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Shadows of moving surfaces

Wei-Zhi SUN
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Abstract. We classify the bifurcation of generic local pictures of shadows for one-
parameter families of surfaces in the Euclidean 3-space.

Key words: normal forms of shadow, versal deformation, t — P — K-equivalence.

1. Introduction

We consider the problem how the bifurcation of shadows for moving
surface looks like. A classification of the shadows of generic submanifolds
in R™ was given by Watanabe [12]. In this paper we shall study the normal
forms of shadows of one parameter families of surfaces and illustrate how
shadows of surfaces change when surfaces move along one parameter in R3.

One of the motivations for the study of the shadows of surfaces is given
in Vision Theory ([4],[8]). In [8], Lions et. al. studied the so-called Shape-
from-Shading problem. This problem corresponds, roughly speaking, to
the reconstruction of a shape (a surface) from the brightness of the two-
dimensional image. They studied this problem as an application of the
theory of viscosity solutions for various kinds of boundary value problems
for a first order Hamilton-Jacobi equation. The boundary in these problems
was considered as the edge of the shadows of a surface.

Let R? be the Euclidean 3-space with coordinate (x,y;,y2). The subset
G in R? is called the shadow of a surface H in R3, if G is the image of
projection 7 along a certain direction (for example, z-axis), where 7 : R —
R? is given by 7(z,y1,92) = (y1,92)-

Let H be a closed surface in R3. We denote the set of embeddings from
H to R3 by

Emb(H,R?) = {i : H — R3| i is an embedding}

which is a Borel-space if we adopt the Whitney topology. We consider the
following set
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P ={e: HxI—R3xR|e(p,t) = (i¢(p),t), iz € Emb(H,R?)},

where [ is an open interval in R which contains the origin. For any e € P, e
is regarded as a family of elements of Emb(H,R3) with a parameter ¢, and
the image e(H x I) is a 3-dimensional submanifold in R? x R.

We suppose that the moving surfaces have the shadow in RZxR. For any
e € P, the image of IToe is called a shadow of e, where IT : R3xR — R2 xR is
the canonical projection defined by II(z,y1,y2,t) = (y1,y2,t). Our purpose
in this paper is to give a local classification of the bifurcation of the image
of IT o e along the parameter ¢ under the parameterized diffeomorphisms.
The precise definition is given as follows.

Definition 1.1 Let D and D’ be set germs in (R? x R,0). We say that D
and D’ are t-diffeomorphic if there exist diffeomorphism germs $ - (R? x
R,0) — (R x R,0) and ¢ : (R,0) — (R,0) such that ®(D) = D’ and
Tod = (]30 7¢, where m; : R?2 x R — R is the projection to the second
components.

Under the above notation, we define D; = D N (R? x {¢t}) and D] =
D'N(R? x {t}). If D and D’ are t-diffeomorphic, then ®(D,) = qu%(t)v that
is the bifurcations of {Di}ier ) and {Dj}ie(r,0) 2long the parameter ¢ are
diffeomorphic. Our main result in this paper is the following theorem.

Theorem A There exists a residual subset Q C P with the following
property : For any e € Q and for any point Yy of the shadow Il oe(H x I),
the number r of singular points of o e in (ILoe)1(Yy) is at most 3 and
the set germ of the shadow at Yy is t-diffeomorphic to one of the set germ
in the following list :

r=1
PGy normal forms of set germs of the shadows
°G, {(y1,92,t) € R? x Rly; € R}
0G2
G, {(y1,2,t) € R? x R|yr < 0}
1G;_ {(yl,yg,t) e R? x R|yi € R}
1G2—
1G, {(y1,72,t) € R? x R|27y5 — 256y; — 144y, y3t
+4y2t3 — 16y;t* + 128yt < 0}
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normal forms of set germs of 2-multi- shadows

{(y1,92,t) € R? x Rly; < 0}
U{(y1,92,t) € R? x Rlys < 0}

{(ylay27t> S R2 X R‘y% +t-|—y1 < O}
U{<ylay2>t) € R2 X Rlyl < 0}

{(y1,v2,t) € R x Rly2 —t +y; < 0}
U{(y1,¥2,t) € R* x Rly; < 0}

{(y17y27 ) - R2 X Rlyl c R}
U{(ylayQa ) S Rz X RIyZ }

{(y1,y2,t) € R? x Rly; +t < 0}
U{(ylay27t> < R? x R'yz € R}
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normal forms of set germs of 3-multi- shadows

1+
Gl,l,l

{(y1,92,t) € R® x Rly1 +y2 +1 < 0}
U{(ylayZat) € Rz X R‘yl < O}
U{(ylay27t) € R2 X R':y? < O}

{(y17y27t) € Rz X Rlyl + Y2 — t < O}

U{(y1,y2,t) € R x Rly; < 0}
U{(y1,92,t) € R? x Ry, < 0}

The situation is depicted as follows :

r=1

OGO
OG2

DA T R

NN RNRNT Y

NN



RN \\\\\ \\\\\
1(;\\\\\\ NN

A YN
A NN

NNy
A %%%///,




Shadows of moving surfaces
1Gi1

\ /7// NN /// \\%
\\\\\\ \m\\\ x\\\\*
SRR

\\\\\\ \\\ ANNNANNN

ERRR SRR 1
I M\T AN

S




412 W.-Z. Sun

t <0 t=20

The above classification of shadows is obtained via a classification of

defining functions of embedded surfaces e(H x I). (See [[heorem 2.3 and

[heorem 4.4. See also [Proposition 2.2)). The notation pr:) for the normal
)

the defining functions. Therefore Theorem A gives information about not
only the shadows but also the locations of the embedded surfaces e(H x I)
from which the shadows come.

The Theorem A is divided into [Theorem 3.1 in §3 and rem 4.9 in
§4. In [Theorem 3.1 we consider the case the number r of singular points of
IMoein (IToe)1(Yp) is 1. In Theorem 4.9, we consider the other case r = 2
and 3. The proof of [Theorem 4.9 is almost the same as that of
3.1, so that we omit the details. The idea of the proof of [l'heorem 3.1 is
summarized as follows : Since the image of e is a hypersurface in R x R x R,

forms of shadows is named after the notation pAéi for the normal forms of

it may be locally considered as a zero point set of a submersion F': (R x
R? x R,0) — (R,0). We apply Zakalyukin’s classifications({13]) among
such function germs up to a certain equivalence relation, which preserves
the bifurcation of shadows. We can translate such a classification into the
classification of IIg : (F~1(0),0) — (R? x R,0) which corresponds to the
local classification of Il o e around a point. After that we apply the Thom’s
transversality theorem to detect the generic condition on e. We use the

multi-germ version of the above arguments to prove [I’heorem 4.9.

In §2, we study the local properties of submanifold e(H x I) around a
single point. In §3, we give a proof of [Theorem 3.1. In §4, we study the
case v = 2,3 and give a proof of ['heorem 4.9.

All map germs considered here are differentiable of class C°°, unless
stated otherwise.
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2. Classification of the local shadows

In this section we prepare some local theory for the study of shadows.

Let e € P. For any (po,to) € H x I, since e(H x I) is a 3-dimensional
submanifold in R x R? x R, it follows from the implicit function theorem
that there exists a small neighborhood U of e(po,tp) in R x R? x R and a
function F' : U — R such that F|yngxr2x{t) 18 @ submersion and

F7H0)=Un e(H x I).

We call F' a local equation of e at e(pp,to).

Since we consider the local theory, It suffices to study submersion F' :
(R x R? x R,0) — (R,0) at the origin.

Definition 2.1 Let F, F': (RxR?xR,0) — (R, 0) be function germs. We
say that F and F' are t — (P — K)-equivalent if there exists a diffeomorphism
germ

®: (RxRZxR,0)— (RxR?xR,0)
of the form
(I)(ZL', Y1,Y2, t) = (¢1($7 Y1,Y2, t)7 ¢2(y17 Y2, t)7 ¢3(t))
such that
* . /
o7 < F >g(m~y1’y2,t)_< F >g(fﬂyy1’y2»t)’

where €5 1. t.,u) denotes the ring consisting of function germs (R x R? x

R,0) — (R, 0).

We remark that the following diagram commutes :

(R,0) (R,0)

F] ) P
(RxR?xR,00) —— (RxR?xR,0)
Hl II

(¢2.63) .
(R2xR,0) ——1 (R?xR,0)
th Tt
@3 ,
(R, to) — (R, tp)

It is clear that (¢g,¢3) : (R? x R,0) — (R? x R,0) and ¢3 : (R,0) —
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(R,0) are the diffeomorphisms.
Similarly we may define the t — (P — K)-equivalence for function germs
at arbitrary base points. We have the following proposition.

Proposition 2.2 Let F, F': (R x R? x R,0) — (R,0) be function germs.
If F,F'" are t — (P — K)-equivalent then TI(F~1(0)) and IL(F'~'(0)) are t-
diffeomorphic.

Proof. By definition, there exists a diffeomorphism germ ® = (¢4, ¢, ¢3),
such that

! J—
<Fod P E iy mt) F 7€)

so that F~1(0) = ®~1(F’~(0)). By the commutative diagram, we obtain

(¢2, 63)(II(F~1(0))) = II(F'~1(0)).

Set @ = (2, ¢3) and ¢ = @3, then we have ®(IL(F~1(0))) = II(F'~'(0))
and T, 0 ® = qS o 7, where m; : R? x R — R is the projection to the second
component. []

For the local case, by [Proposition 2.2, it is sufficient to consider the
local shadows of local equations F| that is, the image of lIp = Il|p-1
(F71(0),0) — (R? x R,0). For f = Flgxr2x {0}, We consider the subspaces

of & given by
of 0
N < f of >
9y, Oys

(P - ’C)e - COd(f) = ding (z,y1,92) /T (P ’C)(f)

z,y1,Y2)

1P~ K)() = (2L.1)

g(m,y11y2) 5(y1»y2)

We also consider its codimensions

Let F: (R x R? xR, 0) — (R, 0) be a function germ, we say that F is a
(P — K)-versal deformation of f = Flgygrzxoy + (R x R? x {0},0) — (R, 0)
if

OF
<—8—t_ t:0>R +T(P = K)e(f) = E@yrp):

In , Zakalyukin’s classification theorem is developed to the following
theorem which is useful for classification of local equations.

Theorem 2.3 Let F: (R x R* x R,0) — (R,0) be a function germ with
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(P — K)e — cod(f) < 1, where f = Flgygrnx{o}- If F is (P — K)-versal
deformation of f, then F ist — (P — K)-equivalent to one of the germs in
the following list :

0A : R SN L (0<k<n)
L (= Y2 £ +y2)+ 52—11 yirtl 2<k<n+1

)

NN\

In the case n = 2, by [Theorem 2.3, we have the following corollary.

Corollary 2.4 Let F: (R x R x R,0) — (R,0) be a function germ with
(P - K)e — cod(f) < 1, where f = Flgypexqo}- If F is a (P — K)-versal
deformation of f, then F is t — (P — K)-equivalent to one of the following
function germs :

OAQICB

0A;:z* + 1

04y : 2° + zya + 11
1A;:x3+:cy§+t:1:—|—y1
1A cxd — a2y +tr + g
LAs 2 + zyg + ta? + y1.

We denote the shadow opr,(ci) by pG,(Ci). Then by Theorem 2.3 we also
have the following corollary.

Corollary 2.5 Let F: (R x R?2 x R,0) — (R,0) be a function germ with
(P — K)e — cod(f) < 1, where f = Flgyrexfoy- If F is a (P — K)-versal
deformation of f, then II(F~1(0)) is t-diffeomorphism to one of the set
germs in the above list pchi) (See the following table).

PGy normal forms of set germs of the shadows
OGO {(yl,yg,t) - R2 X R‘yz - R}

°G, {(y1,y2,t) € R* x Rly; < 0}

0G, {(y1,y2,t) € R? x Rly; € R}

'G3 {(y1,y2,t) € R* x Ry; € R}

'Gy {(y1,92,t) € R* x Rly; € R}

1G3 {(y1,y2,1) € R? x R|27y3 — 256y} — 144y1y5t

+4y3t3 — 16y1t* + 128y%t* < 0}
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Remark. When p = 1 and k = 3, we observe that z* + tz? + zyy + y; is
t — (P — K)-equivalent to z* — tz? + zys + y1.

In order to study the generic properties of e € P which respect to the
local equation F' at e(pg, tg), we need some preparations.

Let g : (R?,0) — (R2,0) be a C*® germ. In [2], two types of codimen-
sions of g are defined as follows :

(A) — cod(g) = dimgMy x My /T (A)(g)

and
(A)e — cod(g) = dimg&s x & /T.(A)(g),
where
dg Og
T — - * *
(A)(g) = My <8x1’ 8$2>€2 + g" My X g™ My
and

dg Og
T.(A)(g) = ( o0, =2 “€3 X g*Ey.

Remark. T(A)(g) and T(A).(g) do not depend on the choice of the local
coordinates on the source and the target.

In ([1],[6]), the notion of the versality for deformations is defined as
follows.

Let G : (R? x R,0) — (R%,0) be a C*®-map germ and g = Glrzx 0y :
(R2,0) — (R?,0). We say that G is an A-versal deformation of g if

<%—(5 t:o>IR +T(A)e(g) = & x &

We now consider a map germ
711G (R? x R,0) — JY(R? R?) = R? x R? x J(2,2)
given by
16 (,t) = j°Gy(2).

Let z = j%g(0) and L*(2) x L*(2)(z) be the A-orbit through z in J(2, 2)
(See [2],[5])-
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Lemma 2.6 Suppose that ¢ = G|i—g is A-finitely determined (i.e. (A)e —
cod(g) < 4o0). Under the above notations, for sufficiently large ¢, the
following conditions are equivalent.

(i) #ojiG h (L4(2) x LY(2))(2).

(ii) G is an A-versal deformation of g,

where 7 : R? x R? x J¢(2,2) — J¥(2,2) is the canonical projection.

Proof. By the definition of the transversality,
7ogta M (L5(2) x LY(2))(2)
if and only if

d(7 0 j1G)(0,0)(To,0)R? x R) + To(LF(2) x L(2))(2)
= T,J2,2).

It is also equivalent to the following condition :

77 (d(7 0 §1G) 0,0y (T(0,0)R* X R)) + T(A)(9) + st x gt
= My X Mo, (1)

where 7y : My X My — J(2,2) is the canonical projection. Therefore we
have

w7 Y (d(7 0 j1G) 0.0)(T(0,0)R* X R))
_ - 0 _ L s,
= <7Te ! (d(W © JfG)(o,o) (%—1)), Ty ! (d(ﬂ’ o ]fG)(0,0)<a—$;)),
_ . 0
7T€ 1 (d(ﬂ' OJ{G)(0,0) (52)>>R
+omstt x et
Then (1) is equivalent to

< dg Jdg OG
0x1 " Oy Ot

L) T+ =y o (2

It follows from the definitions of T(A)(g) and T(A)c(g) that (2) is
equivalent to

<§§ > + T(A)e(g) + M5 x M =& x &, 3)
ot 1t=0/p
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Since g is A-finitely determined, we have
mott x Mt © T(A)(g)  for some £.

Then (3) is equivalent to

<‘?9_f t:0>R + T(A)u(g) = £ X &.

L]

Let F : (R x R? x R,0) — (R,0) be a function germ such that f =
Flrxr2x{o} : (R x R* x {0},0) — (R,0) is a submersion germ. We consider
the local projection Il = II|p-1(p) : (F~'(0),0) — (R? x R,0). and 7y =
mlr-10)x oy * (F71(0),0) — (R? x {0},0).

By the above remark, T'(A)(7y) and T(A)(7¢) are well-defined. There-
fore A-versality of deformation Il of 7y is also well-defined.

Under the above notations, we have the following proposition.

Proposition 2.3 The following conditions are equivalent.
(i) F isa (P —K)-versal deformation of f.

(ii) w2 ollp is an A-versal deformation of my.

Here w3 : (R? x R,0) — (R?,0) is the canonical projection.

Proof.  Since f is a submersion, we may suppose that % # 0 (for the

case %—5 # 0 or 3712 # 0 are similar), then we may suppose that F has
the form F(x,y1,y2,t) = y1 — h(z,y2,t), for some function h : (R x R x
R,O) - (R,O) and f(xaylay2) = F(x>ylay270) =Y — h0($7y2)a where
ho(ﬂ:,yg) = h(m,yg,()). Define G : (R2 X R, 0) — (Rz,O) by Gp(a?,yg,t> =
(h(xayQat)ayQ) and gf(xvyZ) = (hO(x7y2)7y2)‘ Then GF = T2 0 HF and
g, = m5. We consider the map germ I, : (R?,0) — (R?,0) defined by

Iho (ZU, y2> = (1:7 hO(ma y2)a y2)
and we also consider the pull-back homomorphism

I;;o : 8($7y1,y2) - 8(16442)'

Then kerl; = (y1 — ho(z,y2)) nd

g($,y1 7y2) a

BP0 =(5r) {1y ()

If*'LO g(yl 1y2)
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We now verify the following equality

Oho

Elzan) X {0} NT(A)elg,) = <(5; O) >g
(z,y2)

+ <(1,0), (%,0)

9y >Ih6 Etyrug)

(5)

By the definition of T'(A)c(g,) and the equality (4), we may assume
that any ({,0) € E(zy,) X {0} NT(A)e(g,) has the form

Bho dhg .
(Cao) - (6(9—33’0) + <A8_y27)\) + (IhonhIhOnQ)

for some 71,7z € E(y, ) and &, A € &y Hence ((,0) = (€52 — (Ii,m)
Pa + (If,m)1,0) € (52,00 + ((52,0),(1,0)), , that is

Oy2 ho Ev1.92)
(¢,0) € the right hand side of (5). The converse can be verified similarly,

so we omit its proof.
By (4) and (5), we have

g(xayz) X {0} ﬂT(A)e(gf)

B <( oz ,0)>€(1},y2) " <(1,0)’ (ay270)>17205(y1,y2>

= I, (T(P — K)e(f) x {0}
Then
I T(P = K)e(f) = I, T(P — K)e(f) x {0}
= 5(I,y2) X {0} ﬂT(A)e(gf),

and I induces an R-isomorphism :

Eeanya)/ TP = K)e(f) = Ewyn) X {0}/ Ewye)
x {0} NT(A)e(g;)-

On the other hand, since g,(z,y2) = (ho(z, ¥2), Y2), it is clear that

g(w,yz) X 5(%1/2) = 5(3373/2) x {0} + T(A)e(gf)-
Then

g(m,yl,yz)/T(P - ,C)e(f) = g(az,yz) X {O}/T(A)e(gf) A g(m,yz) X {O}
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= 5(58,92) X {0} + T(A)e(gf)/T(A)e(gf)
- g(m,yz) X 8($,y2)/T(.A)e(gf)-

If €zyrye) = T(P — K)e(f), by the above equality we have £,y X
Exys) = T(A)e(g,). Hence (i) holds if and only if (ii) holds. On the other
hand, since

0Gp oh
ot It 0: (E t:o’o) < g(m,yz) X g(ﬂ:,yz)

and

OF Oh

Bt =0 ot t=0e E@a);
the condition

dimpE sy, 40/ T(P — K)o(f) = 1

is equivalent to

dlng(a: y2) :I:y2 /T( ) (gf) = L

In this case, F' is a (P — K)-versal deformation of f if and only if 8F 0¥
T(P — K)e(f). Moreover

., (OF ., [ —Oh
Ihg <5}5— lt:O) = Ihg ( ot t:0>

B (—ah o) _ —9Gr
S\ Ot =0"") ot ‘t:O
so that
OF e
5 |_o T(P = K)e(f) if and only if P ¢ T(A)(g,).

The last condition is equivalent to G is an A-versal deformation of g,.
For the other case (g?% # 0 or %—5 # 0), the proof is similar. []

o

3. Generic property of shadows of the moving surface

In this section we use Thom’s k-transversal theorem to shows generic
property of shadows of the moving surface.

Theorem 3.1 There exists a dense subset Q@ C P such that for any e € Q
and (po,to) € H x I, the set germ of the shadow of e(H x I) at I1oe(pg, to)
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is t-diffeomorphic to one of the following normal forms pG,(ci) :

k—1
pch:t) - {(y17y23t) S (R2 X R, 0)\$k+1 + Zyixi_l

i=1
+pwk_1(t + y,%) +(1— p)ykxk_l =0,

for some z € (R, O)}

where p=0,1, and 2p < k < p+ 2.

Proof.  Take £ to be sufficiently large. Let S’j,j =0,1,2 or 3, be the set
of jets z = J(h)(0,0) of J(2,2) with (A) — cod(h) = j. Let ¥ be the
compliment of U?ZOSJ- in JY(2,2)(That is, ¥ is the union of jets j¢(h) with
(A) — cod(h) > 4). Then we have

J£(2,2):§0U§1U§2U5A'3U2.

Now we consider the subsets S; = H? x R? x S’j in J(H,R?). For any
e € P, we define the £ — jet — extension map jie : H x I — J*(H,R3) given
by

jte(p,t) = j*(ix(p)),

where i¢ = €| g 13-
We also consider the projection 7 : J¢(H,R?) — J*(H,R?) defined by

“r(j*h(x)) = j* (Lo h(z))

for h: (H,pg) — (R3, h(pp)) and IT : R x R? — R?.

Since ‘7 is a submersion and S;(j = 0,1,2,3) are submanifolds of

JU(H,R?), *n~1(S;) are submanifolds in J*(H,R?) and
codim of S; = codim of ‘7~*(S;) (7=0,1,2,3).
Moreover, we can show that
ji(e) M fx71(S;) if and only if ji(Moe) M S;.
Set

Q; :={ee€P|ji(e) Mir71(S))}, (1=0,1,2,3).
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and
Qs :={e € Plji(e) N7~} (E) = ¢},

By , Oy, is an algebraic subset of J*(2,2) of codimension > 4.

It follows from Thom’s k-transversal Theorem (See [10]) that Q; are
residual subsets of P.

Finally we set

Q= (N_,Q;)N Qs C P,

then Q is a residual subset in P.

For any e € Q and (po,to) € H x I, there exists a neighbourhood U
of e(po,to) and a local equation F : (U, e(po,to)) — (R,0) of e at e(po, to),
so that F~1(0) = U Ne(H x I). Without the loss of generality, e(po, to)
is assumed to be the origin, so that we consider a submersion germ F :
(R x R? x R,0) — (R,0). Under the above notation, we may have the
following identification :

ij ce= jf7r2 ollg.

Since e € Q, jfﬂg oIl is transversal to S;. It follows from lemma 2.6,
that mo oIl is an A-versal deformation of f. Moreover, by the Proposition
2.7 F'is P — K-versal deformation of f = F|gy g2« {to}- Hence we may apply
Corollary 2.5 to get the result. (]

4. Classification of multi-shadows of the moving surface

In this section, we consider the local shadows of a generic submanifold
e(H x I) in R? x R around r-points e(p1, tg), ..., e(pr, to). The all results in
this section are the multi-germ version of results in §2, 3, so that we omit
the detail of the proofs.

Let e € P and p1,...,p, € H, where p; # p; as ¢ # j, for i,5 = 1,...,r,
and let e; : (H x I,(pi,t0)) — (R x R? x R, (z4,0,0)) be the germ of e at
(pisto)(i = 1,...,7). The r-multiple e; X ... X e, is called an r-multi-germ
of e € P at (p1,to), ..., (pr,to)-

As in §2, for each e;, there exists a neighborhood U; of e(p;,to) in
R x R? x R and a local equation F; : (Uj;,e(p;,tp)) — (R,0) such that
F71(0) = U;ne(H xI). The r-multiple Fy x...x F, is called an r-multi-local

1

equation of the r -multi-germ e; x...xe, of e € P at (p1,ty), ..., (Pr, to). The
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r-multi-local equation F; x. ..x F, express the properties of the submanifold
e(H x I) around r points e(p1,to), ..., e(pr, o).
We first consider the local case.

Definition 4.1 Let F; and F! : (R x R? x R,0) — (R,0) be function
germs(i = 1,...,7). We say that Fy x...x F, and F| x...x F] are t—(P—K);-
equivalent if there exists a diffeomorphism germ

®;: RxR?xR,0)— (RxR*xR,0) i=1,..r
of the form

(I)i(xa Y1,Y2, t) - (szl(:l,’, Y1, Y2, t)v ¢2(y17 Yo, t)’ ¢3(t))v

such that
(I);k <Fz',>5(w,y1,y2,t) - <E>5($,y1,y2,t)a 1= 1, U

Similarly we can define (P — K),-equivalence for fi x ... X f. = F} X

oo X F,«ltzo(See @I,)

Firstly, we give tools for classifications of multi-germs under the ¢ —

(P — K)r-equivalence. We consider the subset of £ ) = E@y1y0) X -+ - X
g(xayl ay2) given by
T(P —K),(f1 % - % f)
(R ()
Tl My ) T LM @y 09)

Dy X X ) €y

Ofr X ...xX fr) O(fr x...x fr)
+< Oy ’ Oy2 >

M(y1,92)
and define
(P—K)r —cod(f1 x ... % fr)
= dimgI, oy /T(P = K)n(f1 % .. % fr),

where

T —
(zy1,92) — 9‘n(ﬂc,yhyz) X X m(w,yl,yz)'

We also consider the subset of S&’yhyz) = Emyrye) X -+ - X E(zy1 ) BIVEN
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by
TP = K)e)r(fr % .. % )
6f1 fr
< ’f1>g(zvy1,y2) < Oz’ f >g(w,y1,y2)
Ofix...xfr) O(fi x...x fr)
' < 8y1 ’ 8y2 >€(y1,y2)
and define

(P =K)e)r —cod(fr x ... x f;)
= dimz€l, ,, ) /T((P K)e)r(fr % .. % fr).

We call that F} x...xF, is the (P—K),-versal deformation of f;x...x f,
if

, O(Fy X ...x Fy)
Een) = ot |RxR?x {0} R

+T((P - K)e)r(fl XX fr)

Similarly we may define T'(K),(fo1 % ... X for), (K)r —cod(fo1 X ... X
fo,r) and (K),-versal deformation of fo1X...x for, where fo; = filrx{orx{0}

andz=1,..., See..@]

Lemma 4.2 37 K —cod(fy;) <(P—-K),—cod (fi x...x f.) < ((P—
K)e)r —cod(f1 X ... x fr)+ 2.
Where

K — cod(fo;) = dimgM,/ <8f0’i

O >m$ + (fo,i) e,

Like as in the case when r = 1, Zakalyukin’s theorem ([13]) is again the
key of our classification.

In order to state Zakalyukin’s theorem we define the discriminant set
of r-multi germs Gy x ... x G, where G; : (R x R? x R,0) — (R,0) are
function-germs (i = 1,...,r) as follows :

DG = U::lDGia
where

D¢, = {u € R? x R|G;i(z, u1,uz,us)
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0G;
(z,u) = %—;(:ﬁ,u) =0,

for some z € (R, 0)}

We will utilize the following result for n = 2.

Proposition 4.3 (Zakalyukin’s Theorem [13]) Lett: (R3,0) — (R,0) be

a submersion germ which is defined on the (i1, ..., Ulmys -y Urly ooy Urm,.,
Uq, ..., Uy)-space, where p =3 — Y I_y m;. Suppose that
ot ot
0,.., 0
Ou1m, #0 OUrm, #
and
tlun:...:urmr—:o

is a Morse function germ. Then there exists a diffeomorphism germ ¢ :
(R3,0) — (R3,0) preserving the discriminant set Dp such that t o ¢ = u;
orto¢ = tujm, :t...:i:urmr:tu%:t...j:ui.

Remark. The submersion ¢ which satisfies the assumption of the Proposi-
tion 4.3 is generic.

If K—cod(fo,i) =0, then the germ fq; is non-singular, so that the image
of the neighbourhood of such a point by the projection II is contained in the
inside of shadows. Hence, we need only consider germs with K —cod(fo;) =
1. Moreover, since we will classify multi-germs with ((P — K)¢), — cod(f1 x
... X fr) <1 (See [7]), we may assume that r < 3 by Lemma 4.2.

We can prove the following multi-germ version of [ITheorem 2.3 by ex-
actly in the same way as the single germ case.

Theorem 4.4 Let F; : (R x R? x R,0) — (R,0) be function germs with
(P=K)e)r—cod(fi x ... X fr) < 1, where f; = Fi|lgxrzx{oy fori=1,...,r
and 1 < r < 3. If F; x ... x F, is a (P — K)¢)r-versal deformation of
fi X ... %X fr, then F} x ... X F, is t — (P — K),-equivalent to one of the
following r-multi-germs :

3A11 : (:c2+y1,:£2+y2)
VAT (@ +t+y +v5, 20 + )
0 A7 (22 +t -y —v3, 2%+ y1)
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2 A3 ¢ (2

245, (@° + tz — zy2 + y1, 2% + yo)
AT, (2% + t+ 2, 2 + zyn + y1)

2 AL ¢ (@

3A111-(33 +t+yr+y2, 2’ +y1, a0+ y2)
3AT (@t —y — 1,80+ y1, 20 + ).

z° + tz + zyp + Y1, 2° + y2)

2t +t—y2,7° + Yz + 41)

We can denote the above list to the following form
pA’(CﬂZng ( Ak17pAk27pAk3)

where

k1—1
pAkl = :L‘k1+1 + Z yiiﬂz_l

ki—1 2
+ pr ! (t + yk1+’€2—1 + yk1+k2+k3—1 + yk1+k2+k3)

+ (1 - p)yluxkl—l?
k1+ko—1

_ kot1 —1
pAk2 = g2 +p Z ykl—l—i-ixl
i=1
ki1+ko—1

i—1
Z Yk +iT ;
1=1

k1+ko+ks—1

ks+1 —1
pAka = gt +p Z yk1+k2—1+i$2
=1
ki+ka+ks—1
—1
+ (1 - p) Z yk1+k2+ix2 )

i=1
for p =0,1. »=2,3. r <Y ki < 3 and Yky+ky—1 = 0 if k1ko = 0,
Yk1+kotks—1 = 0 if klk2k3 = O) pAkH_l =
Proposition 4.5 IfFy x...x F. F]{ x...x F| are t— (P — K)-equivalent,
then TI(UI_, F;71(0)), I(UI_, F';*(0)) are t-diffeomorphic, where 11 : R x
R?2 x R — R? x R is the canonical projection.

As a corollary of [['lheorem 4.4 and [Proposition 4.5 we have the following
result.
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Corollary 4.6 Under the same assumptions of Theorem 4.4, II (U]_,
F71(0)) is t-diffeomorphism to one of the germs in the following list :

2G11 2GY 36Ty 3G3y 3Gay 3GT, G2 3GT11 3GTan
where
+
gGgﬂl,)kg = H(pAkl = 0) U H(pAk2 = 0)’
and
+
G 1 = (P Ay, = 0) UTI(P Ay, = 0) UTI(PAy, = 0)
forp=0,1, and 2 <Y 7_; k; < 3.

In order to show that the list in corollary 4.5 is a generic local classifi-
cation of shadows of e, we need some preparations.

Let g;, g/ : (R%,0) — (R?,0) be map-germs (i = 1,...,7). We say that
g1X...xgrand gj X...xg. are Ay 1 -equivalent if there exist diffeomorphism
germs

®, 0, : (R%0) — (R0) (i=1,...,7)
such that
Pogi=g.oW;. fori=1,...,r

We define the tangent space of A, j-orbit of g; X ... x g, is follows.

. 891 891 > < 897" 8gr >
T(A)r,l(gl X ... X gr) — <8ZC1, 8332 o, X ... X 8$1, 81'2 My

+ g(r*)Ar(ﬁﬁg X My),

where
g™ = (g7 x gf) x ... x (gF x gF) : (E2 x &) — (E2 X &),
and

AT‘(WQ X gﬁQ)
= {((hlvh2)’ ) (hlahZ)) € (m2 X m2)r|h1, hy € Dﬁg}.

We also consider another notion of codimensions of (g; X ... X g,) defined
as follows :

Ar1—cod(g1 X ... X gr)
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= dimR(ﬂﬁg X SJIQ)T/T(A)T(gl X ... X gr)-

Similarly, we define the tangent space of (A)y1-orbit of (g1 x ... X gr)
is follows :

_ /0q1 Oq ogr 3gq~>
T(Ae)r,l(gl X...X gr) = <8JI1, 8$2>52 X... X <8£L‘1’ B4 ,

+ g AL(E X &),
where
Ar(Er x &) = {((h1,h2), .-, (R1,h2)) € (€2 X &)"|h1, ke € Ea}.

The codimension is defined by

(Ae)r1 — cod(gr X ... X gr)
= dimg (&2 X &) /T (Ae)r1(g1 X ... X gr).

Remark. T(A)r1(g1 % ... % gr) and T((A)e)r,1(91 X ... X gr) depend only
on the equivalent class under the A, 1-equivalence.

We say that G X ... x G, is an A, 1-versal deformation of g; X ... X g,

if
0(G1 x ... x G,
( ! )ltzo + T(Ae)r,l(gl X ... X gr) = &9 X &E9.
ot
R
Let F; : (R x R? x R,,0) — (R,0) be a submersion-germ, for each

i=1,...,7. Let fi x ... X fr = F1 X ... X Fy|gxr2x{0}- We consider local
projections

I, = O|p-11q) : (F7(0),0) — (R? x R, 0)
defined by

HFi(xaylay27t):(ylay2at)7 forizl,...,r,
and

T = 7r|f1.‘1(0) : (fi_1(0)70) - (R270)
defined by

Trfz‘($7y17y2):(ylay2)7 fore=1,...,r.
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By the above remark, T'(A), 1 (7, x...x 7z ) and T((A)e)r1(m, X ... x
s, ) are well-defined.

Proposition 4.7 The following conditions are equivalent.
(i) F1x...xF,is (P — K),-versal deformation of fi X ... X fr.
(i) IIp x...xIIp, is A.1-versal deformation of mf, x ... x mj,.

Let G; : (R? x R,,0) — (R2,0) be map-germs for i = 1,...,r and
9i = Gilg2x{0)- Now we consider a map germ
71G: (R? x ... x R? xR, 0)
— JYR?,R?) x ... x J¢(R? R?) (r — times)

given by

HG(xy,. ..z t) = (°Gre(z1),. .., 55 G i(2r))
and the canonical projection
m: JERER?) x ... x JYR? R?)
— J2,2) x ... x JY2,2)  (r — times).
Set z; = j%g;(0) fori=1,...,r.

Proposition 4.8 Suppose that (Ac)r1 — cod(gy X ... X g,) < +o00. For
sufficiently large £, the following conditions are equivalent.

(i) wo G M A, -orbit through (=1, ..., z).

(ii) Gix...x Gy is an A, -versal deformation of g1 X ... X gy,

where G(x1,...,z,,t) = (G1(x1,1),...,Gr(zr, t)).

Theorem 4.9 There exists a residual subset Q@ C P with the following
property : For any e € Q and for any point Yy € lloe(H x I), the set germ
of the shadow ITo e(H x I) at Yy is t-diffeomorphic to one of the germs in
the list in Corollary 4.6.

Proof.  We apply Thom’s multi-jet transversality theorem (c.f., [3]) like as
the proof of the [Theorem 3.1. Let S; be the A-orbit through 2 = j°h(0) in
J*(2,2) with A—cod(h) = j, where j = 0,1, 2, 3. we consider a submanifold

S(jla- .. 7j7‘) - (R2)(r) X AT(R2) X Sjl X ... X Sj'r

in the multi-jet space ,J*(R% R2%), where A.(R?) = {(X,...,X) € (R?)
| X € R?}. By the remark after [Proposition 4.3, we may assume that
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r = 1,2,3. We have already proved for the case 7 = 1 by [I'heorem 3.1, so
that we consider the case r = 2,3. We remark that

codimS(j1,...,jr) =2r—2+j1+ ...+ Jjr.

Since dimH (") x I = 2r + 1, by the multi-jet transversality theorem, we may
consider the following case

(1) r=3, J1=J2=J3=1
=1 J2=2
(2) r=2, j1=2, jo=1
J1=1 j2=1

For each case, we also consider the A, 1-orbit through each germs in the
case (1) or (2). We also apply multi-transversality theorem for these orbits,
we have the result by exactly the same way as the proof of [[heorem 3.1|, so
we omit the details. [
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