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Random perturbations of non-singular transformations on [0,1]
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Abstract. We consider random perturbations of non-singular measurable transfor-

mations S on [0, 1]. By using the spectral decomposition theorem of Komorńık and

Lasota, we prove that the existence of the invariant densities for random perturbations

of S. Moreover the densities for random perturbations with small noise strongly con-

verges to the deinsity for Perron-Frobenius operator corresponding to S with respect

to L1([0, 1])-norm.

Key words: random dynamical system, spectral decomposition theorem, random per-

turbations.

1. Introduction

It is known that every Markov process on a state space can be rep-
resented as a random dynamical system ([2]). There are many important
Markov models in applications which are analysed as random dynamical
systems. We focus on the following random dynamical system with additive
noise: Let S : X → X be a non-singular measurable transformation on a
measurable space (X,B, λ) and let (Ω,F , µ) be a probability space. For a
given random variable X0 and an i.i.d. sequence {ξn}n≥0 on Ω with values
in X, we define the following Markov process {Xn}n≥0 by

Xn+1(ω) := S(Xn(ω)) + ξn(ω). (1)

When X = R, we call the above Markov process {Xn(ω)}n≥0 first-order
nonlinear autoregressive model (NLAR(1)). On the other hand, if we let
Q(x,A) be a family of transition probabilities (from a point x ∈ X to a
Borel set A ∈ B), then the Markov process on X defined by the transition
probabilities Q(Sx, A) is called a random perturbation of the dynamical
system (X, S). In this paper, we consider NLAR(1) on [0, 1], i.e. let X =
[0, 1] for (1) and we identify Xn with Xn− [Xn] for all n ≥ 0, where [x] is the
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largest integer less than or equal to x. Note that considering NLAR(1) on
[0, 1] is coincident with considering a random perturbation of the dynamical
system S on [0, 1] in our case.

A stability property of NLAR(1) can be derived from contraction as-
sumptions by Lasota and Mackey ([15]) by using the spectral decomposition
theorem of Komorńık and Lasota (Theorem 2.5). This theorem is our main
method in this paper. Vu Kuok Fong [5] and independently Sine [18] have
showed that the generalization of this spectral decomposition theorem of Ko-
morńık-Lasota is a simple corollary of the Jacobs-de Leeuw-Glicksberg the-
orem. We prove that for any non-singular transformation S : [0, 1] → [0, 1],
there exists an invariant density of {Xn}n≥0 for NLAR(1) on [0, 1] by using
the spectral decomposition theorem of Komorńık-Lasota.

In this paper, we also study the limiting distribution of NLAR(1) on
[0, 1] with small additive noise (or small perturbations of ([0, 1], S)) given
by

Xε
n+1(ω) := S(Xε

n(ω)) + εξn(ω) (mod 1), (2)

as ε ↓ 0, where Xε
0 = X0. Many authors observe the relation between

deterministic dynamical systems and small perturbed random dynamical
systems ([4], [6], [9], [16]). For example, in [9], Katok and Kifer considered
small random perturbations, where S is an endomorphism of the interval
[0, 1] satisfying the conditions of Misiurewiczan and small transition proba-
bilities P ε(x,A) = Qε(Sx, A) for sufficiently small ε > 0. They proved that
the densities of Xε

n-invariant measures µε converge weakly to a density of
the invariant measure µS corresponding to S as ε → 0 in L1 topology.

In [14], Lasota and Mackey showed that the density functions of
{Xε

n}n≥0 for NLAR(1) (on R) with small additive noise are given by

Pn
ε f(x) :=

∫

R
g(y)PSf(x− εy)dy,

where PS is the Perron-Frobenius operator corresponding to S, g is the
density of {ξn}n≥0 and f is the density of X0. They prove that

lim
ε→0

‖Pεf − PSf‖L1(R) = 0 (3)

for all f ∈ L1(R) (see [14]). We obtain the same result for NLAR(1) on
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[0, 1]. Moreover since the existence of the densities of Xε
n-invariant measures

are guaranteed by the spectral decomposition theorem of Komorńık-Lasota,
under certain conditions, we prove that if there exists the limit f∗ of the
densities of Xε

n-invariant measures in L1 as ε ↓ 0 then the limit function f∗
is an invariant density corresponding to S. This implies that we gave the
sufficient condition of the existence of an invariant density corresponding
to S. On the other hand, in the sense of weak convergence of invariant
probability measures for small random perturbations of a dynamical system
S, the bounded variation case is first proved by Keller (see the condition S1
in [10]). Afterwards, Young and Baladi considered random perturbations
of piecewise C2 expanding map S : [0, 1] → [0, 1] for which there exists the
unique invariant density f∗. Indeed, in [1], Young and Baladi proved that for
any piecewise C2 expanding map which has no periodic turning points, there
exists invariant densities of small random perturbations and they converges
to the invariant density f∗ corresponding to S with respect to L1-norm as
ε → 0 (see also [3]). In section 3, we can see that the spectral decomposition
theorem of Komorńık-Lasota and (3) hold for NLAR(1) on [0, 1] defined by
(1) with respect to intermittent maps S which have an infinite invariant
density function.

2. Main theorems

2.1. Random perturbations of Dynamical systems
Let (Ω,F , µ) be a probability space, where F denotes a Borel σ-field

and µ a probability measure. Let x0, ξ0, ξ1, . . . be random variables on Ω
with values in [0, 1] and S : [0, 1] → [0, 1] be a non-singular measurable
transformation (i.e. λ(S−1(A)) = 0 for any Borel set A ⊂ [0, 1] with λ(A) =
0, where λ is the normalized Lebesgue measure on [0, 1]).

Consider the following stochastic process defined by

xn+1(ω) = S(xn(ω)) + ξn(ω) (mod 1) (4)

for each n ≥ 0.

Definition 2.1 We say that a random dynamical system {xn}n≥0 gener-
ated by (4) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0) is first-order nonlinear
autoregressive model on [0, 1] (NLAR(1) on [0, 1]) if the following conditions
C1–C3 hold:
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C1 x0, ξ0, ξ1, ξ2, · · · are independent random variables;
C2 x0 has the density function f0 ∈ D (i.e. µ({ω : x0(ω) ∈ B} =

∫
B

f0(x)dx

for any Borel set B ⊂ [0, 1].), where D := {f ∈ L1([0, 1]) : f ≥
0 and

∫
[0,1]

f(x)dx = 1};
C3 each ξn has the same density function g ∈ L1(R) such that g ≥ 0,

supp(g) := {x ∈ [0, 1] : g(x) 6= 0} ⊆ [0, 1] and
∫

R
g(x)dx = 1.

Under conditions C1–C3, there exists a Markov operator P : L1([0, 1])
→ L1([0, 1]) such that

µn(A) := µ({ω : xn(ω) ∈ A}) =
∫

A

Pnf0(x)dx (5)

for all Borel set A on [0, 1] and n ≥ 0.

Proposition 2.2 Let {xn}n≥0 be a NLAR(1) on [0, 1] generated by (4)
with respect to (Ω, [0, 1], S, x0, {ξn}n≥0). Then there exists a Markov opera-
tor P : L1([0, 1]) → L1([0, 1]) defined by

Pf(x) =
∫

[0,1]

f(y)
( 1∑

i=0

g(x− S(y) + i)
)

dy, (6)

which satisfies (5).

In our paper, the spectral decomposition theorem of Komorńık and
Lasota [13] plays a central role. We introduce the sufficient condition for
this theorem:

Definition 2.3 Let (X,F , ν) be a finite measure space. A linear operator
P : L1(X, ν) → L1(X, ν) is constrictive if there exists δ > 0 and κ < 1 such
that for every f ∈ D there is an integer n0(f) for which

∫

E

Pnf(x)ν(dx) ≤ κ for all n ≥ n0(f) and E with ν(E) ≤ δ. (7)

Remark 2.4 If the space (X,F , ν) is σ-finite, we can substitute the above
condition by the following: there exists δ > 0, κ < 1 and a measurable set
B with ν(B) < ∞ such that for every f ∈ D there is an integer n0(f) for
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which
∫

(X\B)∪E

Pnf(x)ν(dx) ≤ κ for all n ≥ n0(f) and E with ν(E) ≤ δ. (8)

It is easy to see that this condition reduces to that of Definition 2.3 when
X is finite and let X = B.

Theorem 2.5 (spectral decomposition theorem [13]) Let P : L1(X,F , ν)
→ L1(X,F , ν) be a constrictive Markov operator. Then there is an integer
r, non negative functions gi ∈ D0 := {f ∈ L1(X,F , ν) : ‖f‖L1 = 1, f ≥ 0}
and ki ∈ L∞(X,F , ν), i = 1, 2, . . . , r and a operator Q : L1(X,F , ν) →
L1(X,F , ν) such that for every f ∈ L1(X,F , ν), Pf is represented by the
form

Pf(x) =
r∑

i=1

λi(f)gi(x) + Qf, (9)

where

λi(f) =
∫

X

f(x)ki(x)ν(dx).

Moreover the functions gi and the operator Q have the following properties:

• gi(x)gj(x) = 0 for all i 6= j.
• For each integer i, there exists an unique integer σ(i) such that Pgi =

gσ(i). Further σ(i) 6= σ(j) for i 6= j.
• limn→∞ ‖PnQf‖ = 0 for every f ∈ L1(X,F , ν).

Remark 2.6 The spectral decomposition theorem of Komorńık and
Lasota holds when the space (X,F , ν) is σ-finite space and Markov operator
is constrictive.

Remark 2.7 If Theorem 2.5 holds for a Markov operator P , then there
is an invariant density f∗ defined by

f∗ =
1
r

r∑

i=1

gi.
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Indeed,

Pf∗ =
1
r

r∑

i=1

Pgi =
1
r

r∑

i=1

gi = f∗.

Therefore Pf∗ = f∗.

The following theorem is our main result.

Theorem 2.8 The Markov operator P : L1([0, 1]) → L1([0, 1]) defined by
(6) corresponding to a NLAR(1) on [0, 1] generated by (4) with respect to
(Ω, [0, 1], S, x0, {ξn}n≥0) is constrictive, that is, Theorem 2.5 holds for P .

Moreover when the density of noise g(x) is not zero for all x, we have
the following result.

Proposition 2.9 Let P : L1([0, 1]) → L1([0, 1]) be the Markov operator
defined by (6) corresponding to a NLAR(1) on [0, 1] generated by (4) with
respect to (Ω, [0, 1], S, x0, {ξn}n≥0). If g(x) > 0 for all x ∈ [0, 1], then there
exists a unique f∗ ∈ D such that Pf∗ = f∗ and

lim
n→∞

‖Pnf − f∗‖ = 0 for every f ∈ D.

Remark 2.10 A sequence {Pn}n≥1 satisfying (9) is called asymptotically
periodic. Proposition 2.9 implies that r = 1 for (9). In this case, the
sequence {Pn}n≥1 is called asymptotically stable.

2.2. Small random perturbations of dynamical systems
In this section, we observe limiting behaviour of density functions of a

NLAR(1) on [0, 1] generated by (4) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0)
parametrized by ε > 0 as ε → 0.

We consider the following first-order nonlinear autoregressive model
{xε

n}n≥0 on [0, 1] with respect to (Ω, [0, 1], S, x0, {ξn}n≥0) parametrized by
ε > 0:

xε
n+1(ω) = S(xε

n(ω)) + εξn(ω) for 0 < ε < 1, (10)

where xε
0 = x0.

Since random variables εξn have the same density 1
εg

(
1
ε

)
, we have the

Markov operator Pε : L1([0, 1]) → L1([0, 1]) defined by
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Pεf(x) =
1
ε

∫

[0,1]

f(y)
( 1∑

i=0

g

(
x− S(y) + i

ε

))
dy (11)

which satisfies that fε
n+1 = Pεf

ε
n, where {fε

n}n≥0 is the sequence of the
density function of xε

n. Since S is non-singular, there exists the Perron-
Frobenius operator PS : L1([0, 1]) → L1([0, 1]) with respect to S : [0, 1] →
[0, 1]. Hence, if we let gx,i,ε(y) := g

(
x+i−y

ε

)
, then we have that

Pεf(x) =
1
ε

∫

[0,1]

f(y)
( 1∑

i=0

gx,i,ε(S(y))
)

dy

=
1
ε

∫

[0,1]

PSf(y)
( 1∑

i=0

gx,i,ε(y)
)

dy

=
1
ε

∫

[0,1]

PSf(y)
( 1∑

i=0

g

(
x + i− y

ε

))
dy

=
1∑

i=0

∫

[(x+i−1)/ε,(x+i)/ε]∩[0,1]

PSf(x + i− εy)g(y)dy

by condition C3.
We should expect that in some sense limε→0 Pεf(x) = PSf(x).
Let ‖f‖∞ := inf{M : |f(x)| ≤ M for λ-a.e. x ∈ [0, 1]}, where λ is the

normalized Lebesgue measure on [0, 1].

Theorem 2.11 Let S : [0, 1] → [0, 1] be a non-singular measurable trans-
formation and Pε be the Markov operator defined by (11) corresponding to a
NLAR(1) on [0, 1] generated by (10) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0).
Suppose that ‖PSf‖∞ < ∞ for any continuous function f on [0, 1]. Then
we have that

lim
ε→0

‖Pεf − PSf‖L1([0,1]) = 0 (12)

for all f ∈ L1([0, 1]).

Remark 2.12 There is a big class of dynamical systems S : [0, 1] → [0, 1]
satisfying ‖PSf‖∞ < ∞ for any continuous function f on [0, 1]. For example,
piecewise monotonic maps (including unimodal maps) and piecewise convex
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maps satisfy the assumption of Theorem 2.11.

It is obviously that {Pn
ε }n≥1 defined by (11) is asymptotically periodic

for each ε > 0. Hence the function fε defined by

fε(x) =
1

r(ε)

r(ε)∑

i=1

gi,ε(x), (13)

where r(ε) is a positive integer and gi,ε(x) are density functions depending
only on ε, satisfies that fε ∈ D and Pεfε = fε. This implies that for each
ε > 0, Markov operator Pε has at least one invariant density.

Corollary 2.13 Let S : [0, 1] → [0, 1] be a non-singular measurable trans-
formation, Pε be the Markov operator defined by (11) corresponding to a
NLAR(1) on [0, 1] generated by (10) with respect to (Ω, [0, 1], S, x0, {ξn}n≥0)
and fε be an invariant density for Pε defined by (13). Suppose that ‖PSf‖∞
< ∞ for any continuous function f on [0, 1]. If there exists an integrable
function f∗ on [0, 1] such that

lim
ε→0

‖fε − f∗‖L1([0,1]) = 0,

then f∗ is an invariant density for PS, that is PSf∗ = f∗.

Remark 2.14 Corollary 2.13 holds for any continuous piecewise C2, piece-
wise expanding map S : [0, 1] → [0, 1] which has no periodic turning points.
Indeed, by Theorem 1.1 in [3] (and see Theorem 3 in [1]), there exists an
unique absolutely continuous invariant probability measure µ0 = f∗dx which
satisfies that

lim
ε→0

‖fε − f∗‖L1([0,1]) = 0.

3. Examples

In this section, we give some examples of non-singular transformations
which satisfy the assumptions of Theorem 2.8 and Theorem 2.11.

Kifer indicate in [11] and [12] that addition of noise to dynamical sys-
tems with highly irregular trajectories like Axiom A systems will not result
in an alteration of statistical behaviour of systems since the invariant mea-
sure changes continuously with noise level. However, in case of intermittent
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maps which are given below, the addition of noise may make the dynam-
ics more regular by creating absolutely continuous invariant measure from
asymptotically periodicity.

(1) m-adic transformation [14]
Consider the transformation S : [0, 1] → [0, 1] given by

Sx = mx (mod 1),

where m ≥ 1 is an integer. Thus the Perron-Frobenius operator PS :
L1([0, 1]) → L1([0, 1]) corresponding to S is given by

PSf(x) =
1
m

m−1∑

i=0

f

(
i + x

m

)
.

Since PS1 = 1, the Borel measure on [0, 1] is invariant with respect
to the m-adic transformation S. Moreover it is obviously that for any
continuous function f on [0, 1], Pf(x) is equal to a continuous function,
hence ‖PSf‖∞ < ∞.

(2) Maps with indifferent fixed points with infinite invariant mea-
sure [17]
Let α ∈ (0,∞) be a real parameter and consider the one-parameter
family of maps Sα of the interval [0, 1] onto itself defined by

Sα(x) := 2
eαx − 1
eα − 1

(mod 1). (14)

For every α > 0, Sα is piecewise onto and C∞-class. When the param-
eter α varies, the dynamics of the maps changes. Some properties of
this family established in [17] are listed below:
(1) For α > 0 with |S′α(0)| > 1, Sα is a piecewise expanding map

(see Figure 1). Then there exists the unique absolutely continuous
invariant probability measure with respect to the Lebesgue measure
on [0, 1] by the Lasota-Yorke theorem.

(2) For α > 0 with |S′α(0)| = 1, Sα admits an indifferent fixed point 0
(see Figure 2). For these maps, there is NO finite absolutely con-
tinuous invariant measure. However there exists a σ-finite infinite
absolutely continuous invariant measure.
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(3) For α > 0 with |S′α(0)| < 1, Sα admits a stable fixed point 0
(see Figure 3). For these maps, almost all points converge to 0 by
using the symbolic dynamics with 4-symbols (see [17] more details.).
Therefore there is no absolutely continuous invariant measure with
respect to the Lebesgue measure.

Figure 1. |S′α(0)| = 1.5,
α ; 0.5502.

Figure 2. |S′α(0)| = 1,
α ; 1.2564.

Figure 3. |S′α(0)| = 0.5,
α ; 2.3366.

Next, we shall apply our results (Theorem 2.11) to this family.
Because Tα(0) = 0, Tα(1) = 2, where Tα(x) := 2 eαx−1

eα−1 is mono-
tonic continuous function for every α > 0, there exists the unique
point xα ∈ (0, 1) such that Tα(xα) = 1. Let I0 = [0, xα) and
I1 = [xα, 1]. Since C∞-extensions of the maps Sα|I0 : I0 → [0, 1]
and Sα|I1 : I1 → [0, 1] are one-to-one and onto, there exist the local
inverses uα,j = (Sα|Ij )

−1 for j = 0, 1, we get

uα,j(x) =
1
α

log
(

1 +
eα − 1

2
(x + j)

)
. (15)

Thus the Perron-Frobenius operator corresponding to Sα is given by

PSα
f = f ◦ uα,0 · u′α,0 + f ◦ uα,1 · u′α,1. (16)

Therefore we have ‖PSα
f(x)‖∞ < ∞ for any continuous function f on

[0, 1].

Remark 3.1 In nonlinear physics, there always exists the problem of ob-
servability of chaotic dynamics because of noise. Actually, all real systems
are always subjected to noise. The stochastic stability (see the definition in
[4]) may enable us to observe deterministic dynamics. On the other hand,
the asymptotically periodicity induced by the spectral decomposition theo-
rem of Komorńık and Lasota only ensure an existence of the invariant density
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for random perturbation {Xε
n} so that it does not ensure the “observability

of chaotic dynamics”.

4. Proof

Proof of Proposition 2.2. We let the density of xn be denoted by fn ∈ D

(n ≥ 1) and desire a relation connecting fn+1 and fn.
We assume that fn exists for some n ≥ 0.
Let Ā = A\{1} for any Borel set A ⊂ [0, 1]. Note that since xn+1(Ω) ⊂

[0, 1) and S(xn) and ξn are independent for all n ≥ 0, we have that

( i ) µ({ω ∈ Ω : xn+1 ∈ A}) = µ({ω ∈ Ω : xn+1 ∈ Ā}),
( ii )

⋂
i=0,1{ω : S(xn(ω))+ξn(ω) ∈ Ā+ i}∩{ω : S(xn(ω))+ξn(ω) = 2} =

φ,
(iii) µ(S(xn(ω)) + ξn(ω) = 2) = µ(S(xn(ω)) = 1 and ξn(ω) = 1)

=
∫

S−1({1})
fn(x)dx

∫

{1}
g(y)dy = 0.

From (i)–(iii), we have that for any Borel set A ⊂ [0, 1] and n ≥ 0,

µ({ω ∈ Ω : xn+1 ∈ A}) = µ
({ω ∈ Ω : xn+1 ∈ Ā})

= µ
({ω ∈ Ω : S(xn(ω)) + ξn(ω)(mod 1) ∈ Ā})

= µ
({ω ∈ Ω : S(xn(ω)) + ξn(ω) ∈ Ā})

+ µ
({ω ∈ Ω : S(xn(ω)) + ξn(ω) ∈ Ā + 1})
(

+ µ({ω ∈ Ω : S(xn(ω)) + ξn(ω) = 2}) if 0 ∈ A
)

=
∫∫

S(x)+y∈Ā

fn(x)g(y)dxdy +
∫∫

S(x)+y−1∈Ā

fn(x)g(y)dxdy.

By a change of variables (see Lemma 5.2 in Appendix), this can be written
as

µ({ω ∈ Ω : xn+1 ∈ A}) =
∫

a∈Ā

{ ∫

B0(a)

fn(b)g(a− S(b))db

}
da

+
∫

a∈Ā

{ ∫

B1(a)

fn(b)g(a− S(b) + 1)db

}
da,
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where

B0(a) := {b ∈ [0, 1] : 0 ≤ a− S(b) ≤ 1} = {b ∈ [0, 1] : 0 ≤ S(b) ≤ a}

and

B1(a) := {b ∈ [0, 1] : 0 ≤ a− S(b) + 1 ≤ 1} = {b ∈ [0, 1] : a ≤ S(b) ≤ 1}

for each a ∈ [0, 1]. By condition C3, we have that

g(x− S(y)) = 0 for all y ∈ {b ∈ [0, 1] : x < S(b)} = [0, 1] \B0(x)

g(x− S(y) + 1) = 0 for all y ∈ {b ∈ [0, 1] : x > S(b)} = [0, 1] \B1(x)

for each x ∈ [0, 1]. Hence we get that

∫

[0,1]\B0(x)

fn(y)g(x− S(y))dy = 0 =
∫

[0,1]\B1(x)

fn(y)g(x− S(y) + 1)dy

for each x ∈ [0, 1]. This implies that

∫

[0,1]

fn(y)g(x− S(y))dy =
∫

B0(x)

fn(y)g(x− S(y))dy

∫

[0,1]

fn(y)g(x− S(y) + 1)dy =
∫

B1(x)

fn(y)g(x− S(y) + 1)dy.

Therefore we have that

µ({ω ∈ Ω : xn+1 ∈ A})

=
∫

a∈Ā

∫

[0,1]

fn(b)g(a− S(b))dbda +
∫

a∈Ā

∫

[0,1]

fn(b)g(a− S(b) + 1)dbda.

Since {1} is a 1-point set and h(a) :=
∫

b∈[0,1]
fn(b)g(a − S(b) + i)db ∈

L1([0, 1]), we have that for i = 0, 1,

∫

{1}

{ ∫

[0,1]

fn(b)g(a− S(b) + i)db

}
da =

∫

{1}
h(a)da = 0.

Then we have that
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µ({ω ∈ Ω : xn+1 ∈ A}) =
1∑

i=0

∫

a∈Ā

∫

b∈[0,1]

fn(b)g(a− S(b) + i)dbda

=
1∑

i=0

∫

a∈A

∫

b∈[0,1]

fn(b)g(a− S(b) + i)dbda.

Therefore using the fact that A was an arbitrary Borel set on [0, 1], we get
the density fn+1 of xn+1 defined by

fn+1(x) =
1∑

i=0

∫

[0,1]

fn(y)g(x− S(y) + i)dy a.e. x ∈ [0, 1].

On the other hand, we get that

∫

x∈[0,1]

1∑

i=0

g(x− S(y) + i)dx =
∫

[0,1]

g(x)dx = 1 for ∀y ∈ [0, 1]

by condition C3. Then by Fubini’s theorem, we have that

∫

[0,1]

fn+1(x)dx =
1∑

i=0

∫

y∈[0,1]

{ ∫

x∈[0,1]

fn(y)g(x− S(y) + i)dx

}
dy

=
∫

y∈[0,1]

fn(y)dy = 1.

Moreover fn+1 ≥ 0 because of the positivity of g and fn. Therefore if xn

has the density fn ∈ D, then fn+1 also have to exist in D.
From this fact, we can define a linear operator P : L1([0, 1]) → L1([0, 1])

by

Pf(x) =
∫

y∈[0,1]

f(y)
( 1∑

i=0

g(x− S(y) + i)
)

dy

which satisfies that

fn+1 = Pfn a.e.
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for all n ≥ 0. Next we shall show that P : L1([0, 1]) → L1([0, 1]) is a
Markov operator, that is, P is a linear operator which satisfies that Pf ≥ 0
and ‖Pf‖L1([0,1]) = ‖f‖L1([0,1]) for any f ∈ L1([0, 1]) with f ≥ 0. It is easy
to see that P is a positive linear operator on L1([0, 1]) because g is positive.
Moreover we have that for f ∈ L1([0, 1]) with f ≥ 0 by the Fubini’s theorem,

‖Pf‖L1([0,1]) :=
∫

[0,1]

Pf(x)dx

=
∫

x∈[0,1]

∫

y∈[0,1]

fn(y)
( 1∑

i=0

g(x− S(y) + i)
)

dydx

=
∫

x∈[0,1]

1∑

i=0

g(x− S(y) + i)
{ ∫

[0,1]

f(y)dy

}
dx

=
∫

[0,1]

f(y)dy = ‖f‖L1([0,1]).

Therefore P is a Markov operator. ¤

Proof of Theorem 2.8. From the spectral decomposition theorem by
Komorńık and Lasota [14], it is enough to show that P is constrictive: there
exists a δ > 0 and κ < 1 such that for every f ∈ D there is an integer n0(f)
for which

∫

B

Pnf(x)dx ≤ κ for all n ≥ n0(f) and B ⊂ [0, 1] with λ(B) ≤ δ,

where λ is the normalized Lebesgue measure on [0, 1].
Since g is the integrable function on R supported in [0, 1], for any ε > 0,

there exists 0 < δ(ε) ≤ 1 such that whenever λ(A) ≤ δ(ε),

∫

A

g(x)dx ≤ ε.

Take arbitrary 0 < ε < 1, hence there exists δ(ε) > 0 which satisfies∫
A

g(x)dx ≤ ε
2 for any Borel set A ⊂ [0, 1] with λ(A) ≤ δ(ε). Thus we

have that for each f ∈ D and n ≥ 1,
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∫

A

Pnf(x)dx =
∫

A

∫

[0,1]

Pn−1f(y)
( 1∑

i=0

g(x− S(y) + i)
)

dydx

=
∫

[0,1]

{ 1∑

i=0

∫

A−S(y)+i

g(x)dx

}
Pn−1f(y)dy.

Let λ̄ be the Lebesgue measure on R. Since λ̄(A − S(y) + i) = λ̄(A) =
λ(A) ≤ δ(ε) for each y ∈ [0, 1] and i = 0, 1, we obtain that

∫

A

Pnf(x)dx ≤ ε

∫

[0,1]

Pn−1f(y)dy = ε for all n ≥ 1, (17)

which implies that P is constrictive. ¤

Proof of Proposition 2.9. From the Theorem 5.6.1 in [14], it is enough to
show that there exists a set A ⊂ [0, 1] of nonzero measure λ(A) > 0 with
the property that for every f ∈ D, there is an integer n0(f) such that

Pnf(x) > 0 for a.e. x ∈ A and for all n ≥ n0(f). (18)

Let f ∈ D be arbitrary. From the assumption about g, there exists a
positive number 0 < ε < 1 which satisfies that there exists δ(ε) > 0 such
that for all λ(A) ≤ δ(ε),

∫
A

g(x)dx ≤ ε
2 . Take an arbitrarily 0 < δ < 1 with

1 − δ < δ(ε). Since λ((δ − S(y) + i, 1 − S(y) + i]) = 1 − δ ≤ δ(ε) for each
y ∈ [0, 1] and i = 0, 1, we have that

∫

δ<x≤1

Pnf(x)dx =
∫

[0,1]

{ 1∑

i=0

∫

(δ−S(y)+i,1−S(y)+i]

g(x)dx

}
Pn−1f(y)dy ≤ ε

for all n ≥ 1. From this inequality, we have that
∫

0≤y≤δ

Pnf(y)dy =
∫

[0,1]

Pnf(y)dy −
∫

δ<y≤1

Pnf(y)dy

≥ 1− ε > 0 (19)

for all n ≥ 1.
On the other hand, we have that
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Pn+1f(x) =
∫

[0,1]

Pnf(y)
( 1∑

i=0

g(x− S(y) + i)
)

dy

≥
∫

0≤y≤δ

Pnf(y)
( 1∑

i=0

g(x− S(y) + i)
)

dy. (20)

From the assumption about g, we have that

g(x− S(y)) + g(x− S(y) + 1) > 0 for all x ∈ [0, 1] and 0 ≤ y ≤ δ. (21)

From (19) and (21), we have that for a.e. x ∈ [0, 1],

Pnf(y)
( 1∑

i=0

g(x− S(y) + i)
)

for n ≥ 1

as a function of y, does not vanish in {0 ≤ y ≤ δ}. As a consequence,
inequality (20) implies (18) with respect to the set [0, 1], thus completing
the proof of the proposition. ¤

Proof of Theorem 2.11. Since the set of continuous functions on [0, 1] is
dense in L1([0, 1]) and Pε, PS are Markov operators, it is enough to prove
the theorem for continuous functions on [0, 1]. Indeed, for any f ∈ L1([0, 1])
and η > 0, there exists a continuous function fη on [0, 1] such that ‖f −
fη‖L1([0,1]) ≤ η. Thus if we have that limε→0 ‖Pεfη − PSfη‖L1([0,1]) = 0,
then we have that

lim
ε→0

‖Pεf − PSf‖L1([0,1])

= lim
ε→0

∥∥Pε(f − fη)− PS(f − fη) + Pεfη − PSfη

∥∥
L1([0,1])

≤ 2‖f − fη‖L1([0,1]) + lim
ε→0

‖Pεfη − PSfη‖L1([0,1])

≤ 2η.

From the fact that η was an arbitrary positive number, we have that
limε→0 ‖Pεf − PSf‖L1([0,1]) = 0.

Fix an arbitrarily continuous function f on [0, 1]. We split the integral
into two parts,
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‖Pεf − PSf‖L1([0,1]) =
∫

[0,ε]

|Pεf − PSf |dx +
∫

(ε,1]

|Pεf − PSf |dx

= C1(ε) + C2(ε) for 0 < ε < 1.

Firstly, we consider C1(ε). Let Hi(x, y) := PSf(x + i − εy)g(y)
×1[(x+i−1)/ε,(x+i)/ε](y) for i = 0, 1. Note that the essential supremum of
|PSf | is finite (i.e. ‖PSf‖∞ < ∞) from the assumption about PSf . Fix an
arbitrarily point x0 ∈ [0, 1]. Since

0 ≤ x0 + i− εy ≤ 1 for all y ∈
[
x0 + i− 1

ε
,
x0 + i

ε

]
,

we have that for each i = 0, 1,

|PSf(x0 + i− εy)| ≤ ‖PSf‖∞ for λ-a.e. y ∈
[
x0 + i− 1

ε
,
x0 + i

ε

]
.

Moreover we have that

[0, 1] ⊂
⋃

i={0,1}

[
x0 + i− 1

ε
,
x0 + i

ε

]
=

[
x0 − 1

ε
,
x0

ε

]
∪

[
x0

ε
,
x0 + 1

ε

]

for all 0 < ε < 1. Then we have that,
∣∣∣∣

∑

i={0,1}

∫

[0,1]

Hi(x0, y)dy

∣∣∣∣

≤
∑

i={0,1}

∫

[0,1]

|PSf(x0 + i− εy)|g(y)1[(x0+i−1)/ε,(x0+i)/ε](y)dy

≤
∑

i={0,1}
‖PSf‖∞

∫

[0,1]

g(y)1[(x0+i−1)/ε,(x0+i)/ε](y)dy

= ‖PSf‖∞
{ ∫

S1
i=0[(x0+i−1)/ε,(x0+i)/ε]∩[0,1]

g(y)dy

}

= ‖PSf‖∞
{ ∫

[0,1]

g(y)dy

}
= ‖PSf‖∞ (22)
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by condition C3. Since x0 was an arbitrary point in [0, 1], we have that

‖Pεf‖L2([0,1]) =
( ∫

[0,1]

∣∣∣∣
1∑

i=0

∫

[0,1]

Hi(x, y)dy

∣∣∣∣
2

dx

)1/2

≤ ‖PSf‖∞ < ∞.

This implies that the family {Pεf, 0 < ε < 1} is uniformly integrable. Then
we have that

limε→0 sup
0<η<1

∫

[0,ε]

|Pηf |dx = 0 (23)

by Lemma 4.10 in [8]. Since

∫

[0,ε]

|Pεf |dx ≤ sup
0<η<1

∫

[0,ε]

|Pηf |dx for 0 < ε < 1,

we have that

0 ≤ lim
ε→0

∫

[0,ε]

|Pεf |dx ≤ lim
ε→0

∫

[0,ε]

|Pεf |dx

≤ lim
ε→0

sup
0<η<1

∫

[0,ε]

|Pηf |dx = 0

by (23). Therefore we have that limε→0

∫
[0,ε]

|Pεf |dx = 0. Moreover since
the family {PSf} consisting of only one function PSf is obviously uniformly
integrable, we also have that

lim
ε→0

∫

[0,ε]

|PSf |dx = 0.

Therefore we have that

lim
ε→0

C1(ε) ≤ lim
ε→0

∫

[0,ε]

|Pεf |dx + lim
ε→0

∫

[0,ε]

|PSf |dx = 0. (24)

Note that [0, 1] ⊂ [
x−1

ε , x
ε

]
and

[
x
ε , x+1

ε

] ⊂ (1,∞) for each x ∈ (ε, 1].
Hence we have that
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Pεf(x) =
1∑

i=0

∫

[(x+i−1)/ε,(x+i)/ε]

PSf(x + i− εy)g(y)dy

=
∫

[0,1]

PSf(x− εy)g(y)dy.

Thus we have that with respect to C2(ε),

C2(ε) =
∫

(ε,1]

∣∣∣∣
∫

[0,1]

PSf(x− εy)g(y)dy − PSf(x)
∣∣∣∣dx

=
∫

(ε,1]

∣∣∣∣
∫

[0,1]

[PSf(x− εy)− PSf(x)]g(y)dy

∣∣∣∣dx.

Without loss of generality, we can assume that PSf(x) = 0 for all x 6∈
[0, 1] (for example set S(x) = x, f(x) = 0 for all x 6∈ [0, 1]). Since PSf is
an integrable function and the set {PSf} is compact in L1(R), we have that
for an arbitrarily small δ > 0, there exists ε0 such that for all ε ≤ ε0,

∫

[0,1]

|PSf(x− εy)− PSf(x)|dx ≤ δ

for each y ∈ [0, 1]. Thus we have that

C2(ε) ≤
∫

[0,1]

∫

[0,1]

|PSf(x− εy)− PSf(x)|g(y)dydx

≤ δ

∫

[0,1]

g(y)dy = δ.

Therefore limε→0 C2(ε) = 0. Then theorem is proved. ¤

Proof of Corollary 2.13. Since Pε is the Markov operator, we have that

‖Pε(f∗ − fε)‖L1([0,1]) ≤ ‖f∗ − fε‖L1([0,1]).

Hence we have that
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‖Pεf∗ − f∗‖L1([0,1]) = ‖fε + Pε(f∗ − fε)− f∗‖L1([0,1])

≤ ‖fε − f∗‖L1([0,1]) + ‖Pε(f∗ − fε)‖L1([0,1])

≤ 2‖fε − f∗‖L1([0,1]) → 0 as ε → 0.

Thus Pεf∗ converges to f∗ in L1([0, 1])-norm. On the other hand, from
Theorem 2.11, Pεf∗ converges to PSf∗ in L1([0, 1])-norm. Therefore PSf∗ =
f∗. ¤

5. Appendix

In this section, we give a supplementary explanation of the change of
variables theorem for the Lebesgue integral on R which is applied in the
proof of Proposition 2.2.

Lemma 5.1 ([7]) If h(t) ≥ 0 is an integrable function on [α, β] such that
there exists a increasing function H(t) satisfying H(t) =

∫ t

c
h(t)dt, where c

is a constant. Let a = H(α), b = H(β). Then we have that

∫ b

a

f(x)dx =
∫ β

α

f(H(t))h(t)dt

for all integrable function f defined on [a, b].

By using Lemm 5.1, we prove the following lemma.

Lemma 5.2 Let X and Y are independent random variables on a proba-
bility space (Ω,F , µ) with values in [0, 1] which satisfy the followings:

(1) X has the density function f : [0, 1] → R with f ≥ 0 such that

∫

[0,1]

f(x)dx = 1,

(2) Y has the density function g : R→ R with g ≥ 0 such that

supp(g) := {x ∈ R : g(x) 6= 0} ⊂ [0, 1] and
∫

[0,1]

g(x)dx = 1.

Then we have that for any Borel set A ⊂ [0, 1],
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µ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =
∫

x∈A

∫

y∈B(x)

f(y)g(x− y)dydx,

where B(x) = {y ∈ [0, 1] : 0 ≤ x− y ≤ 1} for each x ∈ [0, 1].

Proof. Since X and Y are independent,

µ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =
∫∫

{(x,y)∈[0,1]×[0,1]:x+y∈A}
f(x)g(y)dxdy.

Since f and g are positive integrable functions on [0, 1], we have

∫∫

{(x,y)∈[0,1]×[0,1]:x+y∈A}
f(x)g(y)dxdy < ∞,

so, we can apply the Fubini’s theorem to this integral. Indeed, we have that
∫∫

{(x,y)∈[0,1]×[0,1]:x+y∈A}
f(x)g(y)dxdy

=
∫

x∈[0,1]

∫

{y∈[0,1]: x+y∈A}
f(x)g(y)dydx.

Let a := x + y and Z(a) := a − x for fixed x ∈ [0, 1]. Since Z(a) is
absolutely continuous (i.e. Z(a) =

∫ a

x
1(t)dt), we have that by Lemma 5.1

and Fubini’s theorem, we have that
∫

x∈[0,1]

∫

{y∈[0,1]:x+y∈A}
f(x)g(y)dydx

=
∫

x∈[0,1]

∫

{a∈A:0≤a−x≤1}
f(x)g(a− x)dadx (change of variables)

=
∫

x∈[0,1]

∫

{a∈[0,1]:0≤a−x≤1}
f(x)g(a− x)1A(a)dadx

=
∫

a∈[0,1]

∫

{x∈[0,1]:0≤a−x≤1}
f(x)g(a− x)1A(a)dxda (Fubini’s theorem)

=
∫

a∈A

∫

x∈B(a)

f(x)g(a− x)dxda.
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Therefore we have that

µ({ω ∈ Ω : X(ω) + Y (ω) ∈ A}) =
∫

a∈A

∫

x∈B(a)

f(x)g(a− x)dxda. ¤
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