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Anisotropic motion by mean curvature in
the context of Finsler geometry

G. BELLETTINI and M. PAOLINI
(Received July 17, 1995)

Abstract. We study the anisotropic motion of a hypersurface in the context of the
geometry of Finsler spaces. This amounts in considering the evolution in relative ge-
ometry, where all quantities are referred to the given Finsler metric \phi representing the
anisotropy, which we allow to be a function of space. Assuming that \phi is strictly convex
and smooth, we prove that the natural evolution law is of the form “velocity =H_{\phi}”, where
H_{\phi} is the relative mean curvature vector of the hypersurface. We derive this evolution
law using different approches, such as the variational method of Almgren-Taylor-Wang,
the Hamilton-Jacobi equation, and the approximation by means of a reaction-diffusion
equation.
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1. Introduction

The concepts of surface energy, particularly that of anisotropic surface
energy and of related quantities such as the anisotropic mean curvature,
are becoming increasingly important in different contexts, as in the field of
phase changes and phase separation in multiphase materials [1], [29]. The
role played by anisotropy becomes crucial in the crystalline case [2], [3], [12],
[42], [43], [44], where the principal curvatures in the sense of differential
geometry cannot in general be defined pointwise everywhere [40]. However
the study of anisotropic evolution problems in the smooth case is a first
step for a better understanding of the role of anisotropy in the general case
in which no differentiability properties are assumed.

Anisotropic surface energy falls quite naturally within the geometry of
Finsler spaces [6], [8], [32], and many of the tools of convex geometry [39]
prove useful for related variational problems [9]. In particular, the idea is to
endow the space R^{N} with the distance obtained by integrating the Finsler
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metric, which we allow to be a function of space, and to work in relative
geometry. This approach is much in the spirit of the quoted papers of Taylor
and Almgren-Taylor-Wang and, for the two dimensional case, of Gage [22],
Gage-Li [23]. Some numerical simulations of anisotropic motion by mean
curvature based on this approach can be found in [36].

Let us denote by \phi : \Omega_{x}\cross R_{\xi}^{N}arrow[0, +\infty [ the Finsler metric, which we
shall always assume to be strictly convex in \xi and smooth. The natural law
of motion of a smooth hypersurface \Sigma=\partial E subjected to the anisotropy \phi

turns out to be

velocity= \kappa_{\phi} in the direction n_{\phi} , (1.1)

where n_{\phi} is the relative normal vector and \kappa_{\phi} is the relative scalar mean
curvature of \Sigma . Representing \Sigma as the zero level set \{u=0\} of a smooth
function u:\Omegaarrow R (u positive inside E), then n_{\phi} and \kappa_{\phi} are defined by

n_{\phi}(x)=\phi_{\xi}^{o}(x, \nabla u(x)) ,
\kappa_{\phi}(x)=-div n_{\phi}(x)-n_{\phi}(x)

\nabla(\log(\det_{N}\phi(x)))=:F(x, \nabla u, \nabla^{2}u) , (1.2)

where \phi^{o}=\phi^{o}(x, \xi^{\star}) is the dual of \phi , \phi_{\xi}^{o}=\nabla_{\xi^{\star}}(\phi^{o}) , and \det_{N}\phi(x) is the
inverse of the Lebesgue measure of the set \{\xi\in R^{N} : \phi(x, \xi)\leq 1\} . In
material science the vector n_{\phi} is also known as the Cahn-Hoffmann vector
[13], [14].

In the evolution law (1.1) no mobility factor appears, and consequently
the material properties just involve one anisotropic function. This differs
from the evolution considered in [18], [30], where a mobility factor is present.
In this respect it has to be stressed that, in the two dimensional case,
setting \phi^{o}(x, \xi^{\star})=\phi^{o}(\xi^{\star})=\rho\psi(\theta) (that is, independence of the position and
representation of \phi^{o} using polar coordinates in the \xi^{\star}-plane), the evolution
law (1.1) reads as

velocity= \kappa\psi(\psi+\psi’) in the euclidean direction,
velocity= \kappa(\psi+\psi’) in the relative n_{\phi} direction, (1.2)

where \kappa is the euclidean scalar curvature.
Let us describe in detail the content of this paper, which has been an-

nounced in [9]. In Section 2 we give some notation and we prove some
elementary properties of the Finsler metric \phi and of its dual \phi^{o} . In Section
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3 we introduce the relative derivative operators \nabla_{\phi} , div_{\phi} , \triangle_{\phi} and, conse-
quently, the concepts of normal vector n_{\phi} , scalar mean curvature \kappa_{\phi} , and
mean curvature vector H_{\phi}=\kappa_{\phi}\nu_{\phi} of a smooth hypersurface \Sigma=\partial E with
respect to \phi . Here \iota\nearrow\emptyset is the inner normal vector to \Sigma in the euclidean sense,
but normalized in such a way that \phi^{o}(x, \nu_{\phi}(x))=1 . Such definitions are
given in a global way, by viewing \Sigma as a zero level set of a smooth function
with non vanishing gradient on \Sigma . It turns out immediately that \kappa_{\phi} is not,
in general, a function of the euclidean scalar mean curvature.

The definitions of \kappa_{\phi} and H_{\phi} do not depend on the choice of u (PropO-
sition 3.1); this is basically consequence of the fact that the function F
defined in (1.2) is strongly geometric in the sense of Giga-Goto [24] (see also
[15], [25] ) , i.e. ,

F(x, \lambda p, \lambda X+p\otimes q+q\otimes p)=\frac{\lambda}{|\lambda|}F(x,p, X) ,

for any \lambda\neq 0 , p\in R^{N}\backslash \{0\} , q\in R^{N} . and any symmetric N\cross N matrix X .
It turns out also that \kappa_{\phi} can be characterized by using the properties of the
signed distance function \delta_{\phi}^{\partial E} (see (2.8) and Section 3.3) to the boundary
\partial E (see (3.16)).

A number of examples are given in Section 4. In particular, we consider
the general two dimensional case (see (4.3) and (4.1)) related to (1.3). The
cases \phi^{o}(x, \xi^{\star})=a(x)|\xi^{\star}| and \phi^{o}(x, \xi^{\star})=(\sum_{k=1}^{N}|\xi_{k}^{\star}|^{p})^{1/p} are discussed in
examples 4.1 and 4.6, respectively. In example 4.5 we show that, if \phi is
independent of the position x , then the relative curvature of the indicatrix
B_{\phi}:=\{x\in R^{N} : \phi(\xi)=1\} is identically N-1 , which is in accordance
with the isoperimetric property of B_{\phi} (see [9], [20], [21], [32], [39]).

The rest of the paper is devoted to justify law (1.1). In Section 5
we prove that the first variation along an arbitrary vector field g of the
perimeter functional P_{\phi} introduced in [4], [9] (see (2.6)) is given by

- \int_{\partial E}H_{\phi}gd\mathcal{P}_{\phi}^{N-1} ,

where d\mathcal{P}_{\phi}^{N-1} is the natural surface measure associated to \phi (see (2.7)).
The accordance of (1.1) with the general approach proposed in [3] is

considered at the end of Section 5. In Section 6 we consider the Hamilton-
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Jacobi equation

\frac{u_{t}}{|\nabla u|\phi^{o}(x,\iota/)}=div_{\phi}n_{\phi} ,

which is naturally associated to the anisotropic evolution, and in Section 7
we prove that a formal asymptotic expansion of the reaction-diffusion equa-
tion

u_{t}= \triangle_{\phi}u-\frac{1}{\epsilon^{2}}u(1-u^{2})

yields, in the limit as \epsilonarrow 0^{+} . again law (1.1). We conclude the paper with
Section 8, by defining an evolution law with respect to a Finsler metric and
to a measure (Remark 8.2), and by extending the previous results to the
anisotropic mean curvature evolution with a forcing term.

2. Notations and preliminaries

In the sequel \Omega will be an open connected subset of R^{N} . N\geq 2 .
Let E be a subset of R^{N} ; we indicate by 1_{E} the characteristic function

of E , i.e., 1_{E}(x)=1 if x\in E , and 1_{E}(x)=0 if x\in R^{N}\backslash E . We shall write
E\in C_{b}^{2}(\Omega) if E is a bounded open subset of \Omega of class C^{2} . If E\in C_{b}^{2}(\Omega) , its
boundary will be oriented by the inner unit normal vector field l\nearrow E to \partial E .
Whenever no confusion is possible, we shall write lJ in place of \nu_{E} .

We denote by \omega_{m} the Lebesgue measure of the euclidean unit sphere
in R^{m} , and by H^{m} the m-dimensional Hausdorff measure, for m\in N ,
0\leq m\leq N .

We denote by \cdot , |\cdot| and by d(\cdot, \cdot) the euclidean scalar product, the norm
and the distance in R^{N} . respectively; the symbol \otimes stands for the tensor
product.

Suppose that \phi : \Omega\cross R^{N}arrow[0, +\infty[is a continuous function satisfying
the properties

\phi(x, t\xi)=|t|\phi(x, \xi) x\in\Omega , \xi\in R^{N} , t\in R , (2.1)

\lambda|\xi|\leq\phi(x, \xi)\leq\Lambda|\xi| x\in\Omega , \xi\in R^{N} . (2.2)

for two suitable positive constants 0<\lambda\leq\Lambda<+\infty .
We say that \phi is strictly convex if for any x\in\Omega the map \xiarrow\phi^{2}(x, \xi)

is strictly convex on R^{N} We say that \phi is independent of the position if
\phi=\phi(\xi) .
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We shall indicate by B_{\phi}(x)=\{\xi\in R^{N} : \phi(x, \xi)\leq 1\} the unit sphere
of \phi at x\in\Omega . If \phi is independent of the position we set B_{\phi}=\{\xi\in R^{N} :
\phi(\xi)\leq 1\} .

The dual function \phi^{o} : \Omega\cross R^{N}arrow[0, +\infty [ of \phi is defined by

\phi^{o}(x, \xi^{\star})=\sup\{\xi^{\star} \xi : \xi\in B_{\phi}(x)\} (2.3)

for any (x, \xi^{\star})\in\Omega\cross R^{N} (see, for instance, [37]). One can prove that
\phi^{o} is continuous, convex, satisfies properties (2.1) and (2.2), and that \phi^{oo}

coincides with the convex envelope of \phi with respect to \xi . Moreover if
\nu\in S^{N-1}:=\{\xi\in R^{N} : |\xi|=1\} , we have

\phi^{o}(x, \nu)=\inf d(0, \mathcal{P}_{\iota/}) , (2.4)

where the infimum is taken among all affine hyperplanes \mathcal{P}_{U}\subset R^{N} which
are orthogonal to \nu and such that \mathcal{P}_{\iota/}\cap B_{\phi}(x)=\emptyset .

We say that \phi is a (strictly convex smooth) Finsler metric, and we shall
write \phi\in \mathcal{M}(\Omega) if, in addition to properties (2.1) and (2.2), \phi and \phi^{o} are
strictly convex and of class C^{2}(\Omega\cross(R^{N}\backslash \{0\})) . In particular \phi^{oo}=\phi .
For references about Finsler metrics see [6], [8], [32]; for what concerns the
geometric properties of convex sets we refer to [39], and references therein.

Given \phi\in \mathcal{M}(\Omega) we define the continuously differentiate function
\det_{N}\phi : \Omegaarrow ] 0, +\infty [ as

\det_{N}\phi(x)=(H^{N}(B_{\phi}(x)))^{-1} x\in\Omega . (2.5)

Accordingly, the volume element induced by \det_{N}\phi is
d7\{_{\phi}^{N}:=\omega_{N}\det_{N}\phi d7\{^{N}

Let \phi\in \mathcal{M}(\Omega) , and let E\subseteq R^{N} be a set of class C^{1} ; we define the
perimeter P_{\phi}(E, \Omega) of E in \Omega (with respect to \phi ) as

P_{\phi}(E, \Omega)=\omega_{N}\int_{\Omega\cap\partial E}\phi^{o}(x, l/_{E})\det_{N}\phi dH^{N-1} (2.6)

see [4], [9]. When \Omega=R^{N} the perimeter of E will be simply denoted by
P_{\phi}(E) . When \phi^{o} is independent of the position, the perimeter P_{\phi} coincides
with the surface energy integral considered in [3, Section 2.1.3].

We accordingly introduce the measure d\mathcal{P}_{\phi}^{N-1} supported on \Omega\cap\partial E

defined by

d\mathcal{P}_{\phi}^{N-1}=\omega_{N}\phi^{o}(x, \nu_{E})\det_{N}\phi dH^{N-1} (2.7)
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We denote by \delta_{\phi} the integrated distance associated to \phi\in \mathcal{M}(\Omega) , i.e.,
for any x , y\in\Omega we set

\delta_{\phi}(x, y)=\inf\{\int_{0}^{1}\phi(\gamma,\dot{\gamma})dt : \gamma\in W^{1,1}([0,1];\Omega) ,

\gamma(0)=x , \gamma(1)=y\} . (2.8)

In the sequel we shall use the following compact notation for \phi\in \mathcal{M}(\Omega)

and i\in\{1, \ldots, N\} :

\phi_{x}=\nabla_{x}\phi , \phi_{\xi}=\nabla_{\xi}\phi , \phi_{\xi^{i}}=\frac{\partial\phi}{\partial\xi^{i}} ,

\phi_{x}^{o}=\nabla_{x}(\phi^{o}) , \phi_{\xi}^{o}=\nabla_{\xi^{\star}}(\phi^{o}) , \phi_{\xi_{i}}^{o}=\frac{\partial\phi^{o}}{\partial\xi_{i}^{\star}} ,

\phi_{x^{i}\xi_{j}}^{o}=\frac{\partial^{2}(\phi^{o})}{\partial x^{i}\partial\xi_{j}^{\star}} , \phi_{\xi\xi}^{o}=\nabla_{\xi^{\star}}^{2}(\phi^{o}) , \phi_{\xi_{i}\xi_{j}}^{o}=\frac{\partial^{2}(\phi^{o})}{\partial\xi_{i}^{\star}\partial\xi_{j}^{\star}} .

The symbols \nabla u and \nabla^{2}u will denote the spatial gradient and the Hessian
matrix, respectively, of any smooth function u .

We shall also adopt the Einstein convention of implicitly assuming sum-
mation over repeated indices from 1 to N .

2.1. Elementary properties of Finsler metrics
If \phi\in \mathcal{M}(\Omega) , x\in\Omega , \xi , \xi^{\star}\in R^{N}\backslash \{0\} , t\neq 0 , then (2.1) yields

\phi_{\xi}^{o}(x, t\xi^{\star})=\frac{t}{|t|}\phi_{\xi}^{o}(x, \xi^{\star}) , \phi_{\xi\xi}^{o}(x, t\xi^{\star})=\frac{1}{|t|}\phi_{\xi\xi}^{o}(x, \xi^{\star}) , (2.9)

\phi(x, \xi)=\phi_{\xi}(x, \xi)\xi , \phi^{o}(x, \xi^{\star})=\phi_{\xi}^{o}(x, \xi^{\star})\xi^{\star} (2.10)

Lemma 2.1 Let \phi\in \mathcal{M}(\Omega) . For any x\in\Omega and \xi , \xi^{\star}\in R^{N}\backslash \{0\} we have

\phi(x, \phi_{\xi}^{o}(x, \xi^{\star}))=\phi^{o}(x, \phi_{\xi}(x, \xi))=1 . (2.11)

Proof. We can ignore the dependence on x . Let us prove that \phi^{o}(\phi_{\xi}(\xi))=

1 , the other equality being similar. Let \xi\in R^{N}\backslash \{0\} ; in view of (2.9) we
can assume that \phi(\xi)=1 . Clearly \phi_{\xi} is orthogonal to \partial B_{\phi} at \xi , and hence,
using (2.4) and (2.10),

\phi^{o}(\frac{\phi_{\xi}(\xi)}{|\phi_{\xi}(\xi)|})=\frac{\phi_{\xi}(\xi)\xi}{|\phi_{\xi}(\xi)|}=\frac{\phi(\xi)}{|\phi_{\xi}(\xi)|}=\frac{1}{|\phi_{\xi}(\xi)|} ,
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which is the assertion. \square

Thanks to (2.11) and (2.10) it follows that the vector \phi_{\xi}^{o}(x, \xi^{\star}) realizes
the maximum in definition (2.3) of \phi^{o}(x, \xi^{\star}) .

Lemma 2.2 Let \phi\in \mathcal{M}(\Omega) . For any x\in\Omega and \xi , \xi^{\star}\in R^{N}\backslash \{0\} we have

\phi^{o}(x, \xi^{\star})\phi_{\xi}(x, \phi_{\xi}^{o}(x, \xi^{\star}))=\xi^{\star} . \phi(x, \xi)\phi_{\xi}^{o}(x, \phi_{\xi}(x, \xi))=\xi . (2.12)

Proof. We can ignore the dependence on x . Let us prove the last equality
in (2.12), the other one being similar. Let \xi\in R^{N}\backslash \{0\} ; in view of (2.9)
and (2.1) we can assume that \phi(\xi)=1 . Define \xi^{\star}:=\phi_{\xi}(\xi) ; then by (2.10)
we have \xi^{\star} , \xi=\phi(\xi)=1 , and \phi^{o}(\xi^{\star})=1 by (2.11). Define \xi^{\star\star} :=\phi_{\xi}^{o}(\xi^{\star}) ;
then by (2.10) we have \xi^{\star\star}\cdot\xi^{\star}=\phi^{o}(\xi^{\star})=1 , and \phi(\xi^{\star\star})=1 by (2.11). Now
both \xi and \xi^{\star\star} realize the maximum in definition (2.3) of \phi^{o}(\xi^{\star}) ; from the
strict convexity of \phi^{o} we deduce that \xi=\xi^{\star\star} . Therefore

\xi=\xi^{\star\star}=\phi_{\xi}^{o}(\xi^{\star})=\phi_{\xi}^{o}(\phi_{\xi}(\xi)) .

\square

3. Definitions of \nabla_{\phi} , div_{\phi} , \triangle_{\phi} , n_{\phi} , \kappa_{\phi} . Connections with \delta_{\phi}

Given \phi\in \mathcal{M}(\Omega) and x\in\Omega , let T(x, \cdot) , T^{o}(x, \cdot) : R^{N} – R^{N} be the
maps Define by

T(x, \xi)=\phi(x, \xi)\phi_{\xi}(x, \xi) , T^{o}(x, \xi^{\star})=\phi^{o}(x, \xi^{\star})\phi_{\xi}^{o}(x, \xi^{\star})

\xi , \xi^{\star}\in R^{N}\backslash \{0\} , T(x, 0)=T^{o}(x, 0)=0 .

For simplicity, whenever x\in\Omega is fixed, we shall write T(\xi) , T^{o}(\xi^{\star}) instead
of T(x, \xi) , T^{o}(x, \xi^{\star}) .

Lemma 3.1 (Duality). We have

TT^{o}=T^{o}T=Id on R^{N}

Proof. Let \xi\in R^{N} ; using (2. 11) and (2. 12) we have

T^{o}(T(\xi))=\phi^{o}(x, T(\xi))\phi_{\xi}^{o}(x, T(\xi))

=\phi(x, \xi)\phi^{o}(x, \phi_{\xi}(x, \xi))\phi_{\xi}^{o}(x, \phi_{\xi}(x, \xi))

=\phi(x, \xi)\phi_{\xi}^{o}(x, \phi_{\xi}(x, \xi))=\xi .
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The equality TT^{o}=Id can be proved in a similar way. \square

If u:\Omegaarrow R is a smooth function with non vanishing gradient, we set

\nabla_{\phi}u=T^{o}(\nabla u)=\phi^{o}(x, \nabla u)\phi_{\xi}^{o}(x, \nabla u) , (3.1)

and, if \eta(x)=(\eta^{1}(x), . , \eta^{N}(x))\in R^{N} is a smooth vector field, we set

div_{\phi}\eta=div\eta+\eta\cdot\nabla (log (\det_{N}\phi) ),
\triangle_{\phi}u=div_{\phi}\nabla_{\phi}u . (3.2)

Note that if \phi(x, \xi)=(g_{ij}(x)\xi^{i}\xi^{j})^{1/2} is a riemannian metric, then (T(\xi))_{i}=

g_{ij}\xi^{j} . (T^{o}(\xi^{\star}))^{i}=g^{ij}\xi_{j}^{\star} where (g^{ij}) is the inverse of (g_{ij}) , and \triangle_{\phi} is the
Laplace-Beltrami operator associated to (g_{ij}) , since \det_{N}\phi=\sqrt{\det(g_{ij})} .

3.1. \phi-normal vectors
Let E\in C_{b}^{2}(\Omega) . Let u : \Omegaarrow R be a smooth function such that

\{u=0\}=\partial E , \{u>0\}=E , and \nabla u\neq 0 on \partial E . We define the inner
normal n_{\phi}(x) to \partial E at x\in\partial E with respect to \phi\in \mathcal{M}(\Omega) as

n_{\phi}(x):= \phi_{\xi}^{o}(x, \nabla u)=\frac{\nabla_{\phi}u}{\phi^{o}(x,\nabla u)} (3.3)

(compare [6, Ch. 1], [13], [14], [31], and [32, III. 16]), where we simply write
\nabla u in place of \nabla u(x) . It is immediate to verify that n_{\phi} depends only on
\{u=0\} and not on u itself. The vector n_{\phi}(x) can also be viewed as the
inverse of the Gauss map of \partial B_{\phi}(x) computed at the point \nabla u(x) (see [39],
p. 106). By (2.11) we have

\phi(x, n_{\phi})=1 on \partial E . (3.4)

If v\{x ) is the unit inner normal (in the euclidean sense) vector to \partial E

at x\in\partial E , we set

\iota/_{\phi}(x):=\frac{\nu(x)}{\phi^{o}(x,\nu(x))}=\frac{\nabla u}{\phi^{o}(x,\nabla u)} , so that \phi^{o}(x, \nu_{\phi}(x))=1 . (3.1)

Using (2. 10), (3.4), and (2. 12) we have

n_{\phi}\cdot\phi_{\xi}(x, n_{\phi})=1=n_{\phi}\nu_{\phi} on \partial E . (3.6)

Finally, by (3.3), (3.5), and (2.12) we have

n_{\phi}=\phi_{\xi}^{o}(x, \nu_{\phi})=T^{o}(\nu_{\phi}) , \nu_{\phi}=\phi_{\xi}(x, n_{\phi})=T(n_{\phi}) on \partial E . (3.7)
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Remark 3.1. If \Omega is bounded of class C^{1} , u\in C^{1}(\Omega) and g\in C^{1}(\Omega;R^{N}) ,
then the following Gauss-Green formula holds:

\int_{\Omega}udiv_{\phi}gdH_{\phi}^{N}+\int_{\Omega}\nabla ugdH_{\phi}^{N}=-\int_{\partial\Omega}ug\cdot\nu_{\phi}d\mathcal{P}_{\phi}^{N-1} (3.8)

(recall that \nu_{\Omega} and \nu_{\phi} point inward \Omega ).

Proof. Definition (3.2) of div_{\phi} yields

udiv_{\phi}g\det_{N}\phi=udivg\det_{N}\phi+ug\nabla(\log(\det_{N}\phi))\det_{N}\phi

=div(ug\det_{N}\phi)-\nabla ug\det_{N}\phi .

Hence, recalling definition (3.5), we get

\int_{\Omega}udiv_{\phi}gdH_{\phi}^{N}=-\omega_{N}\int_{\partial\Omega}ug\cdot\nu_{\Omega}\det_{N}\phi dH^{N-1}-\int_{\Omega}\nabla u\cdot gdH_{\phi}^{N}

=- \int_{\partial\Omega}ug\nu_{\phi}d\mathcal{P}_{\phi}^{N-1}-\int_{\Omega}\nabla ugdH_{\phi}^{N} ,

and this completes the proof. \square

3.2. \phi-mean curvature
Sticking with the notation of Section 3.1, we define the (scalar) mean

curvature \kappa_{\phi} of \partial E with respect to \phi as

\kappa_{\phi}:=-div_{\phi}n_{\phi}=-div n_{\phi}-n_{\phi}\nabla(\log(\det_{N}\phi)) , (3.8)

and the vector mean curvature H_{\phi} to \partial E as H_{\phi}:=\kappa_{\phi}\nu_{\phi} . When \phi^{o} is
independent of the position, the above definition of H_{\phi} coincides with the
relative curvature considered in [3, Section 2.2].

Denote by S^{N} the space of the real N\cross N symmetric matrices. From
the definition of \kappa_{\phi} we get

\kappa_{\phi}=-F(x, \nabla u, \nabla^{2}u) , (3.10)

where F:\Omega\cross R^{N}\backslash \{0\}\cross S^{N}arrow R is the continuous function defined by

F(x, p, X):=\phi_{x^{i}\xi_{i}}^{o}(x, p)+\phi_{\xi_{i}\xi_{j}}^{o}(x,p)X_{ij}

+ \phi_{\xi_{i}}^{o}(x,p)\frac{\partial}{\partial x^{i}} (log (\det_{N}\phi) ). (3.11)

Proposition 3.1 (Independence). Suppose u , v\in C^{2}(\Omega) are such that
\Sigma:=\{u=0\}=\{v=0\} , \nabla u . \nabla v>0 on \Sigma , and \Sigma is a compact subset of
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\Omega . Then

F(x, \nabla u, \nabla^{2}u)=F(x, \nabla v, \nabla^{2}v) on \Sigma . (3.12)

In particular \kappa_{\phi} depends just on the level set \{u=0\} and not on u itself.
Proof. Fix \overline{x}\in\Sigma . Possibly multiplying v by a positive scalar factor, we
can assume that \nabla u(\overline{x})=\nabla v(\overline{x}) . Set w=u-v . Then \overline{x}\in\Sigma\subseteq\{w=0\} ,
and \nabla w(\overline{x})=0 . A direct computation then shows that, if \tau_{1} , \tau_{2} are two
arbitrary tangent vectors to \Sigma at \overline{x} , then \tau_{1}\cdot\nabla^{2}w(\overline{x})\tau_{2}=0 . Now we observe
that the matrix \nabla^{2}w(\overline{x}) can be written as

\nabla^{2}w(\overline{x})=\nabla u(\overline{x})\otimes q+q\otimes\nabla u(\overline{x}) , (3.13)

for a suitable q\in R^{N} . This can be seen by writing \nabla^{2}w(\overline{x}) in a orthogonal
coordinate system formed by the normal vector p to \Sigma and by N-1 tangent
vectors.

Observe now that the function F defined in (3.11) satisfies the following
condition (see [24])

F(x, \lambda p, \lambda X+q\otimes p+p\otimes q)=\frac{\lambda}{|\lambda|}F(x,p, X) (3.14)

for all x\in\Omega , \lambda\neq 0 , p\in R^{N}\backslash \{0\} , q\in R^{N} , X\in S^{N} . Indeed, following
[15, Examples 5.9, 5.10], by differentiating the last equality in (2.10) with
respect to \xi^{\star} we get \phi_{\xi_{i}\xi_{j}}^{o}(x,p)p_{j}=0 , hence by the symmetry of \phi_{\xi\xi}^{o} we have

tr(\phi_{\xi\xi}^{o}(x, p)[p\otimes q+q\otimes p])=0 ,

and (3. 14) follows.
Then (3.12) follows from (3.13) and (3.14). \square

Observe that the convexity of \phi^{o} implies that F is degenerate elliptic,
i.e. ,

F(x,p, X+Y)\geq F(x,p, X) X, Y\in S^{N} , Y\geq 0 .

3.3. Connections between n_{\phi} , \kappa_{\phi} , and \delta_{\phi}

Denote by \delta_{\phi}^{\partial E} the \delta_{\phi} signed distance function to \partial E positive inside
E , i.e., \delta_{\phi}^{\partial E}(x)=-\delta_{\phi}(x, E)+\delta_{\phi}(x, R^{N}\backslash E) ; we shall assume that if E is
smooth then \delta_{\phi}^{\partial E} is smooth in a tubular neighbourhood of \partial E .

Lemma 3.2 Let E\in C_{b}^{2}(\Omega) , \phi\in \mathcal{M}(\Omega) , let \delta_{\phi} be the integrated distance
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associated to \phi , and let \delta_{\phi}^{\partial E} be the \delta_{\phi} signed distance function to \partial E positive
inside E. Then

\nabla\delta_{\phi}^{\partial E}=\nu_{\phi} on \partial E , (3.15)

and

\kappa_{\phi}=-div_{\phi}n_{\phi}=-\triangle_{\phi}\delta_{\phi} on \partial E . (3.16)

Proof. Let x\in\partial E . Since \nabla\delta_{\phi}^{\partial E} is orthogonal to \partial E at x we have
\nabla\delta_{\phi}^{\partial E}(x)=\mu\nu(x) for a suitable \mu\in R to be determined. In [9] it is proved
that

\phi^{o}(x, \nabla\delta_{\phi}^{\partial E}(x))=1 (3.17)

on each point x\in\Omega where \delta_{\phi}^{\partial E}(x) is differentiate (and hence almost ev-
erywhere on \Omega ). Using (3.17) and the smoothness of \phi^{o} and \delta_{\phi}^{\partial E} , we have
1=\phi^{o}(x, \nabla\delta_{\phi}^{\partial E}(x))=\mu\phi^{o}(x, \nu(x)) , so that \mu=(\phi^{o}(x, \nu(x)))^{-1} . i.e., (3.15).

Due to the independence of \kappa_{\phi} with respect to the function u proved in
Proposition 3.1, since \phi^{o}(x, \nabla\delta_{\phi}^{\partial E})=1 in a neighbourhood of \partial E , by (3.2)
and (3. 1) we have (3. 16). \square

4. Examples

Observe that \kappa_{\phi} is not, in general, a function of the sum \kappa of the
principal curvatures of \partial E : indeed, if \phi , \phi^{o} are independent of the position,
by (3.10) and (3.11) it follows that, if \nu=(\nu_{1}, \ldots, \nu_{N}) is the inner unit
normal (in the euclidean sense) vector field to \partial E , then

\kappa_{\phi}=-\phi_{\xi_{i}\xi_{j}}^{o}(\nu)\frac{\partial\nu_{j}}{\partial x^{i}}

which obviously is not a function of \kappa=-div \nu . For instance, let N=3,
take A , B , \alpha , \beta\in ] 0, +\infty [, set \xi^{\star}=(\xi_{1}^{\star}, \xi_{2}^{\star}, \xi_{3}^{\star}) , x=(x^{(1)}, x^{(2)}, x^{(3)}) , and
\phi^{o}(x, \xi^{\star}):=(A\xi_{1}^{\star 2}+B\xi_{2}^{\star 2}+\xi_{3}^{\star}2)1/2 , u(x)=x^{(3)}-\alpha(x^{(1)})^{2}-\beta(x^{(2)})^{2} ,
\Sigma:=\{u=0\} . Then, setting \overline{\nu}:=\nabla u(0)=(0,0,1) , at the point x=0 we
have

\kappa_{\phi}=-\phi_{\xi_{i}\xi_{j}}^{o}(\nabla u)u_{x^{i}x^{j}}=2\alpha\phi_{\xi_{1}\xi_{1}}^{o}(\overline{\nu})+2\beta\phi_{\xi_{2}\xi_{2}}^{o}(\overline{\nu})=2(\alpha A+\beta B) ,

which is not a function of \kappa=2(\alpha+\beta) .
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Observe also that if \partial E_{1} , \partial E_{2} are two smooth hypersurfaces osculating
each other at the point x then they have there the same \kappa_{\phi} .

Let us now show some examples in which we calculate \kappa_{\phi} for special
choices of \phi\in \mathcal{M}(\Omega) .

Example 4.1. Assume that \phi^{o}(x, \xi^{\star})=a(x)|\xi^{\star}| , for a suitable smooth func-
tion a : \Omega

– R with 0<\lambda\leq a\leq\Lambda<+\infty . Let E\in C_{b}^{2}(\Omega) having scalar
mean curvature \kappa= -div \nu on \partial E . Then a direct computation yields
\det_{N}\phi=1/(\omega_{N}a^{N}) , \nabla(\log(\det_{N}\phi))=-N\nabla a/a , and

n_{\phi}=alJ , div n_{\phi}=\nabla a\nu-a\kappa on \partial E ,

so that

\kappa_{\phi}=a\kappa+(N-1)\nabla a\nu on \partial E .

Example 4.2. Let N=2 , \phi\in \mathcal{M}(\Omega) , E\in C_{b}^{2}(\Omega) , and let x\in\partial E . Denote
by \tau(x) the unit tangent vector to \partial E at x . Then, if \kappa is the euclidean
scalar curvature of \partial E we have

\kappa_{\phi}=\kappa[\tau\phi_{\xi\xi}^{o}(x, \nu)\tau]-\phi_{x^{i}\xi_{i}}^{o}(x, \nu)

-\phi_{\xi}^{o}(x, \nu) \nabla(\log(\det_{N}\phi)) on \partial E , (4.1)

where \tau is understood as a column vector. In particular, if \phi does not
depend on the position, we have

\kappa_{\phi}=\kappa[\tau\cdot\phi_{\xi\xi}^{o}(\nu)\tau] on \partial E . (4.2)

Indeed, let L and N be the tangent and the normal lines to \partial E at x gen-
erated by \tau and 1/, respectively. Let \gamma be the local parametrization of \partial E

around x given by \gamma(t):=x+t\tau+f(t)\nu for t in a neighbourhood of 0,
where f is the signed distance function from any point of \partial E to L(f pos-
itive in the direction of \nu ). Hence f(0)=f’(0)=0, and f’(0)=\kappa(x) .
Set u(y)=y^{(2)}-f(y^{(1)}) , where y=(y^{(1)}, y^{(2)}) are the local orthogonal
coordinates associated to L and Nr We then have \partial E=\{u=0\} , and
\nabla u=\nabla y^{(2)}-f’(y^{(1)})\nabla y^{(1)} , \nabla^{2}u=-f’(y^{(2)})\nabla y^{(1)}\otimes\nabla y^{(1)} . It follows that
\nabla u(x)=\nu , \nabla^{2}u(x)=-\kappa\tau\otimes\tau . Then (4.1) follows from the definition of
\kappa_{\phi} (see (3.10)).

Example 4.3. Let N=2, and assume that \phi^{o}(x, \xi^{\star})=\phi^{o}(\xi^{\star})=\rho\psi(\theta) ,
where (\rho, \theta) are polar coordinates in the \xi^{\star}-plane, i.e., \xi_{1}^{\star}=\rho cos \theta , \xi_{2}^{\star}=
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\rho sin \theta . Then the curvature \kappa_{\phi} of a smooth curve \Sigma=\partial E is

\kappa_{\phi}=\kappa(\psi+\psi’) (4.3)

(compare [5], [28]). Indeed, if \iota\nearrow= ( \cos\theta , sin \theta ), then \tau= ( \sin\theta , - cos \theta ),
hence \phi_{\xi_{1}\xi_{1}}^{o}(\xi^{\star})=\rho^{-1}(\psi+\psi’) sin2 \theta , \phi_{\xi_{1}\xi_{2}}^{o}(\xi^{\star})=-\rho^{-1}(\psi+\psi’) sin \theta cos \theta ,
\phi_{\xi_{2}\xi_{2}}^{o}(\xi)=\rho^{-1}(\psi+\psi’) cos2 \theta . Hence on \Sigma , using (4.2) we have

\kappa_{\phi}=\kappa(\psi+\psi’)(\sin^{4}\theta+\cos^{4}\theta+2\sin^{2}\theta\cos^{2}\theta)=\kappa(\psi+\psi’) ,

which is (4.3).

Example 4.4. Let N=2 , \phi\in \mathcal{M}(\Omega) , and assume that \phi^{o}(x, \xi^{\star})=\rho\psi(x, \theta)

(see example 4.3). Let E\in C_{b}^{2}(\Omega) , \tau= ( \sin\theta , - cos \theta ) and \nu= ( \cos\theta , sin \theta ).
Then the relative curvature \kappa_{\phi} of \partial E is

\kappa_{\phi}=\kappa(\psi+\psi_{\theta\theta})-\nu\psi_{x}+\tau\psi_{x\theta}+(\psi_{\theta}\tau-\psi\nu) \nabla(\log(\det_{2}\phi))

(4.4)

where

( \det_{2}\phi(x))^{-1}=\frac{1}{2}\int_{0}^{2\pi}\psi(x, \theta)(\psi(x, \theta)+\psi_{\theta\theta}(x, \theta))d\theta (4.5)

(see [38]). Recalling that \rho=|\xi^{\star}| , \rho_{\xi}=-\nu , \theta_{\xi}=|\xi^{\star}|^{-1}\tau , one can check
that

\phi_{x^{i}\xi_{i}}^{o}(x, \nu)=\phi_{x^{i}\xi_{i}}^{o}(x, \xi^{\star})=\nu\psi_{x}-\tau\psi_{x\theta} . (4.6)

In addition

n_{\phi}=\phi_{\xi}^{o}(x, \nu)=\psi\rho_{\xi}+\rho\theta_{\xi}\psi_{\theta}=\psi\nu-\psi_{\theta}\tau . (4.7)

To prove (4.4), in view of (4.1), (4.3), (4.6), and (4.7), it remains to show
(4.5). Set \phi(x, \xi)=r\eta(x, \alpha) , where (r, \alpha) are polar coordinates in the \xi-

plane. We have \partial B_{\phi}(x)=\{(r, \alpha) : r=1/\eta(x, \alpha)\} , and hence

( \det_{2}\phi(x))^{-1}=\frac{1}{2}\int_{0}^{2\pi}\frac{1}{[\eta(x,\alpha)]^{2}}d\alpha . (4.8)

Fix x\in\Omega . Parametrizing \partial B_{\phi^{\circ}}(x) by \gamma(\alpha^{\star})=\nu(\alpha^{\star})/\psi(x, \alpha^{\star}) with \nu(\alpha^{\star})=

(cos \alpha^{\star} , sin \alpha^{\star} ), setting \tau(\alpha^{\star})= ( \sin\alpha^{\star} , - cos \alpha^{\star} ), we have

( \gamma’)^{\perp}=\frac{\psi_{\theta}\tau(\alpha^{\star})}{\psi^{2}}-\frac{\nu(\alpha^{\star})}{\psi} ,
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(where \tau^{\perp}=\nu , \nu^{\perp}=-\tau ) and hence |(\gamma’)^{\perp}|^{2}=|\gamma’|^{2}=(\psi_{\theta}^{2}+\psi^{2})/\psi^{4} .
Using (2.10) we have \phi_{\xi}^{o}(x, \gamma)

, \gamma=\phi^{o}(x, \gamma)=1 . Since we can charac-
terize (\gamma’)^{\perp}=-\phi(x, -(\gamma’)^{\perp})\phi_{\xi}^{o}(x, \gamma) , upon scalar product by \gamma we get

\phi(_{X}, -(\gamma’)^{\perp})=-(\gamma’)^{\perp} \gamma=\frac{1}{\psi^{2}(x,\alpha^{\star})} ,

which implies, recalling that \phi(x, -(\gamma’)^{\perp})=|\gamma’|\eta(x, \alpha) ,

\frac{1}{[\eta(x,\alpha)]^{2}}=\psi^{4}(x, \alpha^{\star})|\gamma’|^{2}=\psi^{2}+\psi_{\theta}^{2} . (4.9)

In addition one can show that

\frac{d\alpha}{d\alpha^{\star}}=\frac{\psi(\psi+\psi_{\theta\theta})}{\psi^{2}+\psi_{\theta}^{2}} . (4.10)

Then (4.5) follows from (4.8), (4.9), and (4.10).

Example 4.5. Let \phi\in \mathcal{M}(\Omega) be independent of the position. Then [9,
Section 6] B_{\phi} realizes the minimum perimeter P_{\phi} among all sets with fixed
Lebesgue measure (see also [20], [21], [39, p. 416]). Let us check that

\kappa_{\phi}=N-1 on \partial B_{\phi} (4.11)

(compare [32, Prop. 31. 1]). Take u(()=1-\phi(\zeta) for \zeta\in R^{N} ; then
\nabla u(()=-\phi_{\xi}(\zeta) . Hence from (2.12) we have \phi_{\xi}^{o}(\nabla u(\zeta))=-\zeta/\phi(() on
R^{N} Consequently, using (3.3), \kappa_{\phi}=-div_{\phi}(\phi_{\xi}^{o}(\nabla u(()))=div(\zeta/\phi(\zeta)) .
Then, as \zeta\cdot\phi_{\xi}(()=\phi(\zeta) by (2. 10), we have

div ( \frac{\zeta}{\phi(\zeta)})=\frac{div\zeta}{\phi(\zeta)}-\frac{\zeta\phi_{\xi}(\zeta)}{\phi^{2}(\zeta)}=\frac{N}{\phi(\zeta)}-\frac{1}{\phi(\zeta)}=\frac{N-1}{\phi(()} .

Assertion (4.11) follows.

Example 4.6. Let p\in ] 2, +\infty [, and let us consider the L^{p} norm

\phi^{o}(x, \xi^{\star})=\phi^{o}(\xi^{\star})=(\sum_{k=1}^{N}|\xi_{k}^{\star}|^{p})^{1/p}

Then a direct computation yields (with no implicit summation)

\phi_{\xi_{i}\xi_{j}}^{o}(\xi^{\star})=(p-1)\phi^{o}(\xi^{\star})^{1-p}[|\xi_{i}^{\star}|^{p-2}\delta_{ij}-\phi^{o}(\xi^{\star})^{-p}\xi_{i}^{\star}\xi_{j}^{\star}(|\xi_{i}^{\star}||\xi_{j}^{\star}|)^{p-2}] ,

where \delta_{ij} is the Kronecker symbol. We use the previous formula to compute
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the \kappa_{\phi} curvature of a paraboloid at the origin. Let \alpha_{i}\in ] 0, +\infty [ for i=
1 , . . N-1 , \Sigma=\{u=0\} , where u(x)=x^{(N)}- \sum_{j=1}^{N-1}\alpha_{j}(x^{(j)})^{2} . Then

\kappa_{\phi}(0)=-\phi_{\xi_{i}\xi_{j}}^{o}(\nabla u(0))u_{x^{i}x^{j}}(0)=2(1-p)\sum_{i=1}^{N-1}\alpha_{i}(\delta_{iN}-\delta_{iN})=0 .

This unexpected result, which shows that any smooth surface has zero rel-
ative \kappa_{\phi} curvature at x whenever the normal at x is in the direction of
one of the coordinate axes, can actually be explained by observing that the
function \phi(\xi)=(\sum_{i=1}^{N}|\xi_{i}|^{p’})^{1/p’} . for 1/p+1/p’=1 , is not of class C^{2}(R^{N}) .
Indeed, the indicatrix \partial B_{\phi} , which has formally curvature N-1 (see (4.11)),
is only of class C^{1,\alpha} , \alpha=p’-1\in ]0, 1 [ .

5. The first variation of the perimeter P_{\phi}

In this section we are concerned with the first variation of the perimeter
functional P_{\phi} (compare [3, Section 2.2] and [43]). We need the following
lemma.

Lemma 5.1 Using the notation of Section 3.1 and setting
\nu_{\phi}= ((\nu_{\phi})_{1}, . , (\nu_{\phi})_{N}) , n_{\phi}=(n_{\phi}^{1}, . . ’ n_{\phi}^{N}) , the following relations hold:

\phi_{x^{i}}^{o}(x, \nu_{\phi})+n_{\phi}^{j}\frac{\partial(\nu_{\phi})_{j}}{\partial x^{i}}=0 i=1 , . . , N ;

\phi_{x^{i}}(x, n_{\phi})+(\nu_{\phi})_{j}\frac{\partial n_{\phi}^{j}}{\partial x^{i}}=0 i=1 , \ldots , N ; (5.1)

\phi_{x}(x, n_{\phi})=-\phi_{x}^{o}(x, \nu_{\phi}) . (5.2)

Proo/. Formulae (5.1) follow by differentiating (3.5) (respectively (3.4))
with respect to x^{i} and using (3.7).

Differentiating (3.6) with respect to x^{i} one gets 0 = n_{\phi}^{j} \frac{\partial(\nu_{\phi})_{j}}{\partial x^{i}}

+( \nu_{\phi})_{j}\frac{\partial n_{\phi}^{j}}{\partial x^{i}} . Adding the two equalities of (5.1), (5.2) follows. \square

Concerning the variation of P_{\phi} we shall distinguish two cases: in (5.3)
we compute the variation along the n_{\phi} direction, and in (5.4) we compute
the variation along an arbitrary direction.
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Theorem 5.1 Let E\in C_{b}^{2}(R^{N}) , let u\in C^{2}(R^{N}) be such that E=\{u>
0\} , \partial E=\{u=0\} , and \nabla u\neq 0 on \partial E . Let U be a neighbourhood of \partial E

and let g\in C_{0}^{1}(U;R^{N}) . Let t\in R be sufficiently small, set \Phi_{t} : U – R^{N} ,
\Phi_{t}(x)=x+tg(x) , extended as \Phi_{t}(x)=x outside U , and let E_{t}:=\Phi_{t}(E) .
Then if g=hn_{\phi} for h\in C_{0}^{1}(U) and n_{\phi} defined in (3.3), we have

\frac{d}{dt}P_{\phi}(E_{t})_{|t=0}=-\int_{\partial E}\kappa_{\phi}hd\mathcal{P}_{\phi}^{N-1} , (5.3)

where d\mathcal{P}_{\phi}^{N-1} is defined in (2.7).
In the general case we have

\frac{d}{dt}P_{\phi}(E_{t})_{|t=0}=-\int_{\partial E}H_{\phi}gd\mathcal{P}_{\phi}^{N-1} . (5.4)

where H_{\phi}=\kappa_{\phi}\nu_{\phi} , and \nu_{\phi} is defined in (3.5).

Proof Let g=hn_{\phi} ; observe that \phi(x, n_{\phi})=1 on U by (3.3) and (2.11).
Define v : R^{N} – R by v(x+th(x)n_{\phi}(x))=u(x) . Then \partial E_{t}=\{v=0\}

and \nabla v\neq 0 on \partial E_{t} for small t . In the sequel, for consistency with matrix
notation, we shall understand z/ , \nabla u and \nabla v as column vectors. Recall that,
if x\in\partial E , then on \partial E_{t}

dH^{N-1}(x+thn_{\phi})=dH^{N-1}(x)+t[div(hn_{\phi})-l\nearrow J\nu]dH^{N-1}(x)

+o(t)dH^{N-1}(x) , (5.5)

where J=[ \frac{\partial}{\partial x^{j}}(hn_{\phi}^{i})]_{ij} is the Jacobian of hn_{\phi} , and div(hn_{\phi})-\nu J \nu is

the tangential divergence of hn_{\phi} relative to \partial E[41] . We preliminarly show
that

\frac{d}{dt}[\frac{\nabla v}{|\nabla v|}(x+thn_{\phi})]|t=0=-\nu J+(\nu J\nu)\nu , x\in\partial E . (5.6)

We have \nabla v=\nabla u(Id+tJ)^{-1} , so that \frac{d}{dt}\nabla v_{|t=0}=-\nabla uJ ; moreover \nabla v=

\nabla u on \partial E ( i.e. , for t=0). Hence

\frac{d}{dt}[\frac{\nabla v}{|\nabla v|}(x+thn_{\phi})]|t=0=-\frac{\nabla u}{|\nabla v|}J+(\nabla uJ\nabla v)\frac{\nabla v}{|\nabla v|^{3}}

=- \frac{\nabla u}{|\nabla u|}J+ ( \frac{\nabla u}{|\nabla u|}J \frac{\nabla u}{|\nabla u|} ) \frac{\nabla u}{|\nabla u|} ,
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which is (5.6). Note also that

P_{\phi}(E_{t})

= \omega_{N}\int_{\partial E}\phi^{o}[x+thn_{\phi}, \frac{\nabla v}{|\nabla v|}(x+thn_{\phi})]

\det_{N}\phi(x+thn_{\phi})dH^{N-1}(x+thn_{\phi}) . (5.7)

Hence, using (3.3), (5.6), (5.5), by differentiating (5.7) with respect to t

(and recalling the notation (2.7)) we have

\frac{d}{dt}P_{\phi}(E_{t})_{|t=0}=\omega_{N}\int_{\partial E}\phi_{x}^{o}(x, \nu) n_{\phi}h\det_{N}\phi dH^{N-1}

+ \omega_{N}\int_{\partial E}n_{\phi} (-\nu J+(\nu J\nu)\nu)\det_{N}\phi dH^{N-1}

+ \int_{\partial E}\nabla(\log(\det_{N}\phi)) n_{\phi}hd\mathcal{P}_{\phi}^{N-1}

+ \int_{\partial E}(div(hn_{\phi})-l/J\nu)d\mathcal{P}_{\phi}^{N-1}

=:I+II+III+IV. (5.8)

Recalling (3.5) and using the last equality of (3.6) we have

II=\int_{\partial E}-\nu_{\phi}Jn_{\phi}d\mathcal{P}_{\phi}^{N-1}+\int_{\partial E}\nu Jl/d\mathcal{P}_{\phi}^{N-1} ,

so that

II+IV=\int_{\partial E} [-\nu_{\phi}Jn_{\phi}+div(hn_{\phi})]d\mathcal{P}_{\phi}^{N-1} (5.8)

We observe now that, by (3.6), the last relation in (5.1), and (5.2) we have,
for i\in\{1, . . ’ N\} ,

( \nu_{\phi}J)_{i}=(\nu_{\phi})_{j}\frac{\partial}{\partial x^{i}}(hn_{\phi}^{j})=\frac{\partial}{\partial x^{i}}h+(\nu_{\phi})_{j}h\frac{\partial n_{\phi}^{j}}{\partial x^{i}}

= \frac{\partial h}{\partial x^{i}}-h\phi_{x^{i}}(x, n_{\phi})=\frac{\partial h}{\partial x^{i}}+h\phi_{x^{i}}^{o}(x, \nu_{\phi}) . (5.10)

Therefore, by (5.9) and (5.10) we have

I=\int_{\partial E}(\nu_{\phi}J-\nabla h) n_{\phi}d\mathcal{P}_{\phi}^{N-1} ,
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so that

I+II+IV=\int_{\partial E} [-n_{\phi}\nabla h+div(hn_{\phi})]d\mathcal{P}_{\phi}^{N-1}

= \int_{\partial E} div n_{\phi}hd\mathcal{P}_{\phi}^{N-1}-

Finally, by (5.8) and (3.9),

\frac{d}{dt}P_{\phi}(E_{t})_{|t=0}=\int_{\partial E} [div n_{\phi}+n_{\phi}\nabla(\log(\det_{N}\phi)) ] hd\mathcal{P}_{\phi}^{N-1}

=- \int_{\partial E}\kappa_{\phi}hd\mathcal{P}_{\phi}^{N-1} , (5.11)

and this proves formula (5.3).
Let now g\in C_{0}^{1}(U;R^{N}) be an arbitrary vector field. Write g=g^{\tau}+

(g \nu_{\phi})n_{\phi} , where g^{\tau} is a tangential vector field to \partial E . Repeating the com-
putation in (5.8) with hn_{\phi} replaced by g , one observes that the terms I , II ,
III, IV are linear in g , and that g^{\tau} does not give any first order contribution
to the variation. Using (5.11) we then get (5.4). \square

5.1. Direction of maximal slope of P_{\phi}

The following observation confirms the fact that, when dealing with
evolution problems related to the functional P_{\phi} , the natural direction (i.e.,
the direction of maximal slope of P_{\phi} ) of the displacement is \kappa_{\phi}n_{\phi} .

Let \phi\in \mathcal{M}(\Omega) , \Sigma=\partial E ; then to each square-integrable vector field
g : \Sigmaarrow R^{N} we can associate the norm ||g||_{\Sigma,\phi}^{2}:= \int_{\Sigma}(\phi(x, g))^{2}d\mathcal{P}_{\phi}^{N-1}- Let
L_{\phi}^{2}(\Sigma;R^{N}) be the space L^{2}(\Sigma;R^{N}) endowed with this norm. Denote by
dP_{\phi} the variation of the perimeter functional P_{\phi} as an element of the dual
of the normed space L_{\phi}^{2}(\Sigma;R^{N}) , and denote by \langle\cdot, \cdot\rangle the duality. Then the
following result holds.

Proposition 5.1 A scalar multiple of the vector field \kappa_{\phi}n_{\phi} is a solution
of the problem

\min\{\langle dP_{\phi}, g\rangle : ^{g\in L_{\phi}^{2}(\Sigma;R^{N})}\leq 1\} . (5.12)

Proof. Let \lambda\in R and set G(g)=\langle dP_{\phi}, g\rangle-\lambda(||g||_{\Sigma,\emptyset}^{2} - 1) for g\in
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L_{\phi}^{2}(\Sigma;R^{N}) . Then, if t \in R and f\in C_{0}^{1}(\Sigma;R^{N}) , we have

\frac{d}{dt}G(g+tf)_{|t=0}=\langle dP_{\phi}, f\rangle-\lambda\frac{d}{dt}(\int_{\Sigma}[\phi(x, g+tf)]^{2}d\mathcal{P}_{\phi}^{N-1)_{|t=0}}

= \langle dP_{\phi}, f\rangle-2\lambda\int_{\Sigma}\phi(x, g)\phi_{\xi}(x, g) fd\mathcal{P}_{\phi}^{N-1}

If g is a solution of (5.12) we have \frac{d}{dt}G(g+tf)_{|t=0}=0 . Using the fact that
dP_{\phi} can be identified with -\kappa_{\phi}\nu_{\phi} (see (5.4)), we then find

\int_{\Sigma}(\kappa_{\phi}\nu_{\phi}+2\lambda\phi(x, g)\phi_{\xi}(x, g)) fd\mathcal{P}_{\phi}^{N-1}=0 .

As f is arbitrary it follows that

\kappa_{\phi}\nu_{\phi}+2\lambda\phi(x, g)\phi_{\xi}(x, g)=0 , ||g||_{\Sigma,\psi=}1 .

By homogeneity and possibly rescaling g , we then get, using the notation
of Section 3,

T(x, g)=\phi(x, g)\phi_{\xi}(x, g)=\kappa_{\phi}\nu_{\phi} .

Hence by Lemma 3.1 we get

g(x)=T^{o}(x, \kappa_{\phi}\nu_{\phi})=\kappa_{\phi}\phi^{o}(x, \nu_{\phi})\phi_{\xi}^{o}(x, \nu_{\phi})=\kappa_{\phi}n_{\phi} ,

which concludes the proof. \square

5.2. The Almgren-Taylor-Wang approach
Motion by mean curvature can be approximated with the time discrete

procedure introduced by Almgren-Taylor-Wang [3]. In the context of Finsler
geometry such discrete process takes the following form.

Fix E\in C_{b}^{2}(R^{N}) , and let \tau>0 ; the “evolved” set E_{\tau} after the time
step \tau is defined as a minimum point for the energy functional

A_{\tau}(B)=P_{\phi}(B)+ \frac{1}{\tau}\int_{E\triangle B}\delta_{\phi}(x, \partial E)dH_{\phi}^{N} ,

where E\triangle B=(E\backslash B)\cup(B\backslash E) . Denoting by \delta_{\phi}^{\partial E} the \delta_{\phi} signed distance
function to \partial E , positive inside E , we have

A_{\tau}(B)=P_{\phi}(B)- \frac{1}{\tau}\int_{B}\delta_{\phi}^{\partial E}d7\{_{\phi}^{N}+C , (5.13)
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where C= \frac{1}{\tau}\int_{E}\delta_{\phi}^{\partial E}dH_{\phi}^{N} does not depend on B . Now, if E_{\tau} minimizes A_{\tau} ,
the first variation of A_{\tau} must vanish on E_{\tau} . Let us compute the variation
of the volume term of A_{\tau} in (5.13) in the n_{\phi} direction. Using the nota-
tion of Section 5 we have dH^{N}(x+thn_{\phi})=d\mathcal{H}^{N}(x)+tdiv(hn_{\phi})dH^{N}(x)+

o(t)d’H^{N}(x) , so that

\frac{d}{dt}\int_{\Phi_{t}(B)}\delta_{\phi}^{\partial E}(y)dH_{\phi}^{N}(y)_{|t=0}

= \omega_{N}\int_{B}\nabla\delta_{\phi}^{\partial E}n_{\phi}h\det_{N}\phi dH^{N}

+ \omega_{N}\int_{B}\delta_{\phi}^{\partial E}\nabla(\log(\det_{N}\phi)) n_{\phi}h\det_{N}\phi dH^{N}

+ \omega_{N}\int_{B}\delta_{\phi}^{\partial E}div(hn_{\phi})\det_{N}\phi dH^{N}

= \int_{B}\delta_{\phi}^{\partial E}div_{\phi}(hn_{\phi})dH_{\phi}^{N}+\int_{B}\nabla\delta_{\phi}^{\partial E}\cdot n_{\phi}hdH_{\phi}^{N}

Using (3.8) with u replaced by \delta_{\phi}^{\partial E} and g replaced by hn_{\phi} , we then have,
recalling definition (3.2) and (3.6),

\frac{d}{dt}\int_{\Phi_{t}(B)}\delta_{\phi}^{\partial E}(y)dH_{\phi}^{N}(y)_{|t=0}=-\int_{\partial B}\delta_{\phi}^{\partial E}hd\mathcal{P}_{\phi}^{N-1}\wedge

Using (5.3) we finally deduce that

0= \frac{d}{dt}A_{\tau}(\Phi_{t}(E_{\tau}))_{|t=0}=\int_{\partial E_{\tau}}(-\kappa_{\phi}+\frac{1}{\tau}\delta_{\phi}^{\partial E})hd\mathcal{P}_{\phi}^{N-1}

Hence each point x\in\partial E_{\tau} has distance \delta_{\phi}^{\partial E}(x)=\tau\kappa_{\phi} , which is consistent
with (1.1).

6. The Hamilton-Jacobi equation

In this section we consider the Hamilton-Jacobi equation for the mean
curvature evolution (whose euclidean version is given by u_{t}/| \nabla u|=div(\frac{\nabla u}{|\nabla u|}) )
with respect to the given Finsler metric \phi\in \mathcal{M}(R^{N}) . In this section we
shall assume that \phi , \phi^{o} satisfy the following further properties. Setting
\psi=\frac{1}{2}(\phi^{o})^{2} . there is a modulus \sigma and constants c , C with 0<c\leq C<+\infty

such that

|\phi_{x^{i}\xi_{i}}^{o}(x,p)-\phi_{x^{i}\xi_{i}}^{o}(y,p)|\leq\sigma(|x-y|) ,
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|\phi_{\xi_{i}\xi_{j}}^{o}(x,p)-\phi_{\xi_{i}\xi_{j}}^{o}(y, p)|\leq C|x-y| ,

| \phi_{\xi_{i}}^{o}(x,p)\frac{\partial}{\partial x^{i}} (log (\det_{N}\phi(x)) ) - \phi_{\xi_{i}}^{o}(y,p)\frac{\partial}{\partial x^{i}} (log (\det_{N}\phi(y)) ) |

\leq\sigma(|x-y|) , (6.1)

for any i , j=1 , \ldots , N , x , y\in R^{N} , p\in R^{N} with |p|=1 , and

c|\xi^{\star}|^{2}\leq\xi^{\star}\psi_{\xi\xi}(x,p)\xi^{\star}\leq C|\xi^{\star}|^{2}

x\in R^{N} , \xi^{\star}\in R^{N} , p\in R^{N}\backslash \{0\} . (6.2)

Proposition 6.1 The Hamilton-Jacobi equation for the mean curvature
evolution with respect to \phi\in \mathcal{M}(R^{N}) reads as

u_{t}=\phi^{o}(x, \nabla u)F(x, \nabla u, \nabla^{2}u) , (6.3)

where F is defined in (3.11). If u_{0} : R^{N}arrow R is a continuous function which
is constant outside a bounded subset of R^{N} and \phi , \phi^{o} satisfy assumptions
(6.1), (6.2), equation (6.3) with initial condition u(x, 0)=u_{0}(x) admits a
unique continuous viscosity solution. The level sets of the solution move
with speed \kappa_{\phi} in the direction n_{\phi} , and with speed \phi^{o}(x, \nu)\kappa_{\phi} in the euclidean
normal direction \nu .

Proof Since |\xi| transforms into \phi^{o}(x, \xi^{\star}) , \nabla u transforms into \nabla_{\phi}u , and
div transforms into div_{\phi} (see (3.1) and (3.2)), the equation u_{t}/|\nabla u|=

div ( \frac{\nabla u}{|\nabla u|}) transforms into

u_{t}=\phi^{o}(x, \nabla u) [div (\phi_{\xi}^{o} (x , \nabla u ) )+\phi_{\xi}^{o}(x , \nabla u) \nabla(\log(\det_{N}\phi)) ]
=\triangle_{\phi}u-\phi_{x}^{o}(x, \nabla u) \phi_{\xi}^{o}(x, \nabla u) , (6.4)

which can also be rewritten as

\frac{u_{t}}{|\nabla u|\phi^{o}(x,\nu)}=div_{\phi}(\phi_{\xi}^{o}(x, \nabla u))=div_{\phi}n_{\phi}=-\kappa_{\phi}

=F(x, \nabla u, \nabla^{2}u) , (6.5)

where \nu=\nabla u/|\nabla u| .
In order to apply Theorem 4.9 of [25], which will imply the existence

of a unique viscosity solution of (6.3) coupled with the initial condition
u(x, 0)=u_{0}(x) , we need to check properties (F1)-(F3) , (F9), (F1O) and the
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assumptions of Theorem 4.9 of [25]. We already know that the map

(x, p, X)\in R^{N}\cross(R^{N}\backslash \{0\})\cross S^{N}arrow-\phi^{o}(x,p)F(x,p, X)

is continuous and degenerate elliptic (see Section 3.2) which implies proper-
ties (F1), (F2) of [25], and is geometric. Properties (F3), (F9) and the last
assumption of Theorem 4.9 in [25] follow from (6.1) and (6.2). It remains
to check property (F1O) of [25].

To this aim, thanks to assumptions (6.1), it suffices to focus attention
to the second term in the right-hand side of (3.11), which (multiplied by
-\phi^{o}(x,p)) reads as

-\phi^{o}(x,p)tr(\phi_{\xi\xi}^{o}(x, p)X)=-tr(A(x,p)X)

where A(x, p)=\phi^{o}(x,p)\phi_{\xi\xi}^{o}(x, p) . One can easily see that A(x, p)=B(x,p)-
\phi_{\xi}^{o}(x,p)\otimes\phi_{\xi}^{o}(x,p) , where for simplicity we set B(x,p)=\psi_{\xi\xi} , i.e. A is a
negative rank-0ne perturbation of the symmetric positive-definite matrix
B , recall property (6.2). Using a well known interlacing property, eigen-
values \lambda_{2} , \ldots , \lambda_{N} of A are interlaced with the eigevalues of B , and hence
they belong to the interval [c, C](6.2) . Moreover A is degenerate, so that
\lambda_{1}=0 and the corresponding eigenvector is p (independent of x). With an
orthogonal transformation P(p) , independent of x , matrix P(p)^{t}A(x,p)P(p)
is zero in its first row and column and the remaining (N-1)\cross(N-1)
minor \overline{A} is symmetric, positive definite, with all eigenvalues in [c, C] , there-
fore it can be factorized as \overline{L}(x,p)\overline{L}^{t}(x,p) with a lower triangular matrix
\overline{L}(x, p) (Choleski factorization) [27]. From the upper bound on the eigen-
values, it follows that all elements of \overline{L}(x, p) are bounded by some constant
C independent of x and p. Moreover, since det \overline{L}(x,p) is bounded away
from 0 (lower bound on the eigenvalues), we also have that each diagonal
element in \overline{L}(x,p) is bounded away from zero uniformly with respect to x
and p. This is enough to recover Lipschitz continuity of \overline{L} with respect to
the elements of \overline{A} , and hence Lipschitz continuity in x . If now L(x,p) is
constructed by adding a zero column and row in front of \overline{L} , we can write
A(x,p)=\Sigma(x,p)\Sigma^{t}(x,p) with \Sigma(x,p)=P(p)L(x,p) . Reasoning as in [25,
p. 463] we then get property (F1O). Therefore equation (6.3) coupled with
u(x, 0)=u_{0}(x) admits a unique viscosity solution u .

By (3.7), (3.6), and (3.5), we have \nabla u\cdot n_{\phi}=|\nabla u|\nu\cdot n_{\phi}=|\nabla u|\phi^{o}(x, \nu) .
Hence the velocity of the front in the n_{\phi}-direction, which is given by
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\frac{-u_{t}}{\nabla un_{\phi}}=\frac{-u_{t}}{|\nabla u|\phi^{o}(x,\nu)} equals \kappa_{\phi} by (6.5). We conclude that the solu-

tion of equation (6.4) (or (6.5)) is such that its level sets move with a speed
\kappa_{\phi} in the direction n_{\phi} . In addition the speed of the fronts in the euclidean
normal direction \nu is -u_{t}/|\nabla u|=\phi^{o}(x, \nu)\kappa_{\phi} (compare (1.3)). \square

7. Asymptotic development of the reaction-diffusion equation

It is well known that the perimeter can be approximated, via De Giorgi’s
\Gamma-convergence [16], by a sequence of elliptic functionals [17], [33]. This result
has been generalized by many authors (see, among others, [7], [10], [34],
[35] ) . In particular, let W : Rarrow[0, +\infty [ be defined as W(s)=(1-s^{2})^{2} ,
set w=W’/2 , and let \phi\in \mathcal{M}(\Omega) . If \epsilon>0 let \mathcal{F}_{\epsilon} : BV(\Omega) –[0, +\infty] be
defined as

\mathcal{F}_{\epsilon}(u)=\{

\int_{\Omega}[\epsilon(\phi^{o}(x, \nabla u))^{2}+\epsilon^{-1}W(u)]dH_{\phi}^{N} if u\in H^{1}(\Omega) ,

+\infty elsewhere,
(7.1)

where BV(\Omega) is the space of the functions of bounded variation in \Omega[19] ,
[26], Then one can prove that the \Gamma-limit of the sequence \{\mathcal{F}_{\epsilon}\}_{\epsilon} on a set
E\in C_{b}^{2}(\Omega) is 2c_{0}P_{\phi}(E, \Omega) , where c_{0}= \int_{-1}^{1}\sqrt{W(s)}ds (see [10], [34], [35]). In
particular, there exists a sequence \{u_{\epsilon}\}_{\epsilon}\subseteq H^{1}(\Omega) of functions converging
to 1_{E}-1_{R^{N}\backslash E} in L^{1}(\Omega) such that \lim_{\epsilonarrow 0^{+}}\mathcal{F}_{\epsilon}(u_{\epsilon})=2c_{0}P_{\phi}(E, \Omega) . In [9] it is
proved that such a minimizing sequence can be defined by means of the
integrated distance \delta_{\phi} associated to \phi defined in (2.8). This fact, together
with (3.16), proves very useful for the asymptotic expansion of the Euler-
Lagrange equation of \mathcal{F}_{\epsilon} . Precisely, let \gamma : Rarrow ] –1, 1[ with \gamma(0)=0 be
the unique nondecreasing solution of the problem

min \{\int_{R}[|\sigma’(t)|^{2}+W(\sigma(t))]dt : \sigma\in H_{1oc}^{1}(R) , \lim_{tarrow\pm\infty}\sigma(t)=\pm 1\}

(with our choice of W one has \gamma=tgh). Then the sequence \{v_{\epsilon}\}_{\epsilon} of

functions of H^{1}(\Omega) defined by v_{\epsilon}:= \gamma(\frac{\delta_{\phi}}{\epsilon}) in a \epsilon-tubular neighbourhood

of \partial E (and suitably extended outside) converges to 1_{E}-1_{R^{N}\backslash E} in L^{1}(\Omega)

and is such that \lim_{\epsilonarrow 0^{+}}\mathcal{F}_{\epsilon}(v_{\epsilon})=2c_{0}P_{\phi}(E, \Omega)[9] .
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7.1. The reaction-diffusion equation associated to \mathcal{F}_{\epsilon}

Let us now calculate the first variation of \mathcal{F}_{\epsilon} . If h\in C_{0}^{1}(\Omega) we have,
integrating by parts,

\frac{d}{dt}\mathcal{F}_{\epsilon}(u+th)_{|t=0}=\int_{\Omega}[2\epsilon\nabla_{\phi}u\cdot\nabla h+\epsilon^{-1}hW’(u)]d7\{_{\phi}^{N}

= \int_{\Omega} [-2\epsilon\triangle_{\phi}u+\epsilon^{-1}W’(u)]hdH_{\phi}^{N} .

where \nabla_{\phi} and \triangle_{\phi} are defined in (3.1) and (3.2). Therefore, by making the
gradient flow of the functional \mathcal{F}_{\epsilon} using the scalar product

(f, g)= \int_{\Omega}fgdH_{\phi}^{N} . (7.2)

we are led to the equation

u_{t}=\triangle_{\phi}u-\epsilon^{-2}w(u) . (7.3)

Let us briefly show how a formal inner asymptotic expansion suggests that
equation (7.3) provides an approximation for an interface evolving by the
law (1.1), see also [11]. Since the reasoning is formal, we shall assume that
all quantities involved are sufficiently smooth.

Let u_{\epsilon} be a solution of (7.3) on \Omega\cross(0, T) with suitable intial datum and
boundary conditions, and for any t\in(0, T) we set \Sigma_{\epsilon}(t):=\{u_{\epsilon}(\cdot, t)=0\} .
Let O_{\epsilon}(t)=outside of \Sigma_{\epsilon}(t) , I_{\epsilon}(t)=inside of \Sigma_{\epsilon}(t) . The signed distance
function \delta_{\phi}^{\epsilon} : R^{N}x(0, T)arrow R from \Sigma_{\epsilon}(t) is defined by

\delta_{\phi}^{\epsilon}(x, t)=\{

\delta_{\phi}(x, \Sigma_{\epsilon}(t)) t\in(0, T) , x\in I_{\epsilon}(t)

0 t\in(0, T) , x\in\Sigma_{\epsilon}(t)

-\delta_{\phi}(x, \Sigma_{\epsilon}(t)) t\in(0, T) , x\in O_{\epsilon}(t) ,

where \delta_{\phi} is defined in (2.8). Let us denote for simplicity \delta_{\phi}^{\epsilon}:=\delta . The
projection s(\cdot, t) : \Omegaarrow\Sigma_{\epsilon}(t) is defined by \delta_{\phi}(x, \Sigma_{\epsilon}(t))=\delta_{\phi}(x, s(x, t)) . If
we assume that \Sigma_{\epsilon}(t) moves in the direction n_{\phi} with velocity V_{\epsilon} , we have
\partial_{t}\delta=-V_{\epsilon} , since, for small \sigma , using (3.4),

\delta(x, t+\sigma)=\delta(x, t)-\phi(x, V_{\epsilon}\sigma n_{\phi})=\delta(x, t)-V_{\epsilon}\sigma .

Here, in the first equality, we use the fact that the geodesic curve (with
respect to \delta_{\phi} ) connecting a point x close to \Sigma_{\epsilon}(t) with its projection s(x, t)
on \Sigma_{\epsilon}(t) has tangent vector at s(x, t) in the direction of n_{\phi} .
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Let us introduce the stretched variable y(x, t)=\delta(x, t)/\epsilon , and for s=
s(x, t) define U_{\epsilon}(y, s, t):=u_{\epsilon}(x, t) . Suppose that both U_{\epsilon} and V_{\epsilon} can be
expressed in terms of \epsilon (inner expansion) as follows:

U_{\epsilon}(y, s, t)= \sum_{i=0}^{+\infty}\epsilon^{i}U_{i}(y, s, t) , V_{\epsilon}(s, t)= \sum_{i=0}^{+\infty}\epsilon^{i}V_{i}(s, t) .

Note that U_{i}(0, s, t)=0 for all i\geq 0 . With the notation U_{\epsilon}^{(k)}=\partial_{y}^{k}U_{\epsilon} , we
have

\nabla U_{\epsilon}=\frac{1}{\epsilon}U_{\epsilon}’\nabla\delta ,

\frac{d}{dt}U_{\epsilon}=-\frac{1}{\epsilon}U_{\epsilon}’V_{\epsilon}+\partial_{s}U_{\epsilon}\partial_{t}s+\partial_{t}U_{\epsilon}=-\frac{1}{\epsilon}U_{0}’V_{0}+O(1) . (7.4)

Using (2.1) for \phi^{o} , (2.9), and (3.17), we find

\nabla_{\phi}U_{\epsilon}=\phi^{o} (x , \frac{1}{\epsilon}U_{\epsilon}’\nabla\delta) \phi_{\xi}^{o}(x, \nabla\delta)

= \frac{1}{\epsilon}U_{\epsilon}’\phi^{o}(x, \nabla\delta)\phi_{\xi}^{o}(x, \nabla\delta)=\frac{1}{\epsilon}U_{\epsilon}’\nabla_{\phi}\delta . (7.5)

Observe now that, by (3.17), (3.15), and the last equality in (2.10), we have

\nabla\delta\nabla_{\phi}\delta=\nabla\delta\phi_{\xi}^{o}(x, \nabla\delta)=1 .

Hence

div(\nabla_{\phi}U_{\epsilon})=\frac{1}{\epsilon}[\frac{1}{\epsilon}U_{\epsilon}’\nabla\delta\nabla_{\phi}\delta+U_{\epsilon}’div(\nabla_{\phi}\delta)]

= \frac{1}{\epsilon^{2}}U_{\epsilon}’+\frac{1}{\epsilon}U_{\epsilon}’div(\nabla_{\phi}\delta) . (7.6)

Using (7.5) and definition (3.2) of div_{\phi} , from (7.6) it follows that

div_{\phi}(\nabla_{\phi}U_{\epsilon})=\frac{1}{\epsilon^{2}}U_{\epsilon}’+\frac{1}{\epsilon}U_{\epsilon}’div(\nabla_{\phi}\delta)+\frac{1}{\epsilon}U_{\epsilon}’\nabla_{\phi}\delta\nabla(\log(\det_{N}\phi)) .

Hence

\triangle_{\phi}U_{\epsilon}=div_{\phi}(\nabla_{\phi}U_{\epsilon})=\frac{1}{\epsilon^{2}}U_{0}’+\frac{1}{\epsilon}U_{0}’\triangle_{\phi}\delta+\frac{1}{\epsilon}U_{1}’+O(1) . (7.7)

Recall now that \triangle_{\phi}\delta=-\kappa_{\phi}+O(\epsilon) by (3.16), where \kappa_{\phi} is computed on \Sigma_{\epsilon} ,

and that w(U_{\epsilon})=w(U_{0})+ \epsilon w’(U_{0})\sum_{i=1}^{+\infty}\epsilon^{i-1}U_{i}+O(\epsilon^{2}) . Let us insert (7.4)
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and (7.7) into (7.3), examine the resulting summands in increasing order
and equate them to zero. The starting \frac{1}{\epsilon^{2}} -term yields

U_{0}’(y, t)-w(U_{0}(y, t))=0 .

Using the boundary conditions provided by the outer expansion we obtain
U_{0}(y, t)=\gamma(y) . The \frac{1}{\epsilon} -term yields

U_{1}’-w’(\gamma)U_{1}=\gamma’(\kappa_{\phi}-V_{0}) .

For this problem to be solvable a compatibility condition between the right
hand side and the kernel of \mathcal{L}\eta:=\eta’-w’(\gamma)\eta , subject to Dirichlet vanishing
boundary conditions, must be enforced. Since Ker \mathcal{L}=span(\gamma’) , we get
( \kappa_{\phi}-V_{0})\int_{R}|\gamma’|^{2}dy=0 , which finally yields V_{0}=\kappa_{\phi} and U_{1}=0 .

8. Final remarks

Remark 8.1. Most of the results of the present paper can be generalized to
the case of a non symmetric \phi , i.e., when \phi satisfies the relation \phi(x, t\xi)=

t\phi(x, \xi) for any (x, \xi)\in\Omega xR^{N} . and t>0 , instead of (2.1). We can not
however expect symmetric results with respect to changes of orientation
of the surfaces. In the symmetric situation, for example, exchange of E
into R^{N}\backslash E yields to a sign change in l\nearrow\phi , n_{\phi} and \kappa_{\phi} , while H_{\phi} remains
unchanged. As a consequence, the evolution law “velocity =H_{\phi}

” remains
unchanged. This is no longer true in the non symmetric case.

The following remark arises from the fact that, if the Finsler metric \phi

depends on the position x\in\Omega , then the measure dH_{\phi}^{N} defined in Section 2
is the Lebesgue measure multiplied by a suitable density function.

Remark 8.2. Let m : \Omegaarrow ] 0, +\infty [ be a function of class C^{1}(\Omega) such that
0<c_{1}\leq m(x)\leq c_{2}<+\infty for any x\in\Omega , for two suitable positive constants
c_{1} and c_{2} . Define the non-negative Radon measure \mu on \Omega by \mu=mdx ,
where dx=dH^{N} stands for the Lebesgue measure. Then all results of the
paper remain valid if one replaces \omega_{N}\det_{N}\phi , dH_{\phi}^{N} . d\mathcal{P}_{\phi}^{N-1} , \nabla(\log(\det_{N}\phi))

by m , \mu , m\phi^{o}(x, \nu)dH^{N-1} , and \nabla(\log m) , respectively. As a consequence,
the quantities div_{\phi} , \triangle_{\phi} , \kappa_{\phi} are modified by means of these substitutions,
thus depending on the Finsler metric \phi and on the measure \mu , which are
now independent. Given \phi\in \mathcal{M}(\Omega) , the choice m=\omega_{N}\det_{N}\phi is quite
natural, since the corresponding measure \mu is the N-dimensional Hausdorff
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measure on \Omega with respect to the distance \delta_{\phi}[9] .

8.1. Anisotropic motion by mean curvature with a forcing term
All previuous results can be extended to the anisotropic mean curvature

evolution with a forcing term f\in C^{0}(\Omega\cross(0, T))\cap L^{\infty}(\Omega\cross(0, T)) such that
|f(x, t)-f(y, t)|\leq C|x-y| for some constant C>0 and any x , y\in\Omega ,
t\in(0, T) . Such evolution reads as

velocity= \kappa_{\phi}+f in the direction n_{\phi} . (8.1)

For instance, the functional P_{\phi} of Section 5 must be replaced with the
functional P_{\phi}(E)+ \int_{E}fdH_{\phi}^{N} , which, using the notation and the results of
Section 5, is such that

\frac{d}{dt}(P_{\phi}(E_{t})+\int_{E_{t}}fdH_{\phi}^{N})_{|t=0}=-\int_{\partial E}(\kappa_{\phi}+f)hd\mathcal{P}_{\phi}^{N-1}.,

consistently with (8.1).
Similarly, the functional A_{\tau} in Section 5.2 must be modified into

A_{\tau}(B)+ \int_{B}fdH_{\phi}^{N}

For what concerns Section 6 the Hamilton-Jacobi equation becomes

\frac{u_{t}}{\phi^{o}(x,\nabla u)}=-(\kappa_{\phi}+f) . (8.2)

Finally, it is enough to add to the functionals \mathcal{F}_{\epsilon} in (7.1) the term \int_{\Omega}ufdH_{\phi}^{N}

The reaction-diffusion equation associated to the Euler-Lagrange equation
of this new functional then reads as follows:

u_{t}= \triangle_{\phi}u-\frac{1}{\epsilon^{2}}w(u)-\frac{1}{2c_{0}\epsilon}f ,

where c_{0}= \int_{-1}^{1}\sqrt{w(s)}ds . One can check that, in this case, the term U_{1} in
general does not vanish.
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