0
= [ [ {(wh — ) — Gy — ) - i)

+ 022 Dol (Dgud, — Dyl ) + cij|unl |72l (uf, — u? )

n n—1
1

+ 21D = un )| da

1 i i ' '

73 Uln = wn 12— aij (g — o) — i)}

!

n

+ nDunub by Dastin Dt _y +[un [ = llun| Peijufu]
+ 21D = )] o (3.3)
Thus dividing by h and using Young’s inequality, we get
0 > / 1 [un _un—lllg _ lun—1 — un—2]|2
“Jalh 2h? 2h?
1/1 1
+ 5 (31Duall = 31Dwn- )
1 /1, . 1 .
3 (ol = s
1D (un — un—1)lI7
+ %) dzx,
that is
0> Vin — Pin-1 n Yon — Yan—1 N VY3n — Pan—1 + oyl (3.4)
h h h
We remark
[ —Ysn > —(V1n + Y1n-1),
1
win 2 _¢1n7
ﬁ H1 (3.5)
o> Ven —hl/)sn—l7
\ ¢4n < z/)1n + U1¢2n

by Schwarz’ and Poincaré’s inequalities. Here p is the Poincaré constant
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defined so that

J, elizde < pmin{ [ |Dulfde, [ |Dulas)
Q Q Q

holds for any u € H& 2(Q). Let g be a positive constant defined by

| 1Dul3de <z [ IDulfde
Q Q

for any u € H2(Q).
Combining and (3.4) together with (3.5), we have for any ¢; > 0
and g9 > 0

0> Yin — Yin—1 n Yon — Yon—1 + Y3n — Y3n—_1

- h h h
p Yan — Yan—1 ,
+ 2¢1n + &1 5 - ¢5n + 299, + misy, + ¢4n
Vin — Vin-1 | Yon — Yan—1  V3n — Y3n_1
>
= n T n vt

£1(¥an — Yan—1) N €1(%en — Yen—1)
h h

+ %¢1n — €1(V1n + Y1n-1) + 26192, + merthz,
> (1+e1h)(Y1n — Y1n-1) + Yon — Yon_1 N Y3n — Y3n—1

_|_

h h h
N £1(Yan — Yan—1) N €1(VY6n — Yen—1)
h h
2
+ (E — 221 — 62) Yin + (261 — p1€2 — p2e2)thon

+ m€1¢3n + 52¢4n + 521/}611-

Since we shall pass to the limit & | 0, it may be assumed that h € (0, 1).
First we choose €1 so small that

2 1
— —2e1 > —.
231 H1
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And then we choose €5 so smaller that

( 2 €9

— —2e7 —e9 > —(1+¢€1h),
M1 €1
€2
{ 261 — pi€g — HgEg > ;—(1 +€1),
1
€
mey > —2.
L &1

We remark that they can be chosen independent of h € (0,1). In what
follows we fix them. Putting

Uy = (1 + e1h)Y1n + Yon + V3n + €194 + €1V6n,

\ = 5_2’ (3.6)
€1
we obtain
Uy (t) — Uy (t —
(1) h"(t P e aw) <o,

For any t € (0, 00), putting n = [t/h] (| ] denotes the ceiling i.e., [z] is the
smallest integer greater than or equal to z), the above difference inequality
implies that

Wh(t) = Uy (nh) < ( )”wh<+o>. (3.7)

1+ Mh
Remark that ¥,(+0) is dominated by a constant K;(ug, vg, h), where

K1(uo,vo,h) = C{luollFnz(q) + luollTm(gy + (1 + h)||UO||2L2(Q)
+h*|| Dol 22(q) + ™ [[voll ey }-

Since we are assuming that (2 is bounded, we can use Poincaré’s inequality.

Therefore it follows from (3.6) and that

1 : :
| 3est D (e, 0)dz + Co [ a3 (a,)da
S Cl(l + )\h)_nKl(uO,’Uo,h) (38)

where Cp and C; depends only on (a;;), (bf;-ﬂ ), €1 and Q. Multiplying the

both side of by n € C§°[0,00) with n(t) > 0, and integrating them
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from 0 to co, we get

/0 /Q (ﬁaijﬂthui(x,t) + C’oﬂﬁh”g(x,t)) n(t)dzdt
< C1 K1 (uo, vo, ) / (1 + M)~ (t)dt. (3.9)
0

Remark that @y, up, — w and Dyup, — Dyu in L*(Q x (0,T)) for any T €
(0,00) taking subsequence if necessary (see [19]) and that

(L4+AR) ™ < {1+ AR)YA=A =2 55 R 0.

Hence letting A | 0 in and taking subsequence if necessary, we obtain

00 1 ) _
/ / (iaiju’Dtu](:c,t) + C'0||u||(2l(9:,t)> n(t)dzdt
0 Q
< ClKl(uO,’Uo,O)/ e_Atn(t)dt, (3.10)
0

for all n € C§°[0,00) with n(t) > 0. We recall that u belongs to C([0, T];
L%(Q2)) and Dyu to L>(0,T; L?(R)). Therefore implies that
Dy [ u(e,t)|2de +Co [ [ju(z, 1)|2de < Koo
Q Q
almost every t € (0, 00), (3.11)

where Ky = Ks((a;5), C1K1(ug, vo,0)). It is easy to see that the estimate
(3.11) implies

||u('7t)||%2(§2) < Ke (3.12)

where K is a positive constant depending only on coefficients of the equa-
tion, [luol|g1.2(q), Iluollzm(q), llvollL2(q) and ©, X, and C is a positive con-
stant depending only on coefficients of the equation, X and 2. Remark that
K1 (uo, v9,0) and K do not depend on || Dy 2(q) and [[vo || pm (-

Using Schwartz’ inequality, from (3.6) and we have

[ 1P, 0 + £ (1)
Q
< (L4 20) K (uo,v0,0) +Ca [ Jan(a, ) P,

where Cy depends only on (a;;) and &;. Using the lower semicontinuity of
the left-hand side, (2.12), (2.18) and (3.12), we get the exponential decay
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property of HDtuHLQ(Q) and the energy £(u) by h — 0. The coefficient A
depends only on p; and ps, we obtain the exponential decay property of u.
Now we assume only vg € L?(Q). Let u® be a weak solution satisfying

u(z,0) = up(z), Diu(z,0) = vy(z),

which is constructed by our procedure. Here v§ € Hy?(Q) N L™(R) is a
function satisfying (2.27). We have already shown the exponential decay
estimate

|’u€(at)|,2L2(Q) + HDtue( )HL2 + g( ( )) < Ke—Ct

for almost every ¢ > 0. The constant K depend on |lug| g1.2(q), [[uollzm(q)
and ||| L2(q) but not on |[v5]|z12(q) and [|vGl|pm(q)- The constant C does
not depend on the initial data. As shown in §2, {ue} contains a subsequence
which converges to u as e | 0. Therefore letting € | 0 in the above inequality,
we get the exponential decay estimate for u.

Theorem 3.1 Let u(x,t) be the weak solution of (1.1) with conditions
(1.4) and (3.1) which is constructed in the previous section. Then u(z,t)
enjoys the following exponential decay property

(-, 1)][32() + 1Dl ) 1320 + E(ul, 1)) < Ke™©"
for almost every t >0,  (3.13)

where K s a positive constant depending only on coefficients of the equation,
the initial data and §2, and C s a positive constant depending only on
coefficients of the equation and S2.
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