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Isometries of C\™(X)

Risheng WANG
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Abstract. In this paper, we shall investigate the surjective isometries between the unit
spheres of C(()n) (X) and Cén)(Y) (X,Y CRY n > 1), and show that such isometries are
induced by continuously differentiable homeomorphism between Y and X, provided that
X and Y are locally compact subsets of R! and contained in the closures of their interiors,
respectively. In particular, the results are applied to representations of surjective linear
isometries and linear isometry groups, space classifications and the Tingley’s problem of
the C’én)(X ) type spaces. Some interesting examples are also given.

Key words: isometry, representation of isometry, linear isometry group, Tingley’s
problem.

Introduction

Letn > 1bean integer( a)nd X be a locally compact subset of R! without
n

isolated points. We use Cj; "’ (X) to denote the normed space consisting of
all functions which have up to n-th continuous derivatives! on X and vanish

at infinity, ie., {x € X : 31, L )(x)| > ¢} is compact in X for all £ > 0,

with the norm ||f|| = max,ex ZT:O ﬂ%@ We shall use S, x to denote
the unit sphere of C(()n)(X ).

Many authors ([1]~[5]) were interested in the study of surjective lin-
ear isometries between spaces of differentiable functions. For example, the
representation of surjective linear isometries between the complex normed
spaces Cé )( X) and C’(l)( Y') had been obtained by Cambern and Pathak in
, and for the case n > 1 and X =Y = [0, 1], the representation of isome-
trles of C(™[0,1] (complex case only) by Pathak in [4]. Up till now, there
are no results of the representations of linear isometries between C( )(X )
and C( )( Y) for general X, Y C R! and n > 1. The purpose of this paper is

to investigate the surjective isometries between the unit spheres of Cén)(X )
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and C(()n)(Y) (n > 1) under the condition that X and Y are contained in the
closures of their interiors, respectively. A complete representation of such
isometries has been obtained ([I’heorem 4.1). As a consequence, we can

obtain the representation of surjective linear isometries between C(gn)(X )

and C(()n)(Y) (Theorem 4.4) and answer the Tingley’ problem (proposed by
Tingley in [6]), which asks weather any surjective isometry between the
unit spheres of two normed spaces can be extended to a linear or affine
transformation. For the Tingley’s problem also see [8]~[12].

It is worth to mention that C'(()n) (X) has the following property:
fr9€CV(X) = fge CgV(X) and | fgl < fllgll

Therefore, C(()n)(X ) is a Banach algebra when it is complete?.

Throughout this paper, all normed spaces are assumed to be on the
scalar field K which is R! or C!. cl(A) or A denotes the closure of a set
A, and int A or ;)1 denotes the interior of a set A. In section §1 we prove
the existence of some (test) functions in Cén) (X), which is very useful in
this paper. Then we show some fundamental lemmas in section §2 and §3.
We state prove our main results in section §4, and give applications and

examples in section §5.

1. Test functions and so on
The following definition is from .

Definition 1 For a normed space F and f, g in E, f is called to be
smaller than g (denoted by “f <« ¢”) if ||f + k|| = ||f|| + ||#]| implies
lg + Rl =llgl| +||h]| for all h € E. If f 4 g and g « f, we write f ~ g.

Since the relation “«4” in normed spaces will be frequently used latter,
we bring all the required properties together into the next lemma.

Lemma 1.1

(1) Let E be a normed space with the unit sphere Sg. Then
a) VfeEEFE, f 40;

2 Although the completeness of the normed space Cén) (X) (n > 1) is not used in this
paper, for general locally compact subset X C R' without isolated points C’én) (X)(n2>1)
is not always complete. It is proved in that the normed space C(()n) (X) (n >1)is

complete if and only if (X \ X)' N X = 0.
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b) 04f= f=0;

c) f4g, g4h=— f ah;

d) f 4 g and numbers ky/ky >0 = ki f 4 kag;

e) fag=|f+gl=IflI+lgl;

f) f gk, gr— 9= f «yg;

g) f4g <= “heSg [[f+hl]=|fll+1= llg+hl = |gll+1".

(2) Let E be a strictly convex normed space. Then
h) f4g9g < g=kf for some k > 0;
) NS +all=1fI1+1gll, f#0= f «g;
) feegr, i = f#0, 9, > 9= f ag.
(3) Let E = (@Y ;cr Ei)pn be the £'-sum of normed spaces {E;};cr. Then
k) f=(fi) 4g=(gi) < VieT, f; 4g.
(4) Let K be the scalar field and n > 0. E = (K"t || - ||n), S**! =
{a=(a,...,an) : |aj] =1,0 < i < n}. Then
) a=(ao,...,an) 4«b=(bg,...,b;) <> a; 4b;,i=0,...,n;
m) a,beK'"! ad4b <= “Vac S a4a=— a4b’;
Il) ap € Sn+1, b, € ]Kn+1, o 4 by (Vk) and ap, — «, by — b,
then o 4 b.

Lemma 1.2 Let E and F be normed spaces with the unit spheres Sg
and Sp. Suppose that T : Sgp — Sp is an onto isometry. Then for any
f7 g€ SE;

f49g < Tf «4Ty.

Since the proofs of and 1.2 are routine or can be found in
[12], they are omitted here.

Definition 2 For f € C{™(X), if f = 0 define M; = 0, and if f # 0
define My ={z e X : Y 1, lf(r (x): = fll}-

In order to get a basic concept of C(()n)(X ), let us look what functions
may belong to C(()n) (X). Let I C R! be a closed interval such that I N X
is compact in X. Then for any function h that has up to n-th continuous
derivatives on R! with supp(h) = {z € R1: h(z) # 0} C I, we have h |x€
Con)(X )- In fact, h has up to n-th continuous derivatives on X and {z €
X3 h()(x|> e} CINXn{zeR: nowﬂ?_s}lscompactm
X for all e > 0.
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Ezample 1. Let n > 1 and I be a finite closed interval of R'. For any
zo € I and 8 > 0 (we assume that Ns(zg) C I), define

n!, T =xg
us(x) =14 0, |z — xg| > 6
linear, 0 <|z —xo| <6

for all z € R!. Write

Then hs € Cén)(l). When 6 > 0 is small enough, M}, = {zo} and | hs|| = 1.

Check. It is easy to see that hgn) (x) = us(z) and

, xT _tn—l T
hg)(:c):/ (z—-t) us(t)dt, r=0,...,n—1.

o (n—1—r)!
Thus,
- max{zo,z} ‘I}n—l—r
|h()(a:\_/ ——————ug(t)dt
d ) min{zg,z} (’I’L -1~ 7")' ( )
1Hrin—1-r
< 5n—.|I|—’ Veel, r=0,...,n—1
(n—1-—r)!
and
h(r "|m— l1—7r
Z' Z ”" sn(I|+ 1), Vzel

! !rl

(1.1)

We can see that hs € C(gn)(l ) and

=Y RN <y (1.2)
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If x € I\ Ns(zp), from h((sn)(a:) = us(z) = 0 and (1.1), we have

n (r) n=1 p(r)
Z |hs ' ()] _ Z |hs '(:C)| Sén(lll+l)n_1' (1.3)

l
r=0 r=0

From (1.2) and [1.3), if § is sufficiently small, hs attains its norm in Ns(zp).

Noting that ’dlf o) < |f'(z)| (where dl];g:) | may be the Dini derivatives3),
for zg — 6 < = < xg,

d &b (@)

&2 ~——Z"‘

T ()]

> - — n25(|l| + 1)"—1
and similarly, for 2o < < zg + 6,

dr Z r! _5 Z

r=0

< == +n?5(|I| 4+ 1)t
When ¢ is small enough,
|h(r >0, z€ (zg—96,x0)
da <r=0 ) N { <0, z€ (zg,x0+9).
Therefore, x¢ is the unique point in I where hg attains its norm, in other

(") (o
word, My, = {zo}. Also, ||hs|| = > 1y M — 1 0

Proposition 1.3 Let I be a finite closed interval of R' and zg € I. Then
for any o = (ag,...,a,) € K" (n > 1) with a,, # 0, there exists an h €
Cén)(Rl) such that supp(h) C I, My, = {z¢} and (h(zp),...,h™ (zg)) ~ a.

3The Dini derivatives are defined by: D* f(z) = Ahmo ) f—(—“i’L—AMx—) and Dy f(x) =

W; and a known fact is that: if f(x) satisfies that D% f(z), D™ f(z),

lim
Az—0%
D, f(z),D-f(x) > 0, Vz € (a,b), then f(z) is continuous and strictly increasing on

(a,b).
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Proof.  We can assume that |a,| = 1. Let
f(ac) = g + Oq(LU - :1:0) + -+ an_l(:c - J?())n_l, Va € R

Take a closed interval Iy C I and a function ¢ € Cén)(Rl) such that

zo € Ip, @(lp) =1, supp(p) CI.
Write
= (8 + anhs)p

where 6 > 0 is sufficiently small and hg is the same as in Example 1. It is
trivial that h € Cén)(Rl) and

1< Y P g < sl + sl
r=0

where || - || is the norm of C’én)(I). For z ¢ I, > h( )(m)' = 0; for
z € I\ Ns(zg), from

n (r) T n

r=0 : r=0 r=0
swﬁ&WM+§hm“%
< llel{8lIfllz + 6n(|I] +1)" "1} (1.4)

Thus, when 6 is small enough, h attains its norm in Ns(zo).
Let 0 be such that Ns(zo) C Iy and My, = {zo}. For z € Ns(zo),

n () n r
Z |h'" (z)]| _ Z %léf(r)(x) + anhg )(33)|

— ! — !
< Ol fllr + lhsllr = 81l Fllr + 1. (1.5)
If xg — 6 <z <z,
d & h0(a)
EE?; r!
= 2 2 A0 + e o)
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1

s g e(r+1) (r+1)
2 5= L V@) + a0 )

1 n—1 1 ( ) (r+1)
> - r+1 T
25 L Gl @) + ek )

1
> <= (8] fllr +1). (16)

Similarly, if g < x < z¢ + 6,
d - [ (2))]
%; r!

d K1
_ 2 - (r) (r)

Iz 2 1677 + anh) (@)

1 n—1 1 ( ) ( +1)
r+1 r
<=5+ X o) + ek w)
n—1
1
_ = (r+1) h(T'H)
1

<=2+l flr+1). (1.7)

When 6 is small enough,

d (< | (2 >0, z€ (xg—8,xp)
(s ) - o a8

—0 <0, z€ (xg,z0+9).

Therefore, zq is the unique point in I where h attains its norm, i.e., M}, =
{zo}. We also have supp(h) C I and (h(zo),...,h(™(zy)) ~ a from the
definition of h. []

Corollary 1.4 Let n > 1 be an integer and X C R! be a locally com-
pact subset without isolated points. Then for any zo € X, § > 0 and
a = (ag,...,an) € K" with a,, # 0, there exists an h € Sn,x such that
supp(h) C Ns(zo), My, = {zo} and (h(zo),..., M (z0)) ~ c.

Proof.  For any zo € X, 6 >0 and a = (ayp, ..., a,) € K™ with a, # 0,
take a closed interval I C R! so that I N X is compact and

Tg € ; CIC Ng(:l:o).
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By Proposition 1.3, there exists a g € C’(()n) (R!) such that supp(g) C I,

My = {xo} and (9(z0), - .., 9™ (20)) ~ c. Thus, a ~ g™ (z0) £ 0, |||l # 0
and the function h = W;LH € Sy x satisfies all that required. ]

Theorem 1.5 Let n > 1 be an integer and X C R! be a locally compact
subset without isolated points. Then for any f, g € C(()n) (X), f4g =
the following holds:

(1) g=0, or

(2) f#0and My C M,,

(f(@),.... fM(2)) < (9(2),...,g™(x)), Vze My

Proof. ~ “=" Suppose that f €4 g and g # 0, then f # 0. For any =z € My

and & € S"* with o 4 (f(),..., f((z)), take h € C{™(X) such that
My = {z} and a ~ (h(z),...,h™(z)). Hence

2’3: S () + hD(z)] Z": |f 7 ()] + [h7(2))

r=0 rt r=0 !
= £+ Al
and ||f + h|| = ||f]| + ||h]|. From the hypothesis, we get that ||g + h| =

||| + || h||; there exists an z; € M, N M}, such that

n (T) T +h(7’) xT
lg+h| = Z|g (1) (z1)]

r=0 r!
19t (1) + [ (21)]
L JRUED
= llgll + lIAl[-

Since M}, = {z}, we obtain z = z; € M, and h("(z) 4 g (z) (0 <7 < n).
Therefore, My C M, and

a~ (h(z),...,h" (z)) < (g(@),..., 9" ()).
From Lemma 1.1(4), we have
(f(@),--., f(2)) @ (g(2),...,g"M(z)), Vze M.

“<~=" When g = 0, f 4 g is evident. We assume that (2) is true. If
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lf + Rl = || fll + ||k for some h € C'(n) (X), then exists an z € X such that

(r)
If+R| = Zlf )fh ()|

Z'f \+h ()]

IIfIl + (IRl

Thus, o € My (1 My and [£0)(z) + K0 ()] = |f(@)] + b (@)] (0 < r <
n). From the assumption, z € My C My and f0)(z) 4 g (z), we have
9 (z) + ) (z)| = g ()] + \h(r)(l')l (0 <1 < n). Therefore,

h(r)
g T
||g+hu>z' P
—Z'g o)+ 1)
= Tl + I
and |lg + | = gl + ] So £ <. .

2. Some elementary lemmas

In this section, we always assume that n,m > 1 are integers and X,Y C

R! are locally compact subsets such that X C cl(X) and Y C cl(Y). T :
Sn.x — Smy is a surjective isometry.
Define

Py ={heSpx: #M;, =1, A" () #0(0<r<n,ze M)}
and PP ={h€S,y: "M,=1,h"(y)£0(0<r<mye M)}

Write Wy = X x S™t1 and Wy =Y x Sgm+l,
Lemma 2.1 TP} = Py

Proof. If f € P%, take y € My and h € Py such that M) = {y} and
(h(y),..., K™ (y)) €« (Tf(y),...,Tf™(y)). Then, in view of Theorem 1.5,
we have h € Tf, from which follows, by Lemma 1.2, T~ !(h) « f. Since
#M;=1and f)(z) #0 (0 < r < n,z € My), we have #Mp_1), = 1 and
TR (z) A0 (0<r<n,z € Mp-1), which implies that f ~ T7'h. It
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follows that Tf ~ h and Tf € PP. If g € PJ*, by considering T™!, it can
be shown that T~'g € P% and g = T(T1g) € TP%. ]

Lemma 2.2 For any w = (z,a) € WE, there exists a unique point
(y,8) = @7(w) € Wi such that for any f € S, x,

reM; and o<«(f(z),...,f™(z))
< ye€Mr; and B« (Tf(y),....,Tf™(y)).

Proof.  For any w = (z,a) € W%, take h € P} such that M, = {z}
and a ~ (h(:r),...,h(")(x)); then Th € PJ*. Set M7, = {y} and 3 ~
(Th(y),..., TR (y)). If f € S, x such that

z€M; and o< (f(z),...,f™(z)),

then we can easily find out that h <« f; henceforth, Th <« T'f, y € My, C
MTf and

B~ (Th(y),...,Th™(y)) < (Tf(y),..., Tf™(y)).

In the same way, if y € Mr; and 8 € (Tf(y),... ,Tf(m)(y)), then Th €« T'f
which implies h € f and z € M}, C My,

a~ (h(z),....,h"(z)) <« (f(),..., fP(z)).

(Lheorem 1.5 implies that such (y,3) € Wi does not depend on the
selection of h € Pg, we can define ®r(w) = (y, B). ]

Proposition 2.3 Suppose that f,fi € C’én) (X) satisfies that f =
limg o fx and My = {z}. Then z = limy_.oo 2k, for any selection of
Tk € Mfk'

Proof.  From limg_,o || fx]| = || f|| # O, there is ko such that

1
= £ < Z0f1 Wk > Ko

Thus, |[fil > 31 fIl (Vk > ko) and
m | f)
Mfkg{tEX: glf—rgZ%“f“}=C, Vk > ko

where C' is compact in X. Let x, € My, and {zy,} be any convergent
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subsequence with a limit point y € C. Since limg_,o, fx = f, we have

M= Jim e

= lim —lfk (k)]

l—»oo

f(r)
_ }:'

and y € My = {z}. It follows that z = limj_,oc ) for any =, € M;,.
[

Lemma 2.4 The map &7 : W3} — W{* determined in Lemma 2.2 is a
homeomorphism.

k k

0 0
Proof.  Let wy = (xg,04,...,«

n) — wo = (zo,ap,...,05) (as k — o0).
o]

Take finite closed intervals Iy and I such that zg € I C Io C I and IN X is
compact. Without loss of generality, we assume that Ns(zy) C Iy (Vk > 0)
for sufficiently small 6 > 0. Define

fu(@) = af +a¥ (@ —zp) + -+ af (@ — )", VzeR!,
and 9k = (6fk+aiclh5)(p7 k:O’laza”'
where § > 0 is small enough and ¢, hs are as in the proof of
1.3.

Replacing f by fr, g by gk, Ns(zo) by Ns(zx) and || f||1 by supy, || fillz
in [1.4) ~ ), for small enough § > 0, we have

gk € cé”)<X>, My, = {zx}
with

(af,. .. %) ~ (gr(ze), - ., g™ (k)

for all k£ > 0. It follows that ﬁ € Py (k> 0). Write MT(ﬁ = {yx}.
9k

It is clear that limg_,o gx = go, which implies limy_,o W;%”
limg_,oc Yk = yo; hence,

_90 _
Tooy 20

~
i
3,
E‘_?r‘
~—
—~~
<
G
~—
N~
_
3,
__a-
SN——
2
~~
<
tod
~—

N

s

~
—~
N
ol
N—r
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o g0 (m)
- T(B) (y) T(||go||)(m) v — &p(wo)
T () @ ()™ w)

(as k — 00).
®7 is continuous on Wg. By considering T~! and from the fact that

®T—1q)T - [dW;
brdr1 = Idwy

we obtain that &7 is a homeomorphism. []

Lemma 2.5 For any f € S, x, we have My = Mty and

(T(=H)@),--- . T(- )™ (y))
~—(Tf(y),....,Tf™(y), Vye€ Mr;.

Proof.  Let y € Mrs and S™! 5 3 <« (Tf(y),...,Tf(m)(y)). Take an
h € Py such that My = {y} and ((h(y),...,h™(y)) ~ 8. Then h < Tf,
which implies that T-1(h) « f and Mp-14) © My = M_;. Let Mp-1) =
{z}. It can be seen that z is the unique element that satisfies

> ST @) - T RO @) = [T () - T () =2,
r=0""

It follows that Mp-1(_p) = {z} and
(T~ (=h)(),..., T~ (=)™ (z))
~ (T h(z),..., T A (z))
<«—(f(z),..., f™M(2)).
Thus, T~'(—h) « —f and —h « T(—f), or h 4« —T(—f). Therefore,
(TS Mh - MT(—f) and
B~ (h(w)s- - h(y) € ~(T(=H)W).-... T~ 1),
From Lemma 1.1(4), we have

(Tf@),--- . TS ™ () « =(T(=H)®), -, T(— )™ ().

Replacing f by —f, we can get the desired result stated in the lemma.
[
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Remark. From Lemma 2.5, we can easily get

(I)T(LB,(X) - (yaﬁ) — (I)T(3:> _a) - (I)(ya _ﬂ)

Lemma 2.6 Let (z,a) € W% and (y,0) € Wi with op(z,a) = (y,0).
Then for any f € S, x with a € (f(x),..., f™(x)), we have

m |7 £(r) ) (g
go| frl(y)|22|f ()'

!
S

Proof.  Let Y7o L|f ("(z)| # 0. For any 6 > 0, take h € Sm,y such that
y € My, =B ~ (h(y), .., h™(y)) and supp(h) C Ns(y).

It follows that x € Mp-1j, and —a « (T~ 'h(z),..., T A (z)); hence

n

If =T | > Z—If”( ) =T ()]
—O

=25 (If(’"( )|+ T 0 (2)))

1'0
1
~ 1+Z~,yf()
r=0r'

and |Tf — k|| > 1+ 0o 4[f™(z)] > 1. There exists a 25 € supp(h)
C Ng(y) such that

1+ Z —1f<"> )| < TF—h|

= 5 le(’" (z5) — A (25)]

r= 0

§1+Z \Tfr)z(g

Thus,

| =1
> SIP@) <3 ST @)l (2.1)
! !
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Clearly, limg_.q 25 = y, from we obtain that

n

SETMCIED SEL

r=0 "
which remains true when Y7 1| f(")(z)| = 0. [

In order to discuss the functions with small supports, we introduce the
following definition.

Definition 3 Suppose {f;} is a net in C(()")(X). The supports of {f;} are
said to be convergent to some set A C R! (denoted by supp(fy) — A), if
for any €,6 > 0 there exists a dy such that

supp, (fq) = {tEX Z I(T) >5}_C_N6(A)a (Vd > do)

where Ng(A) = {t e R : |t — 2| < 6 for some z € A}.

Lemma 2.7 Let {fs3} C Sp x satisfy supp(fq) — {z}. Then supp(T'fy,)
—A={yeY :®p(z,a) = (y,8) for somea € S"! and 3 € Sm+iy,

Proof.  Suppose, on the contrary, that there exist €y, 8 > 0 and a subnet
of {f4}, we assume that it is the net {f;} itself, such that

Suppg, (de) g N60 (A)a vd.

(r)
Take yg ¢ Nip(A) with Y7, T @l > 0gg) Let g, € gm+1

with B4 € (T f4(ya), - .. ,ch(lm)(yd)) and (yq, Ba) = ®r(z4, 0g), g € ST
Applying Lemma 2.6,

n

Z—‘f zcd|>Z |de,~ (ya)| > eo.

r= O

It follows that x4 € supp,,(fq) for all d.
For any 6 > 0, there exists d; such that

T4 € suppe,(fa) C Ns(z), Vd > d;.

Thus limgzg = 2. By passing to a subnet of {a4}, we also assume that
limgag = a € S™L. Therefore,

11(1111 (yd,ﬂd) = thin (I)T(xda Otd) = (I)T(:Eu Oé) = (y7 /8)
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for some B3 € S™! and y € A. Particularly, limgyy = y € A. But,
y = limgyq ¢ Ns,(A) D A, which is a contradiction. Thus supp(7'fy) — A.
]

Lemma 2.8 There exists a homeomorphism 7 : X — Y such that
dr(z,a) = (1(z),*), Vee X,aec s
where * is an element depending on (z,a).

Proof.  According to the scalar field, the proof is divided into two cases.

Case 1: Theo scalar field is the real field R!.

Let zp € X be fixed. Assume that ®r(zg,a*) = (yo,3*) for some
Yo €Y, a* € S and 8* € S™*L. For any d > 0, there exists an f; € Sm.y
such that supp(fq) € Ng(yo), My, = {yo} and 5* < (fa(yo),- - -,fém)(yo))-
It follows that zo € Mp-15, N Mp-1(_;,) and supp(T~(£fz)) — B (d — 0),
where B = {t € X : ®p(t,a) = (y0,8),a € S"1, 3 € S™F!} is a finite

o

set and xgp € B. Since xg € X and B is finite, there is a 6g > 0 such that

Ns,(zo) C X and
Ns, (CC()) N Ng, (t) =0, Vte B\ {.’Eo}
For any € € (0,1) and 6 € (0, 8p), there exists a dy > 0 such that

supp, (I (£f4)) € Ns(B), 0<d < dy.

Particularly,
DTN ) (2o — 6
I U [,
r=0 r!

From

we have

r=1 r=1

<e+nd 0<d<dy
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and

r
r!

T E) D @o)] s T (& £) D (w0)]
> 2

< (e+mnéd)n, 0<d<dp.

Thus, noting x¢ € Mp-1(15,), we get

n-1m- ") (g - n)
ZIT 1(if@;)( @)l 5 g T 1(ifd'>( (o) | (2.2)
—0 T. n.
From Lemma 2.5
(T (o), .., T £ (20))
~ (T (= fa)(x0), - .., T~H(=£) ™ (z0)),
hence,
T7 " (@) ~ =T} (= f2)™ (o),  Vd. (2.3)

For any o € S"t1 let ®7(zg,a) = (y, 8) and take g € Sy, y such that
My = {y} and 3 € (9(y), ..., 9™ (y)). It follows that Mp-14 = {zo}. From
(2.2) and [2.3), we can show that

lim max{|[T g — T~ fu], [T g - 71 (=)} = 2.

By passing to a subnet, we may assume that lim,_, 1T 1g — T f4 = 2.

Therefore, limg g ||g — fq|| = 2, from which we can obtain that y = yp.
Thus,

Qy @7 (20, @) = yo = Qy r(z0,7), Va,vye€ 5",
where Qy : W' — Y is the natural projection.

(e}
Now, for any x € X we can take {zy} C X such that limy_,. 7 = .
From the result above,

QY@T(xkva) :QY¢T($k’7)7 Va,7 € Sn+17k: 1a2a°"-
By the continuity of ®7 and Qvy,
QyPr(z,a) = Jim Qy @r(zg, @)

= klir& Qy P (xk, )
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= Qy®r(z,v), Va,ye S™H
Define
7(z) = Qy®r(z,a), Ve X

where 7(z) does not depend on o € S™*1. Since ®7 is homeomorphic, it is
evident that 7 : X — Y is a homeomorphism and

Or(z,a) = (1(x),*), Vze€X, acsS™H!
where * depends on (z, «).

Case 2: The scalar field is the complex field C!.
Let x € X be fixed. Consider the following continuous map

¢ =Qy®r(z, ): " Y

where Qy : Wi — Y is the natural projection.
Take o* = (g, ..., an) € S™! and denote

B =S""\{B=(Bo,...,Bn) € ™

Br = a, for some 0 < r < n}.

Suppose that ¢(B) # {o(a*)}. There exists a 8 € B such that o(3) #
e(a*). Set

®r(z,0") = (p(a*), 1)
@T(xaﬁ) = (90(/8)"72)'

Take hy,hy € Py such that supp(hi) Nsupp(he) = 0, My, = {p(a*)},
My, = {¢(B)} and

71~ (h((@)),. .., h{™ (p(a*)))
vz ~ (ha(9(B)), -, k™ (0 (B))).

It is easy that h = hy + hy € S,y and h;,hy <€ h. It follows that
T~ 'hy, T 'hy « T h, z € Mp-1p,, N Mp-1p,, € Mp-1), and

o ~ (T 'y (z),..., T W () « (T h(z),..., T LA™ (z))
B ~ (T hy(z),..., T (z)) « (T h(z),..., T~ h™ (z))

or, ar, B « TR (2) (0 < r < n), where 8 = (fBo,...,B3,). Since o, #
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Br (0 <7 < n), we have
T () =0, r=0,...,n

which contradicts with * € Mp-1;,. Therefore, p(B) = {p(a*)}. By the
continuity of ¢, p(S"!) = {¢(a*)} and

Qror(z,a) = p(a) = p(a”), Ya e S

Now, write 7(z) = ¢(a*), which does not depend on the choice of
a* € "1 then

dr(z,a) = (r(z),*), Vae S

where x depends on (z, ). Since ®7 is a homeomorphism, we can verify
that 7: X — Y is a homeomorphism. 0

Corollary 2.9 If the unit spheres of C(gn) (X) and C(gm)(Y) are isometric,
then n =m and X,Y are homeomorphic.

Proof.  From [Lemma 2.8, X and Y are homeomorphic. Let £ € X be
fixed. Define ¢ : S?H1 — §m+l by

(1(z), () = ®r(z,0), Vae S

Since @7 is homeomorphic, we can see that ¢ is a homeomorphism. Hence
n=m. []

Lemma 2.10 Foranyz € X and f € S, x,

m n

1 1 ..
> ST @) =3 517 @)
r=0 " r=0""
Proof. It is an immediate consequence of and 2.8. L]

3. Some more lemmas

From now on, we will always assume that n = m and X, Y are locally
o [¢]

compact subsets of R! which satisfy: X C cl(X), Y Ccl(Y). T: Spx —
Sn,y is a surjective isometry.

Lemma 3.1 Let 1 be the same as in Lemma 2.8. Then for any x € X and
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f S Sn,X:
a 4 (f(x),..., fM(z) <= B4 (Tf(r(z)),...,TfM(r(z)))
where &7 (z,a) = (1(z),0), a,3 € SV,

Proof. = We only prove the “=" part. The proof is divided into three
steps.

Case 1: Let Yo f( ) 1’0)1 # 0 for some xg € X and f € S, x and
assume that f(”+1 is contmuous and bounded on Ng, (zo)\ {zo}, where
N&O(:C()) C X, bo > 0.

Take closed intervals Iy, I such that

zo€Io CIg C I CIC Ns(zo) C X,

and take ¢ € C(gn) (R!) such that ¢(Iy) = 1, supp(p) C I. Write

n (r+1)
Mo sp 3@
zel\ {zo} r—0 r

For any a = (ag,...,an) € S with o <€ (f(zo),..., f™(x0)), define
9(z) =g+ ai(z —z0) + -+ ap_1(x —zo)" L, VreR!
and
h(z) = —¢(z)(69(z) + anhs(z)), Yz €R!

where 0 < 6 < ép and hg is the same as in the Example 1 of §1. First, we
see that h € C'(()n)(Rl) and

"R (z
EPSLAt P

If 7 ¢ I, then 7o 2@ — o If 2 € I\ Nj(o), from

™R (2 ™ oM (z 819 h{
| r'()lgz‘ﬂor'( )|<Z g Z| ‘ )

r=0 : r=0 : r=0
< |lell(8llgllz + 6n(JI] + 1) )=5A (3.1)
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where A = |lo||(|lgllr + n(|I| + 1)™1). If x € Ng(zg) C Iy, we have

LR (@) O | = 89 (@) — anhy) ()

7!

< éllgllr + 1. (3.2)
When 0 < 6 < 8 is small enough, from (3.1) and we have

L< Al < 1+ llel{éllgls + on(lI] + 1)* '} = 1 4 6A. (3.3)

As in the proof of [Proposition 1.3, we can show that My = {z¢} and —a ~
(h(zo), . .., h™(zq)) for sufficiently small § > 0. It is also true that

h 1 A (o)
_ v () _ 0
Hf Tl H 2 gr!’f () = ]
n (r)
_ 7;) |f 7m(!CCO)l +1 (3.4)

It follows from (3.1) ~ that

n

") (g
Ha) =Y+ (lf(r)(w)l + M)

= il
(<1, ré¢l
<1+ 64, £L'EI\N5($0)

n|Fr)
1_+_Z|_'f.r—('x0_)_|, :L':CUO.
r=0 )

\

Noting that H(zp) > 1, when é € (0, 6p) is sufficiently small H(z) attains
its maximum max,ecx H(z) on Ns(zg) C Ip.
Assume that Ng(xzg) C Iy. When z¢ — 6 < = < z0,

i) o 11 @] LSS A )
de  — ||h| 6 = r! It = r!
n—=1 7 (r+1)
> 11 . 1 |h (a:)|(r+1)
1+0A6 R = (r+1)!
> 1 - M—n
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Similarly, when z¢y < x < zg + 6,

dH (x) <

— M .
de = s(lysa) Lt

Thus, for sufficiently small § € (0, éy), we have

dH(z) | >0, z€ (zo—60)
de | <0, € (zo,z0+86)

and H(z) attains its maximum only at the point zg, that is,
H(z) < H(zy), Ve X\ {zo}. (3.5)

In that way,

(g
> 210w - 28| < H) < o)

iy il
- i 2 |f<f><xo> -
~Ial “
Since ML” {zo} and —a ~ (ﬁl(,fﬁ),...,h(rﬂ)h(ﬁ”o)), it implies that
7(z0) € My () and —( ~ (T(ﬁ)(T(%)),...,T(HZ—”)(")(T(Q:O))), where

Or (0, @) = (7(z0), B)-
For any y € Y\ {7(z¢)}, from and [Lemma 2.10),

~ 1l Oy h A\
2 |Ts <uhu) (y)‘
Z'Tf n |T<”—z,,><r><y)|

rl

fidl RO ()|
‘Z Z IR

r=0
=H( “H(7(20))) = H(z0)

:Hf‘uhnH Hf (uhn>H'
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Thus, Tf — T(“—Zl—l) attains its norm only at the point 7(zg). Now,

t Z W. = |rs- T<||h||>H

= Lipso T(z0)) — h " T(z
= 3 6 o) 7( ) (r(ao)
B LD

r=0 ’
— 1+§“01f(r;(!$0)|

It implies that Tf(")(7(xg)) and —T(ﬁ)(T)(T(SCO)) have the same signs for
all=0,1,...,n and

5 ~ —<T<ﬁ)(7($o))a-»-,T<”—hﬂ)(n)(7($o))>
<« (Tf(r(zo), ..., Tf™(r(z))).

Case 2: For general f € S, x and zp € X.
Let I, Ip and ¢ be the same as in case 1. Define

F™ (xo) + boug, T = x
vs(z) =< fM(x), |z —xo| > 6 Vrel.
linear, 0<|z—zo| <6

Then, vs is continuous on I and convergent to f(™ uniformly on I (as

6 —0).
Define
_ T (117 _ t)n—l (n)
95(37) = /xo W(’U(S(t) — f (t))dt, Ve el
and
B f(=), z ¢l .
fs(z) = { @) + p(@)gs(@), @ el Ve e X.

It is evident that fs € C'(gn)(X ) and limg_.qg fs = f. That can be seen from
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supp(¢) C I and
Ifs = FIl = lleC-)gs()llr

= 1 n—r n
< ol Y =P lvs — ™l
= r!

n — 1 n—r
lvs — F™ e llell ng
r=0 "
— 0 (as 6 —0).

For small enough 6 > 0, the function |—i5— satisfies the followings:

o | 5]
fir (zo)
7, (") (20)|+6
(1) ?:0 r‘?“ 2 ) ./ ”(fa;(h [+ 7é O;

(n+1)

(2) fﬁTII is continuous and bounded on Ns(zo)\ {zo} (C X);
f5(z0) D)

(3) a< |f6(w0)l,...,l_f§(n)(—xo)'|' 3 V6>O.

By the results of case 1,

3 < (T(”;—Z”)(T(mo)), N .,T(Wﬁ—”>(n)(7(a}0))), V6 > 0.

It follows that

5 «lin (T(”jﬁ—jn)wwo», . ,T(Hﬁ—j”)(n)h(wo)))

= (Tf(r(z0)), ..., TF™(7(z0)))-

Case 3: For general z € X and f € S, x.

487

Take x), € X such that limgoozp = 2. If @ <€ (f(2),...,f™(z)),

there exists an h € S, x with the property that M} = {z} and (h(z),.

A" (z)) ~ a. Define

_ f+dh
If + dh]|’

which satisfies that limg_,q f3 = f and

f ()] + d|p) ()]
£ + dhl|

£ Vd >0

lffl’")(a:)lz £0, r=0,...,n,d>0.

ooy

Let S™ 5 oy < (fa(zk), ..., £ (zx)) and ®r(zk, ax) = (1(z), B) (VK).
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Then limg_, ar = o € (fa(x),... ,fén)(a:)). By the continuity of @7,
Or(z,a) = klim Or(xg, o)
= Jim (r(zx), )
—0o0

= (@), Jim B) = (r(2), 9).

From the result of case 2, oy < (fy(zk),..., én)(a:k)) implies that 0 «
(T fa(r(zk)), - .. ,Tfén)(T(wk))) for all k¥ and d. It induces that
P B

< Jlim (Dfa(r(er),..., T1" (7))
= (Tfo(r(2)),..., T (r(x))), Vd>0
and
B < m (Tfa(r(@)), ... TF;" (v(a)))
= (T1(r(@)),.... Tf™(r(x))).

Lemma 3.2 For any f,g € S, x and x € X,
(f(@),. -, fM (@) 2 (g(2),...,9™(2))
= (Tf(r(2)),...,TfM(r(z)) <« (Tyg(r(2)),...,Tg™(r(x))).
Especially,
(f(@),..., [P (@) ~ (9(x),. .., ()
= (Tf(r(@),....TfM(r(2)) ~ (Tg(r(2)),...,Tg"™(r(x))).
Proof. ~ We only prove the “=—=" part.
Let (f(z),...,f™(z)) < (g9(z),...,9™(x)). For any B € S**! with
B 4 (Tf(r(@),..., T (r(2))), from Lemma 1, a < (f(x),..., /)()),
where ®7(z,a) = (7(z),3). By the assumption,
a < (f(z),..., " (2)) 4 (g(x),...,g™(2));
applying again, we get

B < (Ty(7(2)),...,Tg™(r(x))).
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From Lemma 1.1(4), we obtain that
(Tf(r(z)),....Tf™(r(2))) « (Ty(r(z)),...,Tg"™(r(x))).

Lemma 3.3 LetO0<r<nandzx € X. Then
(1) for any f € Sy x,

fO(z) #£0 = TfO(r(z)) #0;
(2) fOT any fag € S’n.,X;
fO(@) ~ g (z) = TFO(r(z)) ~ Tg" (r(x)).

Proof.
(1) Case 1: r=mn Letx € X and f € Sy x with f™(z) #

0. For any d > 0, there exists an hy € S, x such that My, = {z},

supp(hg) C Ny(z) and (hg(z), ...,k () ~ (f(z),...,f™(z)). Then,
Mryp, = {7(z)}. Applying Lemma 2.7and Lemma 3.2, supp(Thy) — {r(x)}

and

(TF(r(@)),...,Tf™(r(z))) ~ (Tha(r(z)),. .., Th{ (r(z))).

Particularly,

T (r(z)) ~ TS (r(z)), Vd > 0.

Since 7 is homeomorphic, we have 7(z) € Y. Take €,6 > 0 such that
e+né < 1 and Ng(r(z)) C Y. From supp(Thg) — {r(z)}, there is a d such
that

supp, (Thq) C Ns(7(z)).
It follows that

Z lTh(")( ()]

_ Z |Th D (r(z) - 6) + / Z(U)C) Th Y (t)dt‘
T(x)—6
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< Z T'|Th ™) (r &) + Z 5 / IThS ™ (1)) dt

(x)—6
Th V)]
< dt
E-I_/m) 5(2 (r+1)!
<e+nd<l
and
IThY (7(2))| ITh (z))]
- Z > 0.

Thus, ThY" (7 (z)) ~ T ™ ((x)) # 0.
Conversely, from 7(z) € }9', if T (™) ((x)) # 0 then f™(z) # 0.

Case 2: 0<r<mn. Letzye€e )% and f(r)(:co) # 0. Take zg € I C )o(
and h € S, x such that

h(z) = a(z — z0)", Vzel
where a ~ f(")(zg). It is evident that

(f(z0), .-, F™ (x0)) < (A(xo),. .., h ™) (zp)).
It follows from that

(Tf(r(20)),---, TF ™ (7(20))) 4 (Th(r(20)),- .., Th™(r(x0))).
Especially,

T ") (7(xo)) 4 Th") (7 (x0)). (3.6)

Since h(™(z) = 0 (Vz € I C X), from the result of case 1,
Th™(y) =0, Vye (),

that means T'h is a polynomial of order k < n on 7(I). Since the number of
zero points of non-zero polynomials is finite, there exists an z € I so that

RU(e) £0(0<j<r), h U)() 0(r+1<j<n),
ThW(r(z)) # 0 (0<j <k), ThU(r(z))=0(k+1<j<n).
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From
{a € 8" a < (h(z),...,h " (z))}
~ {B € S : B «(Th(r(z)),...,Th™ (r(z)))},

we obtain that k = r and Th{")(7(z0)) = Th(")(r(z)) # 0. Thus,
implies that T'f(") (7(z¢)) # 0.
Similarly, if T f(")(7(z0)) # 0 then f()(zg) # 0, and

F(z0) #0 <= T (r(x0)) # 0.

(2) We only prove the “=” part. Let zg € X and () () ~ g(") (o)
with 0 < r < n. Without loss of generality, we can assume that f{")(zq) #

0 # g(")(z0). Let zg € ; CIC )% and h € S, x such that
h(z) =a(x —z9)", Vrel

where 0 # a ~ f(" () ~ g (z0). Then h)(z¢) =0 (5 # r), h( (zg) = rla
and

(f($0)7 AR f(n)(xo))v (9(0), ce ,g(n)(xo)) < (h(:l:o), T h(n)(wO));
it follows from and (1) above,
(Tf(r(0)),-- -, TF ™ (1(20))) 4 (Th(r (o)), .., TR™ (7 (x0))),
(Tg(T(:Eo)), T 7Tg(n)(7-($0))) < (Th(T(O))v e aTh(n)(T(xO)))’
and T £ (1(xq), Tg\") ((x0)) € Th{") (r(x)) # 0. Therefore,
Tf0(1(xo)) ~ Tg" (r(z0)).

Lemma 3.4 There erist continuous maps ¢, : X x S1 — S1 (0 <r < n)
such that o, (z, - ) : St — S is homeomorphic for allz € X and 0 < r < n,
and

r(z, (a0, - Q) = (T(.CII), ((,00(3?,0[0),. -y on(T, an)))
forallz € X and o, € ST (0 <7 < n).

Proof.  For any (z,a) € X x S! and 0 < r < n, from Lemma 3.3, there
exists a unique 3 = ¢,(x,a) € S! such that if f € Sn,x and f(z) ~ o
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then Tf")(r(z)) ~ 8. For any (z, (ag, ..., @) € X x S™+L. write
or(z, (a0, .., om)) = (1(2),7), 7€
Take an h € S, x with M), = {z} and
(h(z), ..., R (z)) ~ (ag, ..., an),
then My = {r(z)} and
(Th(r(z),...,Th"™ (r(z))) ~ .
Also, from h(")(z) ~ o, (0 <7 < n), we have
Th") (1(z)) ~ ¢r(z,a,), 0<r1 < n.
It follows that v = (do(x, a), . . ., n(z, an)) and
Or(z, (o, ..., an)) = (1(z), (do(z, 20), - - -, n(2, an))) (3.7)

forallarze)%amndozreS’1 (0 <r <n).
Define ¢, : X x S**1 — §1 (0<7<n)by

dr(z,a) = (1(z), (Yo(z, @), ..., ¥n(z,a))), V(z,a)€ X x S

Suppose that 0 < r < n, z € X and a = (ag,...,an), 8= (Bo,...,0n) €
S"*t! with o, = 3,. Take z € X such that z;, — z. From (3.7), we have

¢T(:1:k,a) = ¢r(xk, ) = 'Lﬁr(xk,ﬂ), Vk > 1. (3.8)
By the continuity of 1, and taking limit in [3.8), we get ¥..(z, @) = ¥,(z, 3),
that means 9, (x, a) only depends on (z,a,) (where a = (ay,...,a,)). Set

Sor($7ar):¢r($,a), Vaz(ag,...,an), 0<r<n.

Then,

r(z, (00, .. an)) = (r(@), (¢0(2,20), -, Pn(2, @n))).

Since @7 is homeomorphic, we can check that ¢, : X x S — S! is continu-
ous (0 <7 <n)and ¢.(z, -): S' — S! is homeomorphic for all z € X and
0<r<n. ]

Lemma 3.5 LetT, 7 and ¢, be the same as above. Then for any 0 < r <
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n,zeX,aeS and f € S, x,
a < f(z) = ¢p(z,0) «Tf(r(2)).
Especially, for 0 <r <n,z € X and f € Sy x,
f(2) =0 <= TfO(r(z) =0.

Proof. Let a € S! such that o 4 f{)(z). Write a* = (a0, ...,an), where
a; € S'a; 4 fU(x) (j # r) and a, = o. From o* <« (f(x),..., f™(z)),
applying and 3.4, we have

(P0(2, 00)s -, o (@ an)) < (TF(7(2)), .., T (r())).

It follows that
or(z,0) = pr(z, o) «TF(7(z)).
Conversely, if o, (z,a) €4 T (r(x)), let g* = (Boy .-, Bn) € S™HL,
where 3; « TfU)(r(x)) (j # r) and B, = ¢,(z,a). Then
B8 «(Tf(r()),...,Tf™(r(z))).

Thus, from and 3.4, o* = (ag,...,an) < (f(a:),...,f(")(x)),

where ®7(z,a*) = (7(z), 3). It implies that o, 4 f)(z) and ¢, (z, o) =

B, = ¢r(z,a). Since ¢, (z, -) is injective, we have a = o, € f((z).
Finally,

f(r)(x) =0 “Ya e S, o« f(T)(l')”
“ oy c Sl, (,Or(-r,a) < Tf(r)(T(.’E))”
Ve S, B aTf(r(z))

T (r(z)) =0.

rree

Lemma 3.6 Forany f € S, x,
T (r(@)| = [P ()], Vo e X,

Proof. Let f €S, x and z € )% be fixed. Let Iy and I be finite closed
intervals with

xelgClhyCICICX.
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Take ¢ € C(gn) (R!) so that
v(lo) =1, supp(yp) C 1.
For any 6 > 0 (assume that Ng(z) C Iy), define

1, t==x
vs(t) =< 0, t—z|>6 Vtel
linear, 0<|t—z|<$é

and ug(t) = vs(t) fF™(t), Vt € I. Set

hg(t)z/t Mu(s(s)ds, Vte I

(n—1)!
Define
o) { £(0) — o(0hs(t), tel
f(t), t¢l.

It is trivial that g € C((,n)(X ) and

t t — n—1-—r
h((sr)(t) = / (t=s) us(s)ds, tel, r=0,...
T

(n—1-—r1)!
RV (t) = us(t) = vs(t)f™ (1), tel.

We make the estimations as follows:

/; (t—s)" 1" u(g(s)ds)

(n—1—r7)!

|h7') )) n—1 1

Z <5

! r=0

n—1 1“71—1—7‘ z+6
> T L Mol

r=0 "'

IA

IA

= rin—1—r)! Jz—s n!

n—1 n||I|n—1—r

Z 7“'(7.?, —1- 7“)!2(5

r=0 "'
= 26n(|I|+ )", vtel,

IA

oLy gl IO



Isometries of Cén) (X) 495

from which we have

n (7")
r=0 :
(T)
= I HZ 'h o

< ||<Pl|25n(11|+ )", vte IN I

('f‘)

and
z": (phs) ) (2)] _ Z Iva( ) fM ()]
= r! ! n!
(n)
< 26n(|I|+1)" 1 + Unﬂ Vvt € Io.
Thus,
(n) (¢
lohslir < lpli2on(l1] + 1)"" + max -G (3.9)
tel n!

Similarly, ift ¢ I, > |g(r)(t)| =y " )(t)l ift € I\ Iy,

r=0

Z Ig(’") 2": SO )]+ |(0hs) " (1)

r!

r=0
1+ [lpll26n (1] 4 1)~

IA

and if t € I,
(¢

Zlg =Z'f h<"><>|

Z O @1+ 11 SO, 1) — vt (0)

<
- n!

< Z L LA + 26m(|I| +1)" 1 + EAR0]
T = 7'! n!

< 14 26n(|I| +1)" !

Therefore,

I£llx 7 < llgll < 1+ llell26n(IT] + 1), (3.10)
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(r) (¢
where Hqu\I = supgex 1 o L

Now, g (z) = (@) — (phs)™(z) = F)(z) - vs(a) ™) () = 0,
which implies that T(“ﬁ—“)(")( 7(x)) = 0 (Lemma 3.3 or 3.5). Frommand
(310,

7™ (7(x))]

n!

<|rs- T(ugn)H =gl

<117 gl +[o-

Il |
< |lehsllr + llgll = 1]

™) ()|
< 26n(|1 n—1 |/
< |l¢ll26n(|1| + 1) +max ——

+ (1= Ifllx~ 1) + lell26n(|1] + 1), 6 > 0. (3.11)
Letting 6 — 0 in 3.11), we have
T £(n) (n)
T (f )

n! tel n!

+1—|fllx~ r (3.12)

Noting that lim_. ) maxeer 0 = U and timy gy [1fllx 1 =
|1l = 1, [3.12) implies that

T (@) < fP(@)], Vo e X.
Since )% is dense in X, we get
TF(r(2))] < 1f (@), VeeX.

By considering T~!, we can show that

T (7 ()| = |fM(@)], VzeX.

Lemma 3.7 LetT, 7 and ¢, (0 <71 < n) be as before. Then

(o]
(1) 7 is differentiable on X and 7'(x) is continuous on X satisfying

7 (z)| =1 (Vz € X);
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(2) for any z € X, the map o (z,-) : S1 — S! is an onto isometry
(0 <7 <n);
(3) for any interval I C X, p.(x,1) is a constant on I;

(4) foranyxz € X and 0 <1 < n,

or(z,a) = p(z,a) (7' ()", Vae St

Proof.  We shall prove the lemma in the following order: (1), (4), (2), (3).

Proof of (1). From Lemma 3.5, for any (z,a) € X x S',if f € S,, x and
a € f(z) then p,(z,a) €« Tf™(r(z)). But [Tf™(r(z))| = |f™(z)|

(from Lemma 3.6), we get

T (r(z)) = ¢n(@,a)|f™ ()

ool Um@”)f()h e X (3.13)

where we set % = 1.
If h € S, x satisfies that M = {2z} and h("(z) = 0 (0 < r < n),

h(™)(z) > 0, then %ﬂ—l }:néw 1 and

r—=

on(z,a) = T(ah)(:!)('r(a:)), Vo € S1.

Thus,

|‘:0n($aa) - Son(m?ﬁ)‘
= %]T(ah)(n)('r(x)) — T(8h)™ (7 ())|
< |T(ah) = T(Bh)| = la — B, Ve,B€ S (3.14)

The Lemma 9 in says that if ¢ : S? — S! is an injective map
satisfying: |¢p(a) — ¢(B)] < |a — 8|, Va,B € S, then ¢ is a surjective
isometry and

b(a) = ag(1), Vae S
or o(a) = agp(l), Vae Sl
Therefore, from and the fact that ¢, (z, - ) is homeomorphic, ¢, (z, -)

is a surjective isometry on S! and satisfies

on(z,0) = apy(z,1), VYae S
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or on(T, Q) = apy(z,1), Vae St (3.15)

Write

o(y) =en(t7(y),1), VyevY.

Then ¢ is continuous and |p(y)| =1, (Vy € Y).
Let I C X be an open interval and zg,z; € I with g < z;. Set
yi =7(x;) € 1 =7(I) (j =0,1) and Iy = [xg,z1]. Take a g € S,, x so that

g(z) = a(z —zo)", Vzx e Iy (3.16)
where a > 0 is a constant. From [Lemma 2.10| 3.6 and [3.16), we get
-1 n—1
nl7e™ (r)
= il — T
From (3.13),

T¢"™ (r(z)) = gn(x, 1)nla, Vz € Io.

Thus,

Tg™(y) = on(r7 (), nla = p(y)nla, Vy € 7(lo). (3.18)

Since T'g € C(gn)(Y), from (3.17) and (3.18) we can calculate that

Y Y

Tg" V(y) = [ Tg™(t)dt +Tg"V(yo) = "!a/ p(t)dt,

Y
Tg"2(y) = | Tg"V()dt + Tg™ 2 (yo)
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Hence, for yo <y € 7(Iy) we have

n—1-r
(7‘) < | /y (y_t) dt
|Tg (y>| > n.a o (n_l__,r)!
nla n—r
_(n_)ly wl"", 0<r<n-1

which remains true when yo > y € 7(Ip). It follows that for y € 7(lp),

= Tg™ (y)] y ol
| A )
Tzz;) r! _nazr'n—r

= a(ly — yo| + 1)". (3.19)

By the choice of g, for z € I,

SIS U VIS UEEES)

| |
r—0 T —0 T

= a(|lx — zo| + 1)™. (3.20)

n—r

alx — g

Therefore, for z € Iy,

" o™ (2 n ") (r(z
allz — 2o + 17 = 3 0@ _ 5 [Tg (@)

|
r=0 ) r=0 r

a(|r(z) — (zo)| + 1),

IA

which implies that

|z — zo| < |7(x) — T(x0)|, Vz € I,
By a symmetric consideration with respect to T~!, we also have

|T(x) — T(z0)| < |z — x|, Vz € Ip.

Therefore,
IT(z) — 7(z0)| = |z — zg|, Vz € I,

especially,
[7(z1) — 7(x0)| = |21 — 0|, Vzo,71 € I, (3.21)

that is, 7 is an isometry from I onto I; = 7(I). Using the generalized Mazur-
Ulam’s Theorem (cf. Theorem 2 of ), which says that every isometry
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from an open connected subset of a normed space E onto an open subset of a
normed space F' can be uniquely extended to an affine isometry from E onto
F, 7 is a function of the form 7(z) = Az+ B, Vz €I (A,BER) on I. In
fact, we can prove it simply as follow: since 7(z) is continuous on X,
remains true for zg,z; € I. Writing I = (a,b), the continuous function
A(s,t) & w from the connected domain D = {(s,t) : a <t < s < b}
into {—1,1} (JA(s,t)] =1) is a constant A(D) € {—1,1} on D, therefore,

7(x) = A(D)(zx —a)+7(a), a<z<hb

It follows that 7/(z) is a constant on I and from [3.21), |7'(z)| = 1(x €
I). Since I can be any open interval contained in X, 7 is continuously

differentiable on X with I7'(z)] =1 (Vz € X).
Now, the equality holds in (3.19), especially the following equality holds

ITg™ D (y1)| = nla

Y1
/ @(t)dt{ = nlaly1 — yo-
Yo
Look ¢ and 1 as elements of the Hilbert space L%(yo,y1), from

(e, 1) =

Y1
[ et = 11~ ol = Il
Y

0

we can show that ¢(t) = a (a.e. t € [yg,y1]) for some constant o € C!. By
the continuity, ¢(t) is a constant on [yg, y1] and

e(y1) = (o).
The proof of the case y; < yo is similar. Hence,
en(z1,1) = 9(y1) = ¢(¥0) = @n(wo,1), Vro,z1 € I.

That is, ¢n(z,1) is a constant on I.

Proof of (4). Let g € X be fixed. Take a closed interval Iy = [zg,z;] C X

with zg < z1 and let g € S, x satisfy (3.16).
From (3.13) and above,

T(ag)™(y) = en(r™ (), g™ (7 ()]
= apn(xo, 1)an!

= pn(zo, @)an!, Yy € 7(lp),
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or  T(ag)™(y) = @pn(zo,1)an!
= on(z0,@)an!, Vy € 1(lp).

It follows that T'(ag) is a polynomial of order n on 7(Iy), and from
T(ag)")(r(z0)) = (ag)™(z0) =0, 0<r<n

(Lemma 3.5l), we can calculate that
T(ag)(y) = apn(zo, @)(y — yo)", Vy € 7(lo).

Since

(ag)(z) ~alz —z0)" " ~a, zo<z€Il), 0<r<n,

from Lemma 3.5, we have
or(z,a) € T(ag)"(r(z)

~ on(To, 0

~ Qpn(:UOa «

= on(zo, a)(T'(20))"™", wo<z€l), 0<r<n
where 7'(z) = A (Vz € Ij) is as above. It follows that
pr(@, @) = @n(z0,a) (7' ()", o<z €I, 0<T <Nl
By the continuity of ¢,
pr(z0, @) = pn(z0,0)(7'(20))""", VYaeS', 0<r<n.

(4) is proved.

Proof of (2). For any x € X, from (4) and ¢y,(z, -) is onto isometric,
¢r(z, -) : S — Sl is also onto isometric (0 < r < n). For any z € X, let

z € X satisfy xx — z, then for any o, 8 € S!, we have
[or(@,0) = (2, B)] = lim_ |y (w5, @) — o1 (i, B)] = | — ],

that is, ¢r.(z, ) is isometric on S* (0 <7 < n). From the Lemma 9 in [8],
@r(x, -) is surjective (It can be also shown through the surjectivity of each
er(@k, ).

Proof of (3). For any interval I C X, from (1), 7/(z) = %1 is continuous
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on [, it implies that 7/(z) is a constant on I. From (4) and that ¢, (x, 1) is

o]
a constant on I, we can check that ¢,(x,1) is a constant on I (0 <r < n).
The continuity of ¢, implies that ¢,(x,1) is a constant on I (0 < r < n).
]

Theorem 3.8 Let T, 7 and o, be as before. Then

(™) (1
T (r(z)) = o, (sv, |;(’")E$;|) F (@),

Ve X, feS,x, 0<r<n
where we set%zl.

Proof.  The proof is divided into two cases: the real case and the complex
case.

Case 1: T}ée real case.

Let o € X and f € S, x satisfy that f(r)(mo) #0forall 0 <r <n.
From and the continuities of the functions, there exists a § > 0
such that Ng(zg) C X and

f(r)(x) ~a, € {-1,1},
Tf(r)('r(az)) ~ ﬂr S {_1’ 1}7
From [Lemma 2.10 and 3.6,

nol o, £ (g ™)
s ():Zlf

|
—0 T !

T T) " BT ) (1 (2
Z|f )l 52 BT r(e)

rl

Vz € Ns(zp), 0<r<n.

(3.22)
r=0

for all z € Ng(zo). Since ¢, (z, -) is onto isometric on St = {—1,1}, we
have

or(z, @) = apr(z,1), Yae S
Using Lemma 3.5 ~ 3.7, we have

BT £ (r(@) (7' ()"
= or(x, ) pn(z, )T (7(2))| (7' ()"
= (@, 00) (7'(2))" " (@, )| £ ()| (7' ()"
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= O‘Tan|f(n)(33)|
= a,f™(z), Vze Ns(zg), 0<r<n-—1. (3.23)

Differentiate (3.22) and subtract [3.23) (r = n — 1),

s /@) ST ()

7 (z), Vz € Ns(zo).
= 7! = r!

(3.24)

Since 7'(x) is a constant on Ng(zo), again differentiate (3.24) and subtract

(r =n —2), we gain that
T o) 5 prT S ()

! |
—0 T —0 T

('(x))?, Vze Ns(zo).

Repeating this procedure, we can obtain that

n—1-k (r+k) n—1—k r (r+k)
y el ) LT gy (ss)

=0

for all z € Ns(xp) and 1 < k < n — 1. Especially,

aof™ D (z) = BT f D (r(2)) (' ()"

for all z € Ns(xp) and

T D(r(@)| = 1f"V(=)], Va € Ns(ao).

Similarly, replacing (3.22) by

2 0 F)(z rT
Zf( Zﬁ f-(())

, Vz € Ns(xo), (3.22)
!

r=0

and by

BT f=D (7 (x)) (7' (z))" 1"

= or(, ar)on_1(x, an-1)|T f™~ D (r(2)) (7' (z))" 1"

= @u(@, 0 ) (7' (2))" "o (&, an_1)7' ()| f" V) (2)| (7' (z))" 1"
= QrQOlp— 1|f(n 1)($)|

= o, f(*D(x), Vo € Ns(zo), 0<r<n-2, (3.23)'
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we can obtain that

n—2—k a R (¢ n—2—k BrT f+R) (1 ( ) /
> T(l =y T! @) (714 (325)

r=0 r=0

for all z € Ns(zo) and 1 < k < n — 2. It follows that aof(® 2 (z) =
BoT =2 (7 (z)) (7' ()2 (Vz € Ng(z0)) and

T2 (7 ()| = [f ()|, Yz € Ny(o).
Repeating this procedure, we obtain that
TS (@) =17 (@)l, Vo€ Ns(w), 0<r<n.
Particularly,
Tf0(7(z0)) = BT (o)
= <Pr($0,0ér)|f(r)($0)\

= ¢r(z0, L)y | £ ()]
= ¢r(20,1)fM (o), 0< 7 <.

Now, for any g € S, x and zg € )%, take an h € S, x such that
0 # h("(z) 4 ¢ (z9) (0 <r < n). Define

g+ dh

= e Sn,X, Vd > O
g + dh|

9d

It is easy that g4 — g and gér)(wo) #0 (0 <r <n). Thus,
Tg"(7(x0)) = lim Tgy (7(0))
— 1 (r)
= lim ¢, (z0,1)g, " (z0)
— ¢(w0, 1) (z9), 0<r<n, meX.

I follows from )O( is dense in X that

Tg")(r(z)) = ¢r(z,1)9"(2)

_ . g(r)($)> (") (4

VeeX,geSyx,0<r<n
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where 8 =1.

Case 2: The complex case.
We shall show, by induction on r, that

TfO(r(2))| = |f"(z)], VzeX, feSux, 0<r <n.

First of all, from Lemma 3.6, (3.26) is true when r = n. Now, suppose
that 0 < rg <n and

T (r(2))| = |f™)(z)|, VzeX, fe€Snx. (3.27)

We want to show that is true for r = r¢ — 1. For that purpose,
let us consider it under some conditions. That is, suppose that zg € )o(
and f € S, x satisfies Im% # 0. There exists a 6 > 0 such that
Ns(zp) C X and

F) ()
fro=1(zo)

From Lemma 3.7, 7/(z) and ¢,,(z,1) are constants on Ngs(zg). Since
©ro (T, ) is an isometry on S, for any = € X,

£0# froU(z), Vo e Ng(a).

Im

or Oro (T, Q) = Tpry(z,1), VYa € St
By the continuity of ¢,,, we can see that

©re(z, ) = apr,(z,1), Vz € Ns(zg), o€ St
or Oro(T,Q) = Tpry(z,1), Vz € Ns(z0), a €S

Without loss of generality, we assume that
Oro (T, @) = agpr(x,1), V€ Ng(zp), o€ St
Thus, from (4),

(Pro—l(x?a) = ‘PTO(:U’O‘)T,(:B)
= agoro(a:,l)T'(x)
= oppo_1(z,1), Vz € Ns(xg), a€ S (3.28)
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From the assumption (3.27) and Lemma 3.5, we have

7'0) I~

Tf(”'o)(T(CU)) = $¥rg ( |f(TO)E$;|) ITf(TO)(T($))|
0) frol(z)

= ¢ro(2,1)f")(x), Va € Ns(o).

It follows that

Tfr=(7(z))
= T 00D (r(z0)) + / (T(m)) T £00) (1)t

— Tf(ro_l)(T(l'O)) + /: T/(.’EO)Tf(TO)(T(S))dS

= T =D (r(z0)) + 7/ (20 )or, (20, 1) / i F)(8)dt

=T D(1(20)) + 7' (20)ro (20, 1) (FT0 D (z) — £F0=D ()
=T (1(20)) + @ro—1(0, 1) (f7 V() — £ (o))
(3.29)

for all z € Ng(z).
Set

f(z)
|f ) ()|
Br(@) = or(z, ar(z)) = o (2) 01 (2, 1),

Vx € Ng(xo), r=179—1,10.

ar(z) = and

Then,

T D (r(z)) ~ Bro—1,  Va € Ns(zo). (3.30)

We can calculate from ~ (3.30),
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@ro—1(z0, 1) f0D(z)
‘PTo—l(xv 1)0‘7"0-1(33)

(1T oD (7 (@0))] — £ (20) ) pro—1(20, L) arrg—1(20)
‘Pro—l(aja 1)O"F0—1(x)

+ [ o~ (z)]
= |fo D (@) + (T 7 (7 (=0))|
_ If(ro—l)(xo)l)g&:l_(f’f_‘?l >0 (%)

_+_

for all x € Ng(zo).
Now, for any z¢ < z € Ng(zo),

argr(2) _ Vo) f0D(a)
arg—1(z0)  [froV(z)] " flro=D(zo)
B |f(‘ro—1)($0)| Fro=1(zg) + f;o fro)(t)dt
T (@) F0=D) (o)
70D )| FE)
|fro=D(a)| " flro=1)(zo)

Im

= (IE - 1170) 75 0
for some zg < £ < z, from which it follows that Im %El—((%l # 0. Therefore,
ro—

from (x) we have
(T f0= D r(wo))] = 11707 (o) = 0.

For any g € S, x and zg € X, take St 5 By 4 gl V(zy). If

ImM = 0, set B1 = i0p; if Img(T—O)(ﬂ)—) # 0, let g(’"o) rg) ~ B € SL.
Bo Bo

Take closed intervals Iy C I C X and h € S, x such that zo € Io, h(lp) =1
and supp(h) C I.
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Define

{ g(z), vl
g(x) + dh(z)(Bo(xz — zo)™  + B1(z — 29)™), z €.

Then f; € C§”(X) (¥d > 0) and gy = i = g (as d — 0). Since

(TO) (TO)
(7"0 1() ) = Im (ro— 1()330)
9a (o) fa ( 0)
T0)

fa(z) =

Im

from the above, we have

Tgy* V(v (o)) = lgf* " (wo)l, ¥d >0
which implies that

Tg" = (7(20)) = lim |Tg5° ™ (r(a0))]

Thus,

Tg"V(r(z)) = g7 V(z)], VzeX, geSax.
By the continuities of the functions, it is easy that
Tg" D (r(z) = g™ V@), VzeX, g€ Sux.

That means is true for r = ry — 1 provided it is true for 0 < ry < n.
By induction, (3.26) is true for all 0 < r < n.

Finally, from Lemma 3.5 m, L58) < () (where § = 1) implies that

(r) ,
©r ( ’|§(T)E;)‘Tf( (1(x ),thusfrom

) (1
T (r(x)) = ¢r ( Tfﬁ%) T (r ()]
f(r)(a:) ) )
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4. Representations of isometries

Theorem 4.1 Letn > 1 and X,Y C R! be locally compact subsets of R

0]

with X Ccl(X) and Y C cl(;'). Suppose that T : S, x — Sy y s an onto

isometry. Then the followings hold:

(1) there is a map @ : Y — ST such that #'(y) =0 (Vy € Y);

(2) there is a homeomorphism o : Y — X such that |0'(y)| =1 (Vy € Y)
and o’(y) =0 (Vy €Y);

(3) there are two closed subsets A and B of Y such that AUB =Y and
ANB =0

(4) for any f € Snx,

Tf(y) =0y)f(c(y))xaly) +0(y)flo(y))xsly), YyeY (4.1)

where x A, xB are characteristic functions.
Moreover, if there are o, 0, A and B satisfying (1) to (3), then the map
T determined by (4.1) is an isometry from Sy x onto Spy .

Proof. (1) Define §:Y — St by
0(y) = wo(r7(y),1), VyeY

where 7 and ¢ are as in[Theorem 3.8. For any yo € Y, set o = 7 (yo) € X
and take f € S, x such that

f(z)=a, Ve Nsg(zo)NX

for some a, 6 > 0. It follows from [Theorem 3.8 that

T1(r(&) = o (= 720 (@)

= o(z, 1)a, Vx € Ns(zo) N X

that is,
0(y) = wo(r7'(y), 1) = Tfa(y)a Vy € 7(Ns(xo) N X);
also from [Theorem 3.8,
T £(1)

= ol W) DD W) =0, Yy € m(Ns(zo) N X)



510 R. Wang

where 7(Ns(20) N X) is an open neighbourhood of yg. Thus,
¢ (y) = 0, Vy €Y.

(2) Set o =7"1:Y — X. Then o is a homeomorphism from Y onto
X. For any yo € Y, write o(yp) = zo € X and take an f € Sp,x such that

f(.’l?) :b(.’E—SB())-}—C> 0, Vxe N(s(ib‘o)ﬂX
where b,¢,6 > 0 and 0 < b6 < c. Applying [Theorem 3.8, we have
Tf(y) = ot (), DIf (7 (1))l
= 0(y){blo(y) — z0) + ¢}, Vy e 7(Ns(xo) N X),

from which we know that

o(y) = % (m — c) +x9, Vy € 17(Ns(z0) N X),

0(y)

that means o(y) has up to n-th continuous derivatives on the open neigh-
bourhood 7(Ns(zo) N X) of yo (Note that 6'(y) = 0). Henceforth, o(y) has

[¢] o
up to n-th continuous derivatives on Y. If y € Y, noting that z = o(y) € X,
from [Lemma 3.7,

o' (y)| =

|7 ()]

By the continuity of ¢’ and the fact that Y is dense in Y,
') =1, Vyev.

Since ¢’ is real-valued, for any yo € Y, there exists a § > 0 such that
o'(y) = o'(y0), Vy € Ns(yo)NY,

which implies that
o"(y) =0, Vy€ Ns(yo)NY.

Hence, 0" (y) =0 (Vy € V).
(3) Since wo(z, -) : ST — S! is onto isometric, from Lemma 9 in 8],
we have

eo(z,a) = apo(z,1), VYac St

or o(z,a) =ape(z,1), Vae St
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Let

Ap = {z € X : po(z,a) = apy(z, 1), Ya € S}
By = {z € X\ Ag: ¢o(z,a) = apg(x, 1), Ya € S'}. (4.2)

It is evident that Ag U By = X, AgN By = 0 and Ag is a closed subset
of X. When the scalar field is R!, A4g = X and By = (; when the scalar
field is C!, for any z) € Bg and z; — « € X, from

300(:1772.) = lim (,00(113]9,7:) = lim g900(3316, 1) = 5900(1:7 1)’
k—oo k—o0

we can see that z € By, which means By is closed in X. In both cases, A
and By are closed in X. Set

A= T(Ao), B = T(B()). (4.3)

It follows from 7 is homeomorphic that A and B are disjoint closed
subsets of Y and AUB =Y.

(4) For any f € Sy, x, from [Theorem 3.8 and (4.2}, [4.3),

Ti(y) = o (T‘l(y), FrTw))]

Thus,

Tf(y)=0)f(e)xaly) +0(y)flo(y))xa(y),
Vy € }/a f € Sn,X-

Conversely, if o, §, A and B satisfy (1) to (3), then for any f € Con)(X),
the function T'f determined by (4.1) has up to n-th continuous derivatives
on Y and

. { 0(y)f " (a(y))(@'(y)", yeA ",
y) = - .
0(y)f)(o(y))(0'(y))", yeB
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forall 0 <r <mnandye€Y. It is trivial that
T (r (r
Z’ f Z 7 S wyey, feciMX).  (4.5)

It follows that for any € > 0

a<{y€Y:iw26}>={x€X:zn:'f(2'(x)| Zs}
r=0 ) )

r=0

is compact in X, thus {y € Y : Y7, % > ¢} is compact in Y. Thus
Tf¢€ C'(()n)(Y). From (4.4) and (4.5),

)

ITfI = 1IFI, vf e CiM(X)
ITf=Tgl = |T(f —g)l = If —gll, Vf.geC(x).

T is an isometry from Cén) (X) into C’(gn)(Y).
For any g € C(gn)(Y), define

( glo™(x))

ooz > “ W
fla) = T e
gloi(z
ooy 7
From
d0~1($) B 1 1
i
Po\(z) _ ~o"(c"\(x)) do~l(@) _
) (0'(c71(2)))? dz
do(o™ (@) _ i ido () _
a0 = @) =0

we can check that

F(z) =4 vz e X
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and f € Cén)(X ), Tf = g. Thus, T is surjective. Clearly, T is also an
isometry of S, x onto S, y. []

Theorem 4.2 Let X, Y and n be the same as in Theorem 4.1. Then the
unit spheres of C’én)(X) and C’én)(Y) are isometric if and only if C((,n)(X) =
G (Y).

Proof. ~ The “if” part is trivial. We only prove the “only if” part. Let
T : S, x — Spy be an onto isometric. Applying [Theorem 4.1], there exists
amap 6 : Y — S! such that '(y) = 0 (Vy € Y), and a homeomorphism
o :Y — X such that |[o'(y)| =1 (Vy € Y) and ¢”(y) =0 (Vy € Y). Define
U:C(X) — ™ (Y) as follow:

Uf(y) =6(y)f(aly)), Vyev, feci(x).

It is evident that such a map U is a surjective linear isometry and C(()n) (X) =
c{M . O

Theorem 4.3 Let X, Y and n be the same as in Theorem 4.1. Suppose
that the spaces are over the real scalar field R'. Then for each onto isometry
T : S, x — S,y, there exists a linear isometry U from Cén)(X) onto
CS™(Y) such that U |s, y=T.

Proof.  Let 0, 0, A, B be the same as in [Theorem 4.1. Noting that the
scalar field is R!, from Theorem 4.1 we have
Tf(y) = 6(y)f(o(¥))xaly) +0(y) fo(y)xa(y)

= 0(y)f(o(y)), VyeY, feS,x.

Define
Uf(y) =0)f(o(y)), VyeY,feciX).

Then U is a linear isometry from C(()")(X ) onto C((]n) (Y) such that U |, , =
T. [

Remark. From ['heorem 4.3 the answer to the Tingley’s problem for the
real normed linear spaces Cén) (X) and Cén) (Y) (n > 1) is affirmative. For
the complex case, from [Theorem 4.1, each surjective isometry between the
unit spheres of an) (X) and C(()n) (Y) (n > 1) can be extended to a surjective
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real linear? isometry between C(gn)(X ) and C’én)(Y).

Theorem 4.4 Let X, Y and n be the same as in Theorem 4.1. Then

T : C'(()n)(X) — C'(()n)(Y) is a surjective linear isometry if and only if the

followings hold:

(1) there is a map 0 :Y — S? such that 8'(y) =0 (Vy € Y);

(2) there is a homeomorphism o : Y — X such that |o'(y)| =1 (Vy € Y)
and d”"(y) =0 (Vy € Y);

(3) forany f € C(()n) (X),

Tf(y) =0(y)f(o(y)), Yy €Y.

Proof. = We only prove the “only if” part. Suppose that T : Con)(X ) —

C(()n)(Y) is a surjective linear isometry. Then T is also an isometry from

Sn,x onto Sy, y, applying [Theorem 4.1, there are 6 and o satisfying (1) and
(2), and

Tf(y) =0(y)f(o(y))xaly) +0(y)f(a(y)xB ),
\V/y € }/’ f € Sn,X

where A and B are disjoint closed subsets of Y. Since T is linear we can
see that B = () and

Tf(y)=0(y)f(o(y), VyeY,fel(X).

[
Corollary 4.5 Letn,m > 1 be integers and X,Y C R! be locally compact

e} o

subsets which satisfy X C cl(X) and Y C cl(Y). Then C'(()n)(X) = C'(gm) (Y)
if and only if n = m and there exists a homeomorphism o : Y — X such
that |o'(y)| =1 (Vy€Y) and 0" (y) =0 (Vy € Y).

Proof. It is evident from [Corollary 2.9 and [Theorem 4.4. ]

From [I'heorem 4.4, the isometry group of C(()n)(X ) can be represented
by

Ug = {(9,0)’

6:X — Slsuchthat ¢ =0, 0: X - X
is homeomorphic and |¢o(z)| =1, ¢” =0

‘A map ¢ : E — F is real linear iff ¢(su + tv) = sp(u) + to(v) (Vs,t € R, u,v € E).



Isometries of C(gn) (X) 515

with Ty 0Ty +» (01-(62001),02001), where Ty < (61,01) and Ty > (62, 09).

5. Applications and examples
In this section, let us look at some examples.

Ezample 1. Each two of the spaces: C[0,1], C™)][0,1] (m > 1), Cén)(O, 1],
C™10,2] and C™(]0,1] U [2,3]) (n > 1), are not congruent.

Check. For example, the spaces C(™ [0,1] and C™ [0,2] are not con-
gruent for all n > 1. Because, there is no homeomorphism o : [0,2] — [0, 1]
such that |0/(z)] =1 and ¢” = 0 on [0, 2]. []

Ezample 2. Let I C R! be an interval and n > 1. Then the linear isometry
group of Cy 7 (I) is isomorphic to

U ={(o,u) : € S and u: I — I is onto isometric}
with T o Ty « (ayag,ug o ug), where T « (ay,u1) and Ty < (g, ug).

Check. Each surjective linear isometry on C(()n)(l ) can be represented
by

Tf(@) =0(x)f(o(z)), Vzel, feC()

where 6 : I — S! satisfies #'(z) =0 (Vo € I) and 0 : I — I is a homeomor-
phism such that |o(z)| = 1 (V2 € I) and ¢”(x) =0 (Vz € I). Thus, 6 is a
constant on I and o'(z) =1 (Vz € I) or ¢'(x) = —1 (Vzx € I), which means
o is a isometry from I onto I. []

When I is a finite closed interval of R!, there are only two isometries
on I, i.e., u; =Id; and u_y = 2M; — Id; (where Mj is the midpoint of I).
the isometry group of C(()n) (I) is isomorphic to

Uf = {(eyu):a€ S u=u oru_,}
~ St x {-1,1}

with T1oTh + (109, a1az), where T — (ay,a1) and Ty < (a9, a3), a1, ay €
Sl, ai,as € {—1, 1}

When [ is a half-closed and half-open interval of R!, that is I = [a, b)
(where b may be co) or I = (a,b] (where a may be —oco), there is only one

isometry v = Id on I, and the isometry group of C’(gn) (I) is isomorphic to
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S with T} o Ty < ajas.
When I = R!, the isometry u on I can be written by u(z) = ax + b,

where a = +1 and b € R!. Thus, the linear isometry group of C'(()n) (RY) is
isomorphic to

Upp = St x {~1,1} x R!
and each surjective linear isometry 17" on C(()n)(Rl) is corresponded to u =
(o,a,b) € Ug: by

Tf(z) = af(ax +b), VreR!

and Ty o Ty < (g, aiag, azb; + by), where T} « (ay,a1,b1) and Ty <
(a27a2ab2)-

Ezample 3. Let X = |72, Iy, where I} = [2k,2k + 1], and n > 1. Then
the linear isometry group of C’én)(X ) is isomorphic to

U =8 x {~1,1}® x II

where II = {7 | 7 : N — N is a permutation}, and each surjective linear
isometry 7" on C’(gn)(X) is corresponded to (a,a,n) € Uy by

Tf(z) = apf(arr + Myp) — axMy),
Ve (X)), z €Iy, k> 1

there, My, is the midpoint of I. If Ty < (a,a,u), To < (8,b,v), then
Tr0T < (’)’,C, ’/T) with v = {akﬁu(k’)}7 c= {akbu(k)}7 T=VOou, = {ak}>
B={0k} €S a={ar}, b={bx} € {-1,1}*® and pu,v € IL

Ezample 4. Let X = UiZoIx and n > 1, where I} = [ﬁﬂ—ﬁ,ﬁ] (k > 1)
and Iy = {0}. Then the linear isometry group of C(gn)(X ) is isomorphic to
Ux =52 x{-1,1}7,
where
S* = {a=(ap,a1,--+) € S%: kl_iglok(ak —ap) = 0}

{-1,1}° = {a = (ap,a1,-++) € {-1,1}*:
E”(:(), s.t.,ak = ap = 1(Vk Z ko)}
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Each surjective linear isometry T on C’((,n) (X) is corresponded to (o, a) € U%
by
Tf(z) = arf(axr + (1 — ax) My),
VfeCM(X), z €y, k=0,1,2, -
where M)}, is the mid point of Iy. If T} < (o, a), T2 < (8,b) then To 0 T} <

(’77 C) with Y= {akﬁk}ac - {akbk}a a = {ak}a /8 = {)Bk} € SSO’ a = {ak}a
b= (b} € {~1,1).

Check. Firstly, let us look at the function 8 : X — S! that satisfies
¢'(x) = 0. 6 is a constant on Iy, let o = 8(I;) (k=0,1,2,---). From

0 = 6'(0)
6(=) —6(0
k—oo 5%
= lim 2](?(0% - Ot())
k—oo

we have 0 = (g, 0q,--+) € S°. If 0 = (g, 1, ) € S°, define
f(z)=ax, Veze€l, k=0,1,2,---.

It follows that 6 is continuous on X and 6'(z) = 0 on X\ {0}. For any
z € X\ {0}, let = € I, ﬁ_ﬁ <z< ﬁ,from

‘9(:1:)—0(0)‘ _ 'ak—ao
z—0 x

we have '(0) = 0. Thus, ¢'(z) =0 (Vz € X).

Secondly, let us look the homeomorphism ¢ : X — X that satisfies
lo’(z)] = 1, (Vr € X) and ¢” = 0. From the continuity of ¢/, o/(z) is a
constant on each interval Iy (k > 1), let o/'(I}) = ax (k > 1) and ag = o/(0).
It implies that o is isometric on each I (k > 1). Since |I;| # |I;| (¢ # j) and
o is homeomorphic, it must be true that o(I) = Iy (k > 1) and ¢(0) = 0.
From limy_, ar = ag, there is ky such that ax = a¢ (Vk > ko). Noting
that o(My) = My, (Vk), where My, is the mid point of Ij, we can see that

. o(M) —a(0)
=1
@0 kggo Mk -0

| < (o — a0)(2k +1)| =0

= 1.

Hence, 0 = (ag,a1,--+) € {—1,1}.
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Conversely, if 0 = (ag,a1,---) € {—1,1}2°, define
o(x)=arx+ (1 —ax)My, Vel k=0,1,2,---.
Then o is a homeomorphism on X, |0'(z)] = 1 (Vz € X) and ¢”(z) =

0 (Vzr e X).
Each isometry T is corresponded to (0,0) € U% by

Tf(x)=0(z)f(o(x)) = arflagz + (1 — ag)My), Vzx €Iy, k> 0.

It is easy to see that if T} < (a,a), To < (3,b) then Th o T1 < (v,¢)
with v = {oBk}, ¢ = {arbi}, @ = {a}, B = {8k} € S, a = {ax},
b= {bx} € {-1,1}. []

Ezample 5. Let X = |Jgo; Iy and n > 1, where I}, = [ﬂl-ﬁ’ 5] (k> 1).

Then the linear isometry group of Cén)(X ) is isomorphic to
Uy =85% x {-1,1}*,

and each surjective linear isometry T on C'(()n) (X) is corresponded to (o, a) €

Uk by

Tf(z) = arflarz + (1 — ax)My),
VieCW(X), zel, k=1,2,-..

where M, is the mid point of I. If T} « (e, a), Ty « (8,b) then Tho T} —

(v, ¢) with v = {axBr}, ¢ = {akbi}, o = {ar}, B = {8k} € S, a = {ar},
b= {b} e {-1,1}.
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