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Abstract. We prove two rigidity theorems for real hypersurfaces in P_{n}(\mathbb{C}) . More pre-
cisely, let M be a (2n-1)-dimensional Riemannian manifolds, and \iota and \hat{\iota} be two isometric
immersions of M into P_{n}(\mathbb{C}) . Then \iota and \hat{\iota} are congruent if the type number of \iota and
\hat{\iota} is not equal to 2 everywhere, and moreover (a) two structure vector fields coincide up
to sign or (b) there exists an m-dimensional subspace of the tangent space of M at each
point invariant under the actions of the two shape operators of \iota and \hat{\iota}(2\leq m\leq n-1) .
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Introduction

Let P_{n}(\mathbb{C}) be an n-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature 4c and
M be a (2n-1)-dimensional Riemannian manifold. Let \iota be an isometric
immersion of M into P_{n}(\mathbb{C}\underline{)}. An almost contact structure on M induced
from the complex strcture J of P_{n}(\mathbb{C}) by \iota will be denoted by (\phi, \xi) and \xi

is called the structure vector field of \iota .
The last named author proved in [5] that two isometric immersions of M

into P_{n}(\mathbb{C}) are rigid if their second fundamental forms coincide. Recently,
the same author and Y.J . Suh [4] also obtained the same conclusion if the
two isometric immersions have a principal direction in common and type
number is not equal to 2 at each point of M , where the type number is
defined as the rank of the second fundamental form.

In this paper we shall study some conditions for two isometric immer-
sions of M into P_{n}(\mathbb{C}) to be rigid. The main purpose is to prove the following

Theorem A Let M be a(2n-1) -dimensional Riemannian manifold,
and \iota and \hat{\iota} be two isometric immersions of M into P_{n}(\mathbb{C})(n\geq 3) . If the
two structure vector fields coincide up to sign on M and the type number
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of (M, \iota) or (M,\hat{\iota}) is not equal to 2 at every point of M, then \iota and \hat{\iota} are
rigid, that is, there exists an isometry \varphi of P_{n}(\mathbb{C}) such that \varphi\circ\iota=\hat{\iota} .

Theorem B Let M be a(2n-1) -dimensional Riemannian manifold,
and \iota and \hat{\iota} be two isometric immersions of M into P_{n}(\mathbb{C})(n\geq 3) . Assume
that there exists an m-dimensional subspace V of the tangent space at each
point of M such that V is invariant under the actions of the shape operators
of (M, \iota) and (M,\hat{\iota})(2\leq m\leq n-1) , and that the type number of (M, \iota)

or (M,\hat{\iota}) is not equal to 2 at every point of M. Then \iota and \hat{\iota} are rigid.

1. Preliminaries

We denote by P_{n}(\mathbb{C}) a complex projective space with the metric of
constant holomorphic sectional curvature 4c and M a (2n-1)-dimensional
Riemannian manifold. Let \iota be an isometric immersion of M into P_{n}(\mathbb{C}) . In
the sequel the indices i , j , k , l , \cdot . run over the range 1, 2, . . ’ 2n-1 unless
otherwise stated. For a local orthonormal frame field \{e_{1}, . , e_{2n-1}\} of M,
we denote its dual 1-forms by \theta_{i} . Then the connection forms \theta_{ij} and the
curvature forms \Theta_{ij} of M are defined by

d \theta_{i}+\sum\theta_{ij}\wedge\theta_{j}=0 , \theta_{ij}+\theta_{ji}=0 , (1.1)

O-_{ij}=d\theta_{ij}+\sum\theta_{ik}\wedge\theta_{kj} (1.2)

respectively. We denote the components of the shape operator or the second
fundamental tensor A of (M, \iota) by A_{ij} , and put \psi_{i}=\sum A_{ij}\theta_{j} . Then we have
the equations of Gauss and Codazzi

\Theta_{ij}=\psi_{i}\wedge\psi_{j}+c\theta_{i}\wedge\theta_{j}+c\sum(\phi_{ik}\phi_{jl}+\phi_{ij}\phi_{kl})\theta_{k}\wedge\theta_{l} , (1.3)

d \psi_{i}+\sum\psi_{j}\wedge\theta_{ji}=c\sum(\xi_{j}\phi_{ik}+\xi_{i}\phi_{jk})\theta_{j}\wedge\theta_{k} (1.4)

respectively, where (\phi_{ij}, \xi_{k}) is the almost contact structure on M . The
tensor fields A=(A_{ij}) , \phi=(\phi_{ij}) and \xi=(\xi_{i}) on M satisfy

A_{ij}=A_{ji} , (1.5)

\sum\phi_{ik}\phi_{kj}=\xi_{i}\xi j-\delta_{ij} , \sum\xi j\phi ji=0 , \sum\xi_{i}^{2}=1 , (1.3)

d \phi_{ij}=\sum(\phi_{ik}\theta_{kj}-\phi jk\theta ki)-\xi_{i}\psi j+\xi j\psi i , (1.3)
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d \xi_{i}=\sum(\xi_{j}\theta_{ji}-\phi_{ji}\psi_{j}) . (1.8)

For another isometric immersion \hat{\iota} of M into P_{n}(\mathbb{C}) , we shall denote the
differential forms and tensor fields of (M,\hat{\iota}) by the same symbol as ones in
(M, \iota) but with a hat. Then since \theta_{i}=\hat{\theta}_{i} and \Theta_{ij}=\hat{\Theta}_{ij} , from (1.3) we have

A_{ik}A_{jl}-A_{il}A_{jk}+c(\phi_{ik}\phi_{jl}-\phi_{il}\phi_{jk}+2\phi_{ij}\phi_{kl})

=\hat{A}_{ik}\hat{A}_{jl}-\hat{A}_{il}\hat{A}_{jk}+c(\hat{\phi}_{ik}\hat{\phi}_{jl}-\hat{\phi}_{il}\hat{\phi}_{jk}+2\hat{\phi}_{ij}\hat{\phi}_{kl}) . (1.9)

Contracting (1.9) with respect to j and k and using (1.6), we have

\sum A_{ik}A_{kj}-\sum A_{kk}A_{ij}+3c\xi_{i}\xi_{j}

= \sum\hat{A}_{ik}\hat{A}_{kj}-\sum\hat{A}_{kk}\hat{A}_{ij}+3c\hat{\xi}_{i}\hat{\xi}j . (1.10)

In this paper we shall make a promise as follows. Let T be a tensor
field of degree r on M and denote by (T_{i_{1}\cdots i_{r}}) all (local) components of
T with respect to a local orthonormal frame field \{e_{i}\} , for example, T =
(\xi_{i}) , (A_{ij}) , (\phi_{ij}) , (\phi_{ij}\phi_{kl}) etc. Then, by the equation “

T_{i_{1}\cdots i_{r}}=0
” we mean

that T_{i_{1}\cdots i_{r}}=0 for any indices i_{1} , , i_{r}=1 , \ldots , 2n-1 on a non-empty
open subset, and by the equation “

T_{i_{1}\cdots i_{r}}\neq 0
” we mean that the equation

T_{i_{1}\cdots i_{r}}=0 does not hold. When some ranges R_{1} , \ldots , R_{s}\subset\{1, , 2n-1\}

of indices are given, we can understand this promise similarly. For example,
let R and S be subsets of \{1, \ldots, 2n-1\} , and an index \alpha run over R and
indices a , b run over S . Then by the equation “T_{\alpha ab}=0” we mean that
T_{\alpha ab}=0 for any \alpha\in R and any a , b\in S on a non-empty open subset. Of
course, we do not apply our promise to the phrases such as “Take indices
i_{0} and j_{0} such that T_{i_{0}jo}\neq 0

”

The authors would like to express their thanks to the referee for his
valuable advices.

2. Proof of Theorem A

In this section we shall show that under the assumption of Theorem A \iota

and \hat{\iota} have a principal direction in common at each point of M. Then from
the main theorem in Y.J . Suh and R. Takagi [4] we have Theorem A.

We choose a local orthonormal frame field \{e_{i}\} in such a way that \xi_{1}=1

and \xi_{2}=\cdot . =\xi_{2n-1}=0 . Then it follows from the second equation of (1.6)
and the assumption, that

\phi_{1i}=0 , \hat{\phi}_{1i}=0 . (2.1)
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In the following proof, let the indices i , j , k run from 2 to 2n-1 . Put l=1
in (1.9). Then we have

A_{1j}A_{ik}-A_{1k}A_{ij}=\hat{A}_{1j}\hat{A}_{ik}-\hat{A}_{1k}\hat{A}_{ij} . (2.2)

On the other hand, since d\xi_{i}=0 and d\hat{\xi}_{i}=0 , from (1.8) we find

\theta_{1i}=\sum\phi_{ji}\psi_{j}=\sum\hat{\phi}_{ji}\hat{\psi}_{j}

and so

\sum\phi_{ji}A_{j1}=\sum\hat{\phi}_{ji}\hat{A}_{j1} , \sum\phi_{ji}A_{jk}=\sum\hat{\phi}_{ji}\hat{A}_{jk} . (2.3)

Here we diagonahze a symmetric matrix (\hat{A}_{ij}) of degree 2n-2 by a sutable
choice of (e_{i}) , say \hat{A}_{ij}=\hat{\beta}_{i}\delta_{ij} , and put \alpha=A_{11} , u_{i}=A_{1i},\hat{u}_{i}=\hat{A}_{1i} , \beta_{i}=A_{ii}

for simplicity. Then (2.2) and (2.3) amount to

\alpha A_{ij}-u_{i}u_{j}=-\hat{u}_{i}\hat{u}_{j} (i\neq j) , (2.4)

\beta_{i}u_{j}-u_{i}A_{ij}=\hat{\beta}_{i}\hat{u}_{j} (i\neq j) , (2.5)

u_{j}A_{ik}-u_{k}A_{ij}=0(i\neq j\neq k\neq i) , (2.6)

\sum\phi_{ji}u_{j}=\sum\hat{\phi}_{ji}\hat{u}_{j} , (2.7)

\sum\phi_{ji}A_{jk}=\hat{\phi}_{ki}\hat{\beta}_{k} . (2.8)

Moreover, from (1.10) we have

u_{i^{2}}+ \sum_{j}A_{ijji}A-(\alpha+\sum\beta_{k})\beta_{i}=\hat{u}_{i^{2}}+\hat{\beta}_{i}^{2}-(\hat{\alpha}+\sum\hat{\beta}_{k})\hat{\beta}_{i} . (2.2)

Denote by r the number of indices i such that u_{i}\neq 0 . We need to divide
the proof into 4 cases.

Case I : 3\leq r\leq 2n-2 . We may set u_{2}u_{3}u_{4}\neq 0 . Then from (2.6) we
have

u_{2}A_{i3}-u_{3}A_{i2}=0(i\geq 4) ,

which implies that A_{i2} and A_{i3} can be written as

A_{i2}=g_{i}u_{2} and A_{i3}=g_{i}u_{3} (i\geq 4) (2.10)
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for certain functions g_{4} , . , g_{2n-1} .
Moreover, from (2.6) we have

u_{2}A_{ij}-u_{i}A_{j2}=0(i, j\geq 4;i\neq j) .

This, together with (2.10) gives

A_{ij}=g_{i}u_{j} (i, j\geq 4;i\neq j) .

Since A_{ij}=A_{ji} , we find

g_{i}=\lambda u_{i} (i\geq 4)

for a function \lambda . Furthermore, from the eequation u_{4}A_{23}-u_{3}A_{24}=0

obtained from (2.6), we see A_{23}=\lambda u_{2}u_{3} . Thus we proved

A_{ij}=\lambda u_{i}u_{j} (i, j\geq 2;i\neq j) . (2.11)

First we consider the subcase where r=2n-2 . Then we assert \lambda\equiv 0 . In
fact, if \lambda\not\equiv 0 , then putting k=i in (2.8), we have

\sum_{j}\phi_{ji}A_{ji}=0
.

From this and (2.11) we get

\sum_{j}(\phi_{ji}u_{j})u_{i}=0
,

which implies \sum_{j}\phi_{ji}u_{j}=0 . Since \det(\phi_{ij})\neq 0 , we have u_{i}=0 . This
contradiction shows our assertion. Now, multiplying (2.4) by \hat{u}_{k}(k\neq j)

and using (2.4), we have

(u_{i}\hat{u}_{k}-\hat{u}_{i}u_{k})u_{j}=0(i\neq j, k\neq j) .

Therefore we see \hat{u}_{i}=\in u_{i} where \Xi^{2}=1 by (2.4) since \lambda=0 , and so \hat{\beta}_{i}=\in\beta_{i}

from (2.5). It follows from (2.9) that

(\hat{\alpha}-\epsilon\alpha)\beta_{i}=0 .

If \hat{\alpha}-\in\alpha=0 , then we have \hat{A}=\in A . Hence any e_{i} is a common principal
vector of \iota and \hat{\iota} . If \hat{\alpha}-\in\alpha\neq 0 , then we have \beta_{i}=0 . It follows that
rankA \leq\wedge 2 and rank\^A \leq 2 , which means \dim\{(kerA)\cap(ker\hat{A})\}\geq 1 . Hence
A and A have a common principal direction.
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Next consider the subcase where 3\leq r<2n-2 . We may set u_{2}=0 .
It is sufficient to prove \hat{u}_{2}=0 because then the vector e_{2} is a common
principal direction of \iota and \hat{\iota} . For this, assume \hat{u}_{2}\neq 0 . Put j=2 in (2.6).
Then we have A_{2i}=0 for any i\geq 3 . Put i=2 in (2.4). Then we have
\hat{u}_{j}=0 for any j\geq 3 . Put i=2 in (2.5). Then we have \beta_{2}=0 . Moreover
from (2.8) we get

A_{jk}=0(k\geq 3)

since det (\phi_{ij})\neq 0 . Hence, putting k=2 in (2.8), we have \hat{\beta}_{2}=0 . Put
i=2 in (2.9). Then we have a contradiction \hat{u}_{2}=0 .

Case II : r=2 . We may set u_{2}u_{3}\neq 0 and u_{i}=0(i\geq 4) . Put k=2 in
(2.6). Then we have

A_{ij}=0(i, j\geq 4;i\neq j) .

This and (2.4) imply

\hat{u}_{i}\hat{u}_{j}=0(i,j\geq 4;i\neq j) .

Thus there exists an index i_{0}\geq 4 such that \hat{u}_{i_{0}}=0 . Putting j=i_{0} in (2.5),
we have

u_{i}A_{ii_{0}}=0(i\neq i_{0}) ,

and so A_{2i_{0}}=0 and A_{3i_{0}}=0 . Thus we have proved that the vector e_{i_{0}} is a
common principal vector of \iota and \hat{\iota} .

Case III: r=1 . We may set u_{2}\neq 0 and u_{i}=0 for any i\geq 3 . Put j=2
in (2.6). Then we have

A_{ik}=0(i, k\geq 3;i\neq k) , (2.12)

which together with (2.4) implies

\hat{u}_{i}\hat{u}_{j}=0(i, j\geq 3;i\neq j) .

Thus there exists an index j_{0} such that \hat{u}_{jo}=0 . Then from (2.5) we have
u_{2}A_{2j_{0}}=\hat{\beta}_{2}\hat{u}_{j_{0}}=0 and so A_{2j_{0}}=0 . This and (2.12) show that the vector
e_{j_{0}} is a common principal vector of \iota and \hat{\iota} .

Case IV: r=0. From (2.7) we have \hat{u}_{i}=0 . Hence the vector e_{1} is a
common principal vector of \iota and \hat{\iota} .
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Corollary 2.1 Let M be a(2n-1) -dimensional homogeneous Rieman-
nian manifold, and \iota be an isometric immersion of M into P_{n}(\mathbb{C})(n\geq 3) .
Assume that the structure vector field of (M, \iota) is invariant by any isometry
of M. Then \iota(M) is an orbit under an analytic subgroup of the projective
unitary group PU(n+1) .

Note that all real hypersurfaces in P_{n}(\mathbb{C}) obtained as orbits under an-
alytic subgroups of the projective unitary group PU(n+1) are completely
classified in [5].

Proof of Corollary 2.1 For any isometry g of M we have another isometric
immersion \hat{\iota}=\iota\circ g of M into P_{n}(\mathbb{C}) . By assumption we have \xi=\hat{\xi} . It
follows from the proof of Theorem A that \iota and \hat{\iota} have a principal direction
in common at each point of M . Therefore the isometry g of M is principal
in the sence of a paper [4]. Now our Corollary reduces to Theorem B in [4].

\square

Remark 2.2. The fact that the two structure vector fields coincide up to
sign on M means that for each point p\in M there exists a vector v in T_{p}(M)

such that \overline{J}(\iota_{*}v) is normal to \iota(M) at \iota(p) and \overline{J}(\hat{\iota}_{*}v) is also normal to \hat{\iota}(M)

at \hat{\iota}(p) .

Remark 2.3. We can prove that Theorem A and Corollary 2.1 are also valid
for complex hyperbolic space H_{n}(\mathbb{C}) with negative constant holomorphic
sectional curvature.

3. Invariant subspaces

Let \iota and \hat{\iota} be two isometric immersions of a (2n-1)-dimensional Rie-
mannian manifold M into a complex projective space P_{n}(\mathbb{C}) . In the fol-
lowing we assume that there exists an m-dimensional subspace V of the
tangent space T_{p}(M) of M at p\in M such that V is invariant under the
actions of the shape operators A of (M, \iota) and \hat{A} of (M,\hat{\iota}) . In the sequel
the indices \alpha , \beta , \gamma , \delta , \cdot . and a , b , c , d , \cdots run over the ranges 1, 2, . , m and
m+1 , m+2, \ldots , 2n-1 , respectively. Then we may set

A_{\alpha a}=0 , \hat{A}_{\alpha a}=0 . (3.1)

If m=1 , then we have a principal direction in common and this case
was studied in [4]. Since V is invariant under A and \hat{A} , so is the orthogonal
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complement V^{\perp} of V Therefore the case of m\geq n can be alternated to that
of m\leq n-1 , and we have only to consider the case where 2\leq m\leq n-1 .

Lemma 3.1 \phi_{a\alpha}\phi_{\beta\gamma}=\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma} and \phi_{\alpha a}\phi_{bc}=\hat{\phi}_{\alpha a}\hat{\phi}_{bc} .

Proof. If we put i=a, j=\alpha , k=\beta and l=\gamma in (1.9) and make use of
(3.1), we get

\phi_{a\beta}\phi_{\alpha\gamma}-\phi_{a\gamma}\phi_{\alpha\beta}+2\phi_{a\alpha}\phi_{\beta\gamma}=\hat{\phi}_{a\beta}\hat{\phi}_{\alpha\gamma}-\hat{\phi}_{a\gamma}\hat{\phi}_{\alpha\beta}+2\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma} . (3.2)

By putting \alpha=\beta in (3.2), we obtain

\phi_{a\beta}\phi_{\beta\gamma}=\hat{\phi}_{a\beta}\hat{\phi}_{\beta\gamma} . (3.3)

Multipling (3.2) by \hat{\phi}_{a\alpha} and \hat{\phi}_{a\beta} , and making use of (3.3), we have

(\phi_{a\beta}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\beta}\phi_{a\alpha})\phi_{\alpha\gamma}-(\phi_{a\gamma}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\gamma}\phi_{a\alpha})\phi_{\alpha\beta}

+2(\phi_{a\alpha}\phi_{\beta\gamma}-\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma})\hat{\phi}_{a\alpha}=0 ,
(\phi_{a\alpha}\phi_{\beta\gamma}-\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma})\hat{\phi}_{a\alpha}-(\phi_{a\gamma}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\gamma}\phi_{a\alpha})\phi_{\beta\alpha}

+2 (\phi_{a\beta}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\beta}\phi_{a\alpha})\phi_{\alpha\gamma}=0

respectively, where in the second equation we have exchanged \alpha with \beta . If
we add the above two equations, then we find

(\phi_{a\alpha}\phi_{\beta\gamma}-\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma})\hat{\phi}_{a\alpha}+(\phi_{a\beta}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\beta}\phi_{a\alpha})\phi_{\alpha\gamma}=0 . (3.4)

On the other hand, exchanging the role of \phi and \hat{\phi} , we also find

(\phi_{a\alpha}\phi_{\beta\gamma}-\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma})\phi_{a\alpha}+(\phi_{a\beta}\hat{\phi}_{a\alpha}-\hat{\phi}_{a\beta}\phi_{a\alpha})\hat{\phi}_{\alpha\gamma}=0 . (3.5)

Multipling (3.4) by \phi_{a\gamma} and (3.5) by \hat{\phi}_{a\gamma} , and then taking their difference,
we have

(\phi_{a\alpha}\phi_{\beta\gamma}-\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma})(\hat{\phi}_{a\alpha}\phi_{a\gamma}-\phi_{a\alpha}\hat{\phi}_{a\gamma})=0 , (3.6)

where we have used (3.3).
Now we assume that there are indices a , \alpha , \beta and \gamma such that

\phi_{a\alpha}\phi_{\beta\gamma}\neq\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma} . (3.7)

Then, from (3.6) we obtain \hat{\phi}_{a\alpha}\phi_{a\gamma}=\phi_{a\alpha}\hat{\phi}_{a\gamma} . From this and the equation
obtained by exchanging \beta and \gamma in (3.4), we have \hat{\phi}_{a\alpha}=0 . Similarly, from
(3.5) we get \phi_{a\alpha}=0 , which contradicts (3.7).
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According to the similar argument to the above, we can verify another
equation by putting i=\alpha , j=a, k=b and l=c in (1.9). \square

From now on, we can choose a field of local orthonormal frames
\{e_{1}, , e_{2n-1}\} such that

A_{\alpha\beta}=\lambda_{\alpha}\delta_{\alpha\beta} and \hat{A}_{ab}=\hat{\lambda}_{a}\delta_{ab} .

If we put i=\alpha , j=\beta , k=a , l=b and i=\alpha , j=a, k=\beta , l=b in (1.9)
and take account of (3.1) and this fact, then we have

\phi_{\alpha a}\phi_{\beta b}-\phi_{\alpha b}\phi_{\beta a}+2\phi_{\alpha\beta}\phi_{ab}

=\hat{\phi}_{\alpha a}\hat{\phi}_{\beta b}-\hat{\phi}_{\alpha b}\hat{\phi}_{\beta a}+2\hat{\phi}_{\alpha\beta}\hat{\phi}_{ab} (\alpha\neq\beta, a\neq b) , (3.8)

\phi_{\alpha\beta}\phi_{ab}-\phi_{\alpha b}\phi_{a\beta}+2\phi_{\alpha a}\phi_{\beta b}

=\hat{\phi}_{\alpha\beta}\hat{\phi}_{ab}-\hat{\phi}_{\alpha b}\hat{\phi}_{a\beta}+2\hat{\phi}_{\alpha a}\hat{\phi}_{\beta b} (\alpha\neq\beta, a\neq b) (3.9)

respectively. Adding (3.8) to (3.9), we obtain

\phi_{\alpha\beta}\phi_{ab}+\phi_{\alpha a}\phi_{\beta b}=\hat{\phi}_{\alpha\beta}\hat{\phi}_{ab}+\hat{\phi}_{\alpha a}\hat{\phi}_{\beta b}(\alpha\neq\beta, a\neq b) . (3.10)

The substitution of (3.10) into (3.9) gives rise to

\phi_{\alpha a}\phi_{\beta b}+\phi_{\alpha b}\phi_{\beta a}=\hat{\phi}_{\alpha a}\hat{\phi}_{\beta b}+\hat{\phi}_{\alpha b}\hat{\phi}_{\beta a} (\alpha\neq\beta, a\neq b) . (3.11)

Lemma 3.2 \phi_{\alpha a}=0 if and on/y if \hat{\phi}_{\alpha a}=0 .

Proof. Let \hat{\phi}_{\alpha a}=0 . Then it follows from Lemma 3.1 and (3.11) that

\phi_{\alpha a}\phi_{\beta\gamma}=0 and \phi_{\alpha a}\phi_{bc}=0 , (3.12)

\phi_{\alpha a}\phi_{\beta b}+\phi_{\alpha b}\phi_{\beta a}=0(\alpha\neq\beta, a\neq b) . (3.13)

First we assert that the matrix (\phi_{\alpha a}) has a zero component. In fact, if not
so, multipling (3.13) by \xi_{\beta} and by \xi_{b} and then summing up for \beta(\neq\alpha)

and b(\neq a) respectively, we have a contradiction \xi_{i}=0 , which shows our
assertion. Here we fix indices \alpha_{0} and a_{0} such that \phi_{\alpha_{0}a_{0}}=0 . Then from
(3. 11) we have

\phi_{\alpha_{0}b}\phi_{\beta a_{0}}=0(\beta\neq\alpha_{0}, b\neq a_{0}) . (3.14)

Next we assume \phi_{\alpha a}\neq 0 . Then we see from (3.12) that

\phi_{\beta\gamma}=0 and \phi_{bc}=0 . (3.15)
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From (3.14) we have \phi_{\alpha_{0}b}=0 or \phi_{\beta a_{0}}=0 for \beta\neq\alpha_{0} and b\neq a_{0} . In
the former case, we have \phi_{\alpha_{0}i}=0 . It follows from (1.6) that \xi_{\alpha_{0}}^{2}=1 .
Moreover, from (3. 10) and (3. 15) it follows that \hat{\phi}_{\alpha_{0}\beta}\hat{\phi}_{bc}=0 . If \hat{\phi}_{bc}=0 ,
we see that rank \hat{\phi}<2n-2 . Thus, since \hat{\phi}_{bc}\neq 0 , we get \hat{\phi}_{\alpha_{0}\beta}=0 and
hence also \hat{\phi}_{\alpha_{0}i}=0 , which leads to \hat{\xi}_{\alpha_{0}}^{2}=1 . Therefore \xi=\pm\hat{\xi} and from
Theorem A we see that \phi=\hat{\phi} , that is, we obtain \phi_{\beta b}=0 . In the latter
case, we also get \phi_{\beta b}=0 by a similar method. Similarly we can verify the
converse. \square

4. Proof of Theorem B

In this section, making use of Lemmas in \S 3, we prove Theorem B. We
need to divide the proof into the following four cases: (A) \phi_{\alpha a}=0;(B)

\hat{\phi}_{\alpha a}\neq 0 and \phi_{\alpha\beta}\neq 0;(B’)\hat{\phi}_{\alpha a}\neq 0 and \phi_{ab}\neq 0;(C)\hat{\phi}_{\alpha a}\neq 0 , \phi_{\alpha\beta}=0 and
\phi_{ab}=0 .

But, we can reduce the case (B’) to the one (B) by exchanging the roles
of the indices \alpha and a .

Lemma 4.1 In the case (A), we have \phi=\pm\hat{\phi} .

Proo/. From (3.2) we have \phi_{\alpha a}=0 . Therefore it follows from (3.8) that
\phi_{\alpha\beta}\phi_{ab}=\hat{\phi}_{\alpha\beta}\hat{\phi}_{ab} . (4.1)

Since rank \phi=rank\hat{\phi}=2n-2 , we see \phi_{\alpha\beta}\phi_{ab}\hat{\phi}_{\alpha\beta}\hat{\phi}_{ab}\neq 0 .
Moreover (4.1) implies that indices \alpha and \beta (resp. a and 6) satisfy

\phi_{\alpha\beta}=0 (resp. \phi_{ab}=0 ) if and only if indices \alpha and \beta (resp. a and b) satisfy
\hat{\phi}_{\alpha\beta}=0 (resp. \hat{\phi}_{ab}=0 ). Hence from (4.1) we have

\phi_{\alpha\beta}=\in\hat{\phi}_{\alpha\beta} and \hat{\phi}_{ab}=\in\phi_{ab} (4.2)

for a local function \in . Since we have \sum_{\beta}\phi_{\alpha\beta}^{2}=\in^{2}\sum_{\beta}\hat{\phi}_{\alpha\beta}^{2} from the first
of (4.2), then it is easily seen from (1.6) that

\epsilon^{2}\hat{\xi}_{\alpha}^{2}-\xi_{\alpha}^{2}=\epsilon^{2}-1 . (4.3)

By a similar method, the second of (4.2) gives rise to

\hat{\xi}_{a}^{2}-\epsilon^{2}\xi_{a}^{2}=1-\epsilon^{2} (4.4)

On the other hand, since \phi_{\alpha a}=0 and \hat{\phi}_{\alpha a}=0 , we see from (1.6) that

\xi_{\alpha}\xi_{a}=0 and \hat{\xi}_{\alpha}\hat{\xi}_{a}=0 . (4.5)
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From (4.5), we have the four possibilities (1) \xi_{\alpha}=0 and \hat{\xi}_{\alpha}=0 , (2) \xi_{\alpha}=0

and \hat{\xi}_{a}=0 , (3) \xi_{a}=0 and \hat{\xi}_{\alpha}=0 and (4) \xi_{a}=0 and \hat{\xi}_{a}=0 , and have
\in^{2}=1 at any case. In fact, in the cases (1) and (4), it is clear from (4.3)
and (4.4) that \in^{2}=1 . In the case of (2), it follows from (4.3) and (4.4) that

\in^{2}\sum_{\alpha}\hat{\xi}_{\alpha}^{2}=m(\in^{2}-1) and - \in^{2}\sum_{a}\xi_{a}^{2}=(2n-m-1)(1-\in^{2}) ,

which is reduced to (1-\in^{2})(2n-2m-1)=0 because \sum\hat{\xi}_{\alpha}^{2}=\sum\xi_{a}^{2}=1 .
Since 2n-2m-1\neq 0 , we get \in^{2}=1 . The case (3) is similar to the case
(2).

Consequently, we have \phi=\pm\hat{\phi} . \square

Lemma 4.2 In the case (B), we have \phi=\pm\hat{\phi} .

Proof. From Lemma 3.1 we have \phi_{\alpha a}\phi_{\gamma\delta}=\hat{\phi}_{\alpha a}\hat{\phi}_{\gamma\delta} . Multiplying this by
\hat{\phi}_{\beta b} and making use of Lemma 3.1 we have

(\phi_{\alpha a}\hat{\phi}_{\beta b}-\hat{\phi}_{\alpha a}\phi_{\beta b})\phi_{\gamma\delta}=0 . (4.6)

Take indices \alpha_{0} , a_{0} such that \hat{\phi}_{\alpha_{0}a_{0}}\neq 0 and put \in=\phi_{\alpha_{0}a_{0}}/\hat{\phi}_{\alpha_{0}a_{0}} . Since
\phi_{\alpha\beta}\neq 0 , we see from (4.6)

\phi_{\alpha a}=\in\hat{\phi}_{\alpha a} . (4.7)

Moreover, we have \in\neq 0 . In fact, if \in=0 , it follows from (4.7) that \phi_{\alpha a}=0 ,
and hence from Lemma 3.2 that \hat{\phi}_{\alpha a}=0 . This is not the case.

Owing to Lemma 3.1, we have

\hat{\phi}_{\alpha\beta}=\in\phi_{\alpha\beta} and \hat{\phi}_{ab}=\in\phi_{ab} . (4.8)

Now,we need to divide into the following two subcases: (I) m\geq 3(II)

m=2.
Case (I): Substituting (4.7) and (4.8) into (3.10), and (3.11), respectively,
we obtain

(1- \frac{1}{\epsilon^{2}})\phi_{\alpha a}\phi_{\beta b}=(\epsilon^{2}-1)\phi_{\alpha\beta}\phi_{ab}(\alpha\neq\beta, a\neq b) , (4.9)

(\in^{2}-1) (\phi_{\alpha a}\phi_{\beta b}+\phi_{\alpha b}\phi_{\beta a})=0(\alpha\neq\beta, a\neq b) . (4.10)

Now we assume that\in^{2}\neq 1 . Then it follows from (4.9) and (4.10) that

\phi_{\alpha a}\phi_{\beta b}=\in^{2}\phi_{\alpha\beta}\phi_{ab}(\alpha\neq\beta, a\neq b) , (4.11)
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\phi_{\alpha a}\phi_{\beta b}+\phi_{\alpha b}\phi_{\beta a}=0(\alpha\neq\beta, a\neq b) . (4.12)

In particular,

\phi_{\alpha_{0}a_{0}}\phi_{\beta b}+\phi_{\alpha_{0}b}\phi_{\beta a_{0}}=0(\beta\neq\alpha_{0}, b\neq a_{0}) . (4.12’)

Multiplying this by \phi_{\gamma a_{0}} and making use of (4.12), we have

\phi_{\gamma a_{0}}\phi_{\beta b}-\phi_{\gamma b}\phi_{\beta a_{0}}=0(\beta\neq\alpha_{0}, \gamma\neq\alpha_{0}, \beta\neq\gamma, b\neq a_{0}) .

Comparing this with (4.12), we have

\phi_{\beta b}\phi_{\gamma a_{0}}=0(\beta\neq\alpha_{0}, \gamma\neq\alpha_{0}, \beta\neq\gamma, b\neq a_{0}) . (4.13)

Furthermore, multiplying (4.12) by \phi_{\alpha_{0}c} , by a similar method we have

\phi_{\beta b}\phi_{\alpha_{0}c}=0(\beta\neq\alpha_{0}, b\neq a_{0}, c\neq a_{0}, b\neq c) . (4.14)

Here we consider the following two subcases: (1-1) \phi_{\alpha a}=0 for any \alpha\neq\alpha_{0}

and any a\neq a_{0} ; (1-2) \phi_{\beta_{0}b_{0}}\neq 0 for some \beta_{0}\neq\alpha_{0} and some b_{0}\neq a_{0} . In
both cases we shall lead a contradiction.

Case (1-1): In this case, from (4.12’) we have

(\phi_{\alpha a})=(\begin{array}{llll}* * *0 0 0\vdots \vdots \ddots \vdots 0 0 0\end{array}) or (\phi_{\alpha a})=(\begin{array}{llll}* 0 0* 0 0\vdots \vdots \ddots \vdots* 0 0\end{array}) .

where*denotes an entry of the matrix (\phi_{ji}) . Moreover, from (4.11) we have
\phi_{ab}=0 since \phi_{\alpha\beta}\neq 0 . Then \phi is given by

\phi=[_{*}^{*}***.\cdot.\cdot.\cdot 00***.\cdot.\cdot.\cdot

..\cdot.\cdot

00***.\cdot.\cdot.\cdot 0000*.\cdot.\cdot.\cdot

.\cdot.\cdot.\cdot

00.\cdot.\cdot.\cdot]00* or \phi=[_{0}^{*}**0.\cdot.\cdot.\cdot |.\cdot.\cdot
00***.\cdot.\cdot.\cdot 000**.\cdot.\cdot

..
00000.\cdot.\cdot

..
.|

..
00.\cdot.\cdot..]000

This implies rank \phi\leq m+1\leq n<2n-2 , which is a contradiction.

Case (1-2): From (4.13) and (4.14), it follows that \phi_{\gamma a_{0}}=0 for \gamma\neq\alpha_{0} , \beta_{0}

and \phi_{\alpha_{0^{C}}}=0 for c\neq a_{0} , b_{0} . Furthermore, exchanging the role of \phi_{\alpha a} and
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\phi_{\beta b} , we also find \phi_{\gamma b_{0}}=0 for \gamma\neq\alpha_{0} , \beta_{0} and \phi_{\beta_{0^{C}}}=0 for c\neq a_{0} , b_{0} . From
these and (4.12) we easily see that \phi_{\gamma c}=0 for \gamma\neq\alpha_{0} , \beta_{0} and c\neq a_{0} , b_{0} .
Then the matrix (\phi_{\alpha a}) is given by

(\phi_{\alpha a})=(\begin{array}{lllll}* * 0 0* * 0 00 0 0 0\vdots \vdots \vdots \ddots \vdots 0 0 0 0\end{array})

Since \phi_{\alpha\beta}\neq 0 , from the above matrix and (4.11), it follows that \phi_{ab}=0 .
Thus we see that 2n-2=rank\phi\leq m+2\leq n+1 , which implies n=3
and m=2. It is contrary. Consequently we have \in^{2}=1 , that is, \phi=\pm\hat{\phi}

because of (4.7) and (4.8).

Case (II): From (1.6) it follows that

\sum\phi_{\alpha i}\phi_{ia}-\xi_{\alpha}\xi_{a}=0 , \sum\hat{\phi}_{\alpha i}\hat{\phi}_{ia}-\hat{\xi}_{\alpha}\hat{\xi}_{a}=0 . (4.15)

Substituting (4.7) and (4.8) into the second of (4.15) and then comparing
this result with the first of (4.15), we have

\xi_{\alpha}\xi_{a}=\hat{\xi}_{\alpha}\hat{\xi}_{a} . (4.16)

Moreover, from (1.6), (4.7) and (4.8), we have

\{

\epsilon^{2}\sum_{b}\phi_{ab^{2}}+\frac{1}{\epsilon^{2}}\sum_{\alpha}\phi_{a\alpha}^{2}+\hat{\xi}_{a}^{2}=1 ,

\sum_{b}\phi_{ab^{2}}+\sum_{\alpha}\phi_{a\alpha}^{2}+\xi_{a}^{2}=1
,

(4.17)

\{

\frac{1}{\epsilon^{2}}\sum_{a}\phi_{\alpha a}^{2}+\epsilon^{2}\sum_{\beta}\phi_{\alpha\beta}^{2}+\hat{\xi}_{\alpha}^{2}=1 ,

\sum_{a}\phi_{\alpha a}^{2}+\sum_{\beta}\phi_{\alpha\beta}^{2}+\xi_{\alpha}^{2}=1
.

(4.18)

Now we assume that \in^{2}\neq 1 . Then it follows from (4.17) that

( \frac{1}{\epsilon^{2}}-\epsilon^{2})\sum_{\alpha}\phi_{a\alpha}^{2}+\hat{\xi}_{a}^{2}-\epsilon^{2}\xi_{a}^{2}=1-\epsilon^{2} .
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This, together with (4.18), implies

\in^{2}r-\hat{r}=(1-\epsilon^{2})(n-m-1) , (4.19)

where r= \sum\xi_{\alpha}^{2}=1-\sum\xi_{a}^{2} and \hat{r}=\sum\hat{\xi}_{\alpha}^{2}=1-\sum\hat{\xi}_{a}^{2} . Here, we want to
show that \hat{\xi}_{\alpha}=0 or \hat{\xi}_{a}=0 .

For this, we assume that there exist indices \alpha_{0} and a_{0} such that \hat{\xi}_{\alpha_{0}}\hat{\xi}_{a_{0}}\neq

0 . We may set as \alpha_{0}=1 . Put \eta=\hat{\xi}_{1}/\xi_{1} . Then we see \eta\neq 0 by (4.16).
Then we see from (4.16) that \xi_{a}=\eta\hat{\xi}_{a} and \hat{\xi}_{\alpha}=\eta\xi_{\alpha} . Taking account of
this, (1.6), (4.7) and (4.8) we easily see

\frac{1}{\eta\in}\sum\xi_{a}\phi_{a\alpha}+\eta\in\sum\xi_{\beta}\phi_{\beta\alpha}=0 , \sum\xi_{a}\phi_{a\alpha}+\sum\xi_{\beta}\phi_{\beta\alpha}=0 , (4.20)

and so

( \frac{1}{\eta\in}-\eta\in)\sum\xi_{\beta}\phi_{\beta 2}=(\frac{1}{\eta\in}-\eta\in)\xi_{1}\phi_{12}=0

since m=2 . Since \phi_{\alpha\beta}\neq 0 , from this we have \eta^{2}=1/\in^{2} . Then, using
(4.20) we obtain \hat{r}=(1/\in^{2})r , which, together with (4.19) and fact \Xi^{2}\neq 1 ,
gives (\in^{2}+1)\hat{r}=-(n-m-1)\leq 0 . This is a contradiction.

If \hat{\xi}_{\alpha}=0 , then taking account of (1.6) we find

\sum\hat{\xi}_{a}\phi_{a\alpha}=\sum\hat{\xi}_{a}\phi_{ab}=0 ,

which means \sum\hat{\xi}_{a}e_{a}\in ker\phi . Since \xi=\sum\xi_{i}e_{i}\in ker\phi and \dim(ker\phi)=1 ,
we see that \xi_{\alpha}=0 and \xi=\pm\hat{\xi} . If \hat{\xi}_{a}=0 , then we also get \xi_{a}=0 and
\xi=\pm\hat{\xi} .

Accordingly, by Theorem A we have \phi=\hat{\phi} , which is contrary to the
fact that \in^{2}\neq 1 . Thus our Lemma follows from (4.7) and (4.8). \square

Lemma 4.3 In the case (C), we have \phi=\pm\hat{\phi} .

Proof. It follows from Lemma 3.1 that

\hat{\phi}_{a\alpha}\hat{\phi}_{\beta\gamma}=0 and \hat{\phi}_{a\alpha}\hat{\phi}_{bc}=0 .

Since \hat{\phi}_{\alpha a}\neq 0 by the assumption, the above equation is reduced to

\hat{\phi}_{\alpha\beta}=0 and \hat{\phi}_{ab}=0 .

Therefore, (3.10) implies that

\phi_{\alpha a}\phi_{\beta b}=\hat{\phi}_{\alpha a}\hat{\phi}_{\beta b}(\alpha\neq\beta, a\neq b) . (4.21)
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Multiplying (4.21) by \hat{\phi}_{\beta c} and making use of (4.21), we get

(\phi_{\beta b}\hat{\phi}_{\beta c}-\hat{\phi}_{\beta b}\phi_{\beta c})\phi_{\alpha a}=0(\alpha\neq\beta, a\neq b, a\neq c) . (4.22)

On the other hand, since rank \phi=2n-2 and \phi_{\alpha\beta}=\phi_{ab}=0 , we see that
rank (\phi_{\alpha a})=m=n-1 . In this situation we divide into the following two
subcases: (I) m\geq 3;(II)m=2 .

Case (I): Since m\geq 3 and rank (\phi_{\alpha a})=m , we can change the order of the
local orthonormal frame field \{e_{i}\} in such a way that

\phi_{1,m+1}\phi_{2,m+2}\phi_{3,m+3}\neq 0 . (4.23)

Combining this with (4.21), we also have

\hat{\phi}_{1,m+1}\hat{\phi}_{2,m+2}\hat{\phi}_{3,m+3}\neq 0 . (4.24)

Taking account of (4.23) and (4.24), we obtain

\phi_{\alpha a}=0 if and only if \hat{\phi}_{\alpha a}=0 , (4.25)

that is, \phi_{\alpha a} and \hat{\phi}_{\alpha a} are equal to 0 in the same position if any. In fact, for
any \phi_{\alpha a} , there exists an index \mu\in\{1,2, 3\} such that

\phi_{\alpha a}\phi_{\mu,m+\mu}=\hat{\phi}_{\alpha a}\hat{\phi}_{\mu,m+\mu}(\mu\neq\alpha, m+\mu\neq a)

because of (4.21). Since \phi_{\mu,m+\mu}\neq 0 and \hat{\phi}_{\mu,m+\mu}\neq 0 , we obtain (4.25).
From (4.21) we obtain

\phi_{\mu,m+\mu}\phi_{\iota/,m+\nu}=\hat{\phi}_{\mu,m+\mu}\hat{\phi}_{\iota/,m+\nu} (\mu, \nu=1,2,3, \mu\neq\nu) ,

which implies \phi_{\mu,m+\mu}=\in\hat{\phi}_{\mu,m+\mu}(\in=\pm 1) for \mu=1,2,3 . Since for any
indices \alpha and a there exists an index \mu\in\{1,2,3\} such that \alpha\neq\mu and
a\neq m+\mu , again from (4.21) we have \phi_{\alpha a}=\in\hat{\phi}_{\alpha a}(\in=\pm 1) .

Case (II): Since m=n-1 and m=2 , \phi and \hat{\phi} are given by

\phi=(\begin{array}{lllll}0 0 u v w0 0 x y z-u -x 0 0 0-v -y 0 0 0-w -z 0 0 0\end{array}) and \hat{\phi}=(\begin{array}{lllll}0 0 \hat{u} \hat{v} \hat{w}0 0 \hat{x} \hat{y} \hat{z}-\hat{u} -\hat{x} 0 0 0-\hat{v} -\hat{y} 0 0 0-\hat{w} -\hat{z} 0 0 0\end{array})

From (1.6), it follows that

\xi_{\alpha}\xi_{a}=0 and \hat{\xi}_{\alpha}\hat{\xi}_{a}=0 . (4.26)
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By virtue of the above expressions of \phi and \hat{\phi} , we can consider the following

threesubcasesandweshalls.\cdot ho(II- l)x\neq 0,y=zwthat\phi=\pm\hat{\phi}at=0each\cdot,(II- 2)case
xy\neq 0 , z=0 ; (II-3) xyz\neq 0 ,

Case (II-1): From (4.21), we find

\hat{u}\hat{y}=0 , \hat{u}\hat{z}=0 , \hat{v}\hat{z}=0 , vx=\hat{v}\hat{x} , wx=\hat{w}\hat{x} , \hat{w}\hat{y}=0 . (4.27)

Since x\neq 0 , it follows from (4.22) that \hat{v}=\in v,\hat{w}=\in w , which yields
\hat{x}=(1/\in)x because of (4.27). Here we note that \in\neq 0 . In fact, if \in=0 ,
then \hat{v}=\hat{w}=0 . Since rank \hat{\phi}=4 , then \^u\neq 0, which, together with (4.27),
implies \hat{y}=\hat{z}=0 . Thus rank \hat{\phi}<4 and it is contrary.

If \xi_{\alpha}\neq 0 , we see from (4.26) that \xi_{a}=0 , which yields v^{2}=w^{2}=1

because of (1.6). Then we have 1-\xi_{1}^{2}=u^{2}+v^{2}+w^{2}=u^{2}+2 and hence
contradicts. Thus we get \xi_{\alpha}=0 , and hence x^{2}=1 and u=0. Moreover,
we find \^u=0 In fact, if \^u\neq 0, from (4.27) we get \hat{y}=\hat{z}=0 . Since we see
from (1.6) that (\in v)^{2}=(\in w)^{2}=1 , which leads to a contradiction.

Also we obtain \hat{\xi}_{\alpha}=0 . In fact, if \hat{\xi}_{\alpha}\neq 0 , then \hat{\xi}_{a}=0 by means of
(4.26). Thus \hat{x}=1 , which means \hat{\xi}_{2}^{2}=0 and \hat{y}=\hat{z}=0 . Therefore \hat{\xi}_{1}^{2}=1

and hence \hat{v}=\hat{w}=0 . This contradicts the fact that rank \hat{\phi}=4 .
Hence summing up the above results, we get \hat{v}^{2}+\hat{w}^{2}=\in^{2}(v^{2}+w^{2})=

1=v^{2}+w^{2} , that is, \Xi^{2}=1 . Combining this with the fact that \hat{x}=(1/\in)x

and x^{2}=1 , we have \hat{x}^{2}=1 , which means \hat{y}=\hat{z}=0 .
Consequently we have \phi=\pm\hat{\phi} .

Case (II-2): It follows from (4.21) that

uy=\^u\hat{y} , \^u \hat{z}=0 , \hat{v}\hat{z}=0 , vx=\hat{v}\hat{x} , xw=\hat{x}\hat{w} , yw=\hat{y}\hat{w} . (4.28)

If \hat{z}\neq 0 , then from (4.28), we get \^u=0 and \hat{v}=0 . However, since it
was discussed in the Case (II-1), we may set \hat{z}=0 . Let w=0. Then
\xi_{5}^{2}=1 , that is, \xi_{1}= =\xi_{4}=0 . If \hat{w}\neq 0 , then from (4.28) and the
fact that w=0, it follows that \hat{x}=\hat{y}=0 . This contradicts the fact that
rank \phi=4 . Thus \hat{w}=0 . Therefore \hat{\xi}_{5}^{2}=1 , that is, \hat{\xi}_{1}= =\hat{\xi}_{4}=0 . This
case was treated in Theorem A. Thus it suffices to consider w\neq 0 . This,
together with (4.22), implies x\hat{y}=\hat{x}y , that is, \hat{x}=\in x,\hat{y}=\in y , where \in\neq 0 .
Combining this with (4.28), we obtain

u=\in \^u, v=\epsilon\hat{v} , w=\epsilon\hat{w} ,

which implies \hat{w}\neq 0 .
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On the other hand, as we have ssen in the proof of Lemma 4.1, we can
consider the four possibilities (1), (2), (3) and (4) from (4.6) and (4.26).

(1) It follows from (1.6) that u^{2}+v^{2}+w^{2}=1/\in^{2}(u^{2}+v^{2}+w^{2})=1 ,
which means \in^{2}=1 .

(2) Since \hat{\xi}_{a}=0 , we have \hat{w}=1 , which imolies \text{\^{u}}=\hat{v}=0 and hence
this case was treated in the Case (II-1).

(3) Since \xi_{a}=0 , we find w^{2}=1 , which yields u=v=0 and hence
also discussed in the Case (II-1).

(4) In this case, we find w^{2}=\hat{w}=1 and hence u=v=\^u =\hat{v}=0 .
Thus it is clear from (2) and (3) that \Xi^{2}=1 .

Case (H-3): It is easily seen from (4.22) that

\^u=\in u, \hat{v}=\in v , \hat{w}=\in w , \hat{x}=etax , \hat{y}=\eta y , \hat{z}=\eta z . (4.29)

This, together with (4.21), shows \in\eta=1 . From (4.26) we have the same
four possibilities as the Case (II-2).

(1) Since u^{2}+v^{2}+w^{2}=\in^{2}(u^{2}+v^{2}+w^{2})=1 by means of (1.6), we
see that \in^{2}=1 .

(2) From (1.6), it follows that

\epsilon^{2}u^{2}+\frac{x^{2}}{\epsilon^{2}}=1 , \epsilon^{2}v^{2}+\frac{y^{2}}{\epsilon^{2}}=1 , \epsilon^{2}w^{2}+\frac{z^{2}}{\in^{2}}=1 , (4.30)

which implies

\epsilon^{4}u^{2}v^{2}=(1-\frac{x^{2}}{\epsilon^{2}})(1-\frac{y^{2}}{\epsilon^{2}}) (4.31)

Furthermore, using (1.6) we find

\epsilon^{2}uv+\frac{xy}{\epsilon^{2}}=0 .

Combining this with (4.31), we have x^{2}+y^{2}=\in^{2} . Similary, we also get
y^{2}+z^{2}=\in^{2} , z^{2}+x^{2}=\in^{2} . Since we obtain x^{2}+y^{2}+z^{2}=1 from \xi_{\alpha}=0 ,
we fifind\in^{2}=2/3 .

On the other hand, by using (4.30) we see that \in^{2}(u^{2}+v^{2}+w^{2})+

1/\in^{2}(x^{2}+y^{2}+z^{2})=3 , which shows \in^{2}+1/\in^{2}=3 . This contradicts the
fact that \in^{2}=2/3 . Therefore this case does not occur.

(3) By a similar argument to the case (2) we can show that this case
does not occur too.
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(4) From (1.6), it follows that

uv+xy=0, \in^{2}uv+\frac{xy}{\in^{2}}=0 ,

which yields \in^{2}=1 because of the fact that xy\neq 0 . \square

Proof of Theorem B Owing to Lemmas 4.1\sim 4.3 and O-_{ij}=\hat{\Theta}_{ij} , it follows
from (1.3) that

\psi_{i}\wedge\psi_{j}=\hat{\psi}_{i}\wedge\hat{\psi}_{j} .

Then, by a well-known lemma of E. Cartan [1], we have at each point of M,

if t\geq 3 or \hat{t}\geq 3 , then \psi_{i}=\in\hat{\psi}_{i}(\in=\pm 1)

for i=1 , . , 2n-1 . (4.32)

On the other hand, it is known that in any non-empty open subset of M
there exists a point p such that t(p)\geq 2 , where n\geq 3 (cf. [5]). Since the
type number of M is not equal to 2 at every point by our assumption, we
see from (4.32) that A=\pm\hat{A} everywhere on M . Thus \iota and \hat{\iota} are rigid (cf.
Theorem 3.2 in [5] ) . \square

Remark 4.4. We can show that Theorem B and Lemmas 4.1\sim 4.3 are also
valid for complex hyperbolic space H_{n}(\mathbb{C}) with negative constant holomor-
phic sectional curvature.
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