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Non-commutative Burgers equation

Azzouz DERMOUNE
(Received April 7, 1995; Revised August 16, 1995)

Abstract. Let us consider a non-commutative analogue of the stochastic Burgers equa-

tion: \frac{\partial U}{\partial t}+\lambda(Uo \nabla)U=l/\triangle U+\nabla A(x, t)(x, t)
\in \mathbb{R}^{n+1} , where (x, t)arrow A(x, t) is a

map with values in the space of linear maps from a symmetric algebra S(D) , subset

of the Fock space, into its algebraic dual S(D)^{*} , \nabla and \triangle are respectively the gradi-

ent vector and the Laplacian w.r.t. x\in \mathbb{R}^{n} . The linear operator vector (Uo \nabla)U=

( \sum_{j=1}^{n}U_{j}o\frac{\partial U_{k}}{\partial x_{j}}, 1\leq k\leq n) , and the products U_{j} o\frac{\partial U_{k}}{\partial x_{j}} are interpreted as Wick prod-

ucts. For any solution Y(x, t) of the non-commutative diffusion equation with potential

term \frac{\partial Y(x,t)}{\partial t}=\nu\triangle Y(x, t)+\lambda(2\iota/)^{-1}A(x, t)0 Y(x, t) , we associate a solution U(x, t)

of the non-commutative Burgers equation represented as following: U(x, t)0 Y(x, t)=
-2I/\lambda^{-1}\nabla Y(x, t) . We link this non-commutative Burgers equation with the stochastic

Burgers equation.
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Introduction

The stochastic Burgers equation

\frac{\partial u}{\partial t}+\lambda(u, \nabla)u=\nu\triangle u+\nabla N(x, t)(x, t)\in \mathbb{R}^{n+1} ,

has been largely studied in the physical literature as a simplified model
in complex phenomena such as turbulence, intermittence, and large-scale
structure. Very recently mathematical theory on these subjects appeared
see, e.g., [1], and the references therein.

In the case where the external potential N(x, t) is smooth, a solution
to the stochastic Burgers equation can be solved by the Hopf-Cole trans-
formation [3], [10] u(x, t)=-2\nu\lambda^{-1}\nabla ln y(x, t) , and by the Feynman-Kac
formula.

In the case where N(x, t) is a white noise on space-time, and n=1 the
problem was studied in [4]. In the case where N(x, t) is a white noise on
space-time and n\geq 1 , the situation is more complex. This case was studied
in [9] by interpreting the products (u, \nabla)u in the Wick product sense. Since
the term “Wick product of random variables” is taken from quantum field
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theory, it is natural to try and generalize the study of the stochastic Burgers
equation interpreted in the Wick product sense in the following direction:

The Fock space takes the place of the Wiener or the Poisson probability
space (\Omega, \mathcal{F}, P) , and a linear operator A(x, t) takes the place of the noise
N(x, t) . So, the random vector u is replaced by a linear operator vector
U(x, t) on the Fock space over H=L^{2} ( \mathbb{R}^{n+1} , dxdi) satisfying the non-
commutative Burgers equation

\frac{\partial U_{k}}{\partial t}+\lambda\sum_{j=1}^{n}U_{j}\frac{\partial U_{k}}{\partial x_{j}}=\nu\triangle U_{k}+\nabla A(x, t) ;

1\leq k\leq n , (x, t)\in \mathbb{R}^{n+1} .

and we interpret the product U_{j} \frac{\partial U_{k}}{\partial x_{j}} as the Wick product.
Using the symbol and kernel methods in Fock space [2], [12] (see also

references therein), we transform the latter equation to the multidimen-
sional Burgers equation with a deterministic potential term. Suppose that
the symbol (z, z’) – A(x, t, z, z’) of A(x, t) (defined below) is differentiate
with respect to x , then by the Hopf-Cole transformation the study of the
multidimensional Burgers equation can be reduced to the study of the dif-
fusion equation with a potential term

\frac{\partial y(x,t)}{\partial t}=\nu\triangle y(x, t)+\lambda(2\nu)^{-1}A(x, t, z, z’)y(x, t) .

For any solution y(x, t) to the latter equation we associate a linear
operator also denoted by Y(x, t) on Fock space, and we obtain a solution
U(x, t) of the non-commutative Burgers equation represented as following:

U(x, t)0 Y(x, t)=-2\nu\lambda^{-1}\nabla Y(x, t) .

In the section 1 we recall some results concerning the Fock space, the
symbol and kernel methods, the Wick product, and the connection between
the Fock space and the Gaussian and Poissonian probability spaces. In the
section 2 we present the study of the non-commutative Burgers equation,
and we establish the link with some stochastic results.

1. Distributions on Fock space

Let dl be the Lebesgue measure, the symmetric Fock space over H=
L^{2}(\mathbb{R}^{n+1}, dl) is defined by Fock(H) =\oplus_{k=0}^{\infty}k!H^{k} . with H^{0}=\mathbb{R} , and
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for k\in \mathbb{N}* , the space H^{k}=L_{sym}^{2}((\mathbb{R}^{n+1})^{k}, dl^{\otimes k}) is the set of the class of
square integrable functions with respect to dl^{\otimes k} , which are symmetric with
respect to the k parameters (x_{1}, t_{1}) , . , (x_{k}, t_{k}) .

The notation k!H^{k} means that the scalar product over H^{k} is multi-
plied by k! . Thus, the scalar product \langle\cdot, \cdot\rangle over Fock(H) is defined by

\langle(f_{k}), (g_{k})\rangle=\sum_{k=0}^{\infty}k ! \langle f_{k}, g_{k}\rangle_{H^{k}} ,

the norm over Fock(H) is denoted by || || .
For h\in H , we denote by e^{h} the exponential vector element of Fock(H)

defined by

e^{h}= \oplus\frac{h^{\otimes k}}{k!};k=0\infty
h^{\otimes 0}:=1 . (1)

For a dense subspace D of H the space spanned by e^{h} , h\in D is dense in
Fock(H). In the sequel we choose D=S(\mathbb{R}^{n+1}) the Schwartz space.

We denote by D^{*} the algebraic dual of D , i.e. the set of all linear
functions (forms) mapping D into \mathbb{R} . We have the triplet D\subset H\subset D^{*} .

For all n>1 , let S_{n}(D):=D^{n} be the space of symmetric tensors of order
n over D , i.e. the vector space spanned by z^{\otimes n} . z\in D . The algebraic
dual S_{n}(D)^{*} of S_{n}(D) is the space of homogeneous polynomial functions of
degree n on D .

From this we have, for all n\in \mathbb{N} , the triplet S_{n}(D)\subset H^{n}\subset S_{n}(D)^{*}-

Taking the direct sum, we obtain the triplet

S(D)=\oplus S_{n}(D)n=0\infty\subset Fock(H)\subset S(D)^{*} (2)

The first direct sum is an algebraic sum, and the algebraic dual S(D)^{*}=

\prod_{n}^{\infty}S_{n}(D)^{*} of S(D) is the space of formal series on D .
The natural duality between S(D) and S(D)^{*} is defined for z\in D

and F= \sum_{n=0}^{\infty}F_{n}\in S(D)^{*} by (F, z^{\otimes n})=F_{n}(z) . In view to extend the
duality between S(D) and Fock(H) given by the scalar product \langle\cdot, \cdot\rangle over
Fock(H) to a duality between S(D) and S(D)^{*} . we modify the natural
duality between S(D) and S(D)^{*} as following: for z\in D and F= \sum_{n}^{\infty}F_{n}\in

S(D)^{*} ,

\langle F, z^{\otimes n}\rangle_{S(D)^{*},S(D)}=n!F_{n}(z) . (3)
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Hence an element F of Fock(H) is interpreted as a formal series on D
defined by

z \in Darrow F(z)=\sum_{n=0}^{\infty}F_{n}(z):=\langle F, e^{z}\rangle .

It is well known, see [2] (chapter 1) and [12], that for F\in Fock(H) the
map zarrow F(z) can be extended to an analytic function on H+iH, and

||F||^{2}= \int_{H+iH}F(z)F(z)^{*}\gamma(dz, dz^{*}) (4)

where z denotes a generic element of H+iH, F(z)^{*} the complex conjugate of
F(z) and \gamma(dz, dz^{*}) is the cylindrical complex Gaussian measure on H+iH,
its restriction to \mathbb{C}^{n} is equal to

\pi^{-n} exp (- \sum_{j=1}^{n}(x_{j}^{2}+y_{j}^{2}))\prod_{j=1}^{n}dx_{j}dy_{j} , z_{j}=x_{j}+iy_{j}\in \mathbb{C} ,

for 1\leq j\leq n .

Wick product A_{1}oA_{2} of two linear operators on Fock(H). In the
theory of quantum fields the Wick product was introduced by G.C . Wick in
1950 [17], and it was developed by F.A . Berezin [2]. In stochastic analysis
the Wick product was first introduced by T. Hida and N. Ikeda in 1965 [7].

The Wick product in the quantum fields theory can be presented as
following: from the triplet (2) we inject the space Lop=L (S(D) , Fock(H))
of linear maps, without any continuity condition, from S(D) into Fock(H)
in the space Lap=L(S(D), S(D)^{*}) of linear maps, without any continuity
condition, from S(D) into S(D)^{*} .

From that we have the following three linear isomorphisms,

Lap= L(S(D), S(D)^{*})\simeq Bil(S(D)\cross S(D))\simeq(S(D)\otimes S(D))^{*}

\simeq S(D\cross D)^{*} (5)

where Bil(S(D)\cross S(D)) is the space of the bilinear forms on the vector
space S(D)\cross S(D) , and S(D)\otimes S(D) denotes the tensor product with all
2 factors equal to the vector space S(D) .

From (5) for all A\in Lap there exists a unique formal series \overline{A}(z, z’)

on D\cross D , called the kernel of A , defined in the formal series sense for all
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z , z’\in D , by

\overline{A}(z, z’)=\sum_{m,n=0}^{\infty}\frac{1}{m!n!}\langle Az^{\prime\otimes n}, z^{\otimes m}\rangle:=\sum_{m,n=0}^{\infty}\overline{A}_{m,n}(z, z’) .

From this, and from (3) we have (Az^{\prime\otimes n})_{m}(z)=n!\overline{A}_{m,n}(z, z’) , and

(Az^{\prime\otimes n})(z)= \sum_{m=0}^{\infty}\frac{1}{m!}\langle Az^{\prime\otimes n}, z^{\otimes m}\rangle=n!\sum_{m=0}^{\infty}\overline{A}_{m,n}(z, z’) .

If A is a linear operator of Fock(H) such that for all z\in D , Ae^{z}\in

Fock(H), then the series \overline{A}(z, z’) = \sum_{m,n=0}^{\infty}\overline{A}_{m,n}(z, z’) converges to
\langle Ae^{z’}, e^{z}\rangle and we have for all z , z’\in D , \langle Ae^{z’}, e^{z}\rangle=\overline{A}(z, z’) .

An example of such situation is the creation operator a^{+}(f) , the anni-
hilation operator a(f) , and the counting operator a^{0}(f) . For f\in H , the
creation operator a^{+}(f) , and the annihilation operation a(f) are defined,
for all z , z’\in D , by \langle a^{+}(f)e^{z’}, e^{z}\rangle=\langle e^{z’}, a(f)e^{z}\rangle=\langle f, z\rangle\exp(\langle z’, z\rangle) , the
counting operator a^{0}(f) is defined by \langle a^{0}(f)e^{z’}, e^{z}\rangle=\langle fz’, z\rangle\exp(\langle z’, z\rangle) .

More generally, if B=a^{+}(f_{1})\cdots a^{+}(f_{k})a(g_{1}) \cdot a(g_{l}) , then

\overline{B}(z, z’)=\exp(\langle z, z’\rangle)(\prod_{i=1}^{k}\langle f_{i}, z\rangle)(\prod_{j=1}^{l}\langle g_{j}, z’\rangle)

Definition 1.1 The Wick symbol of an operator A is defined by A(z, z’)=
exp (-\langle z, z’\rangle)\overline{A}(z, z’) .

It is easy to see that the map A(z, z’) – \overline{A}(z, z’) , from S(D\cross D)^{*} into
S(D\cross D)^{*} is one to one. Thus, an element A\in Lap is also characterized by
its Wick symbol. For example, the Wick symbol of the operator B , defined
above, is equal to B(z, z’)=( \prod_{i=1}^{k} \langle f_{i}, z\rangle)(\prod_{j=1}^{l}\langle g_{j}, z’\rangle) .

We are now ready to define the Wick product of two linear maps
A_{1} , A_{2}\in L(S(D), S(D)^{*}) .

Definition 1.2 The Wick product A_{1}oA_{2} of A_{1} , A_{2} is a linear map from
S(D) to S(D)^{*} , its Wick symbol is equal to

\forall z , z’\in U;A_{1}<>A_{2}(z, z’)=A_{1}(z, z’)A_{2}(z, z’) . (6)

Example 1.1. If A_{1}=a^{+}(u_{1})\cdot\cdot a^{+}(u_{k})a(v_{1})\cdots a(v_{l}) , and
A_{2} =a^{+}(u_{k+1})\cdots a^{+}(u_{m})a(v_{l+1})\cdots a(v_{p}) , then A_{1}\langle>A_{2} =a^{+}(u_{1})\cdots

a^{+}(u_{m})a(v_{1})\cdots a(v_{p}) .
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The Gaussian and Poissonian white noise probability spaces.
Let \Omega:=S’(\mathbb{R}^{n+1}) be the space of Schwartz distributions. A generic element
of D is denoted by z , and a generic element of \Omega is denoted by \omega .

The duality between \Omega and D is denoted by \langle\omega, z\rangle . We have the triplet

D\subset H=L^{2}(\mathbb{R}^{n+1}, B, dl)\subset\Omega

where B denotes the Borel \sigma-field over \mathbb{R}^{n+1} .
We denote by \mathcal{F}^{0} the \sigma-field on \Omega spanned by the linear forms \langle, z\rangle

defined by \omega – \langle\omega, z\rangle . We define on (\Omega, \mathcal{F}^{0}) two probability measures P_{1}

and P_{2} . The characteristic function of P_{1} is given by

z\in D -E [ exp ( i\langle\omega , z\rangle) ] = \exp(-\frac{||z||^{2}}{2})

The characteristic function of P_{2} is given by

z\in Darrow E [ exp ( i\langle\omega , z\rangle) ] = \exp(\int_{\mathbb{R}^{n+1}}e^{iz(x,t)}-1 dl(x, t))

For j=1 (respectively j=2), the \sigma-field \mathcal{F}^{0} is augmented with all
subsets of P_{j} -null sets of \mathcal{F}^{0} , and denoted by \mathcal{F}_{1} (respectively \mathcal{F}_{2} ).

The triplet (\Omega, \mathcal{F}_{1}, P_{1}) (respectively ( \Omega , \mathcal{F}_{2} , P_{2} )) is the probability space
of the Gaussian (respectively Poissonian) white noise on (\mathbb{R}^{n+1}, B, dl) .

We denote by L^{2}(\Omega) , the space of the square integrable random vari-
ables with respect to P_{1} or P_{2} . The expectation E denotes the expectation
under P_{1} or P_{2} . The centered Poisson white noise q is defined by
q(z)= \langle\omega, z\rangle-\int_{\mathbb{R}^{n+1}}z(x, t)dl(x, t) , and W denotes the Gaussian white noise,
i.e. the map from D into L^{2}(\Omega, P_{1}) , defined by z\in Darrow(\omega\in\Omegaarrow\langle\omega, z\rangle) .

It is a consequence of the characteristic functions of P_{1} and P_{2} that the
Ito isometry holds, i.e. E[|W(z)|^{2}]=||z||^{2} , and E[|q(z)|^{2}]=||z||^{2} .

From this we see that if z\in H , and we choose z_{n}\in D such that z_{n}arrow z

in H then W(z):= \lim_{narrow\infty}W(z_{n}) and q(z):= \lim_{narrow\infty}q(z_{n}) in H. the
limit is independent of the choice of \{z_{n}\} .

The chaotic transformation. The Wiener-Ito [11], [16] expansion
for the Gaussian white noise W , and for the centered Poisson measure q ,
means the isomorphism I from Fock(H) into L^{2}(\Omega) defined by

(f_{k}) \in Fock(H)arrow F=\sum_{k=0}^{\infty}I_{k}(f_{k}) , (7)
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where the random variable I_{k}(f_{k}) is the symmetric multiple integral w.r.t.
W or w.r.t. q defined in [11], [16] and denoted formally by

I_{k}(f_{k})= \int_{(\mathbb{R}^{n+1})^{k}}f_{k}((x_{1}, t_{1}), \ldots , (x_{k}, t_{k}))dW(x_{1}, t_{1})\cdots dW(x_{k}, t_{k})

in the Gaussian case, and by

I_{k}(f_{k})= \int_{(\mathbb{R}^{n+1})^{k}}f_{k}((x_{1}, t_{1}) , . , (x_{k}, t_{k}))dq(x_{1}, t_{1}) . . dq(x_{k}, t_{k})

in the Poissonian case.
The random variables F_{k}=I_{k}(f_{k});k\in \mathbb{N} are such that

E[|F_{k}|^{2}]=k!||f_{k}||_{H^{k}}^{2} , and E[F_{k}F_{j}]=0 , for j\neq k . (8)

Example 1.2. Let z\in H . the image I(e^{z}) of the exponential vector e^{z}(1)

by the isomorphism I(7) is given by I(e^{z})= \exp(W(z)-\frac{||z||^{2}}{2}) in the
Gaussian case. In the Poissonian case, we recall that P_{2} is concentrated on
M_{p}(\mathbb{R}^{n+1}) , the set of the punctual Radon measures on \mathbb{R}^{n+1} . Thus, \omega\in\Omega

may be written as \omega=\sum_{j}\delta_{(x_{j},t_{j})} . From this, we have (see for example [14])

I(e^{z})( \omega)=\exp(-\int_{\mathbb{R}^{n+1}}z(x, t)dl(x, t))\prod_{j}(1+z(x_{j}, t_{j}))1

In the sequel we put I(e^{z}):=\mathcal{E}(z) . We can see from (1) and (8) that
for all f_{k}\in H^{k} , z\in H ,

E[I_{k}(f_{k})\mathcal{E}(z)]=\langle f_{k} , \frac{z^{\otimes k}}{k!}\rangle=(f_{k}, z^{\otimes k})_{H^{k}} (9)

Distributions on (\Omega, \mathcal{F}_{j}, P_{j}) . j=1,2. We use now the Wiener-Ito
expansion to define over (\Omega, \mathcal{F}_{j}, P_{j}) the analogue of the triplet (2). The
image of S(D) by the isometry I is the space P(\Omega) spanned by I_{k}(z^{k}) ,
k\in \mathbb{N} , and z\in D .

In the Gaussian case I_{k}(z^{k})=||z||^{k}H_{k}(||z||^{-1}W(z)) , where H_{k} , k\in \mathbb{N}

are the Hermite polynomials, i.e. defined, for all \lambda , t\in \mathbb{R} , by

\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!}H_{k}(t)=\exp(\lambda t-\frac{\lambda^{2}}{2})

In the Poissonian case [16] (proposition 3.1) I_{k}(z^{k})\in L^{p}(\Omega, P_{2}) , for all

1\leq p<\infty .
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A generalized random variable is a linear form on P(\Omega) . The set of the
generalized random variables is denoted by P(\Omega)^{*} . From that we obtain
the triplet

P(\Omega)\subset L^{2}(\Omega)\subset P(\Omega)^{*} (10)

This triplet is similar to the T. Hida triplet [8].
The isomorphism I from Fock(H) into L^{2}(\Omega) is such that I(S(D))=

P(\Omega) . Thus, the transpose I^{*} of the restriction of I from S(D) into P(\Omega)

defines an isomorphism from P(\Omega)^{*} into S(D)^{*}

Finally the Wiener-Ito expansion I is extended to an isomorphism be-
tween the triplets (2) and (10). We call this extension the chaotic transfor-
mation and we denote it also by I .

Remark 1.1. Let X\in L^{2}(\Omega) , X can be seen as a linear operator of L^{2}(\Omega)

defined by Y\in L^{2}(\Omega) – XY of course in general XY\not\in L^{2}(\Omega) .
If Y\in P(\Omega)=I(S(D)) , then we can consider XY as a generalized

random variable, element of P(\Omega)^{*}=I(S(D)^{*}) . So, X can be interpreted
as a linear application from P(\Omega) into P(\Omega)^{*}

Thanks to the chaotic transformation I this operator is characterized
by its kernel \overline{X}(z, z’)=E[X\mathcal{E}(z)\mathcal{E}(z’)] , or by its symbol

X(z, z’)=E[X\mathcal{E}(z)\mathcal{E}(z’)] exp (-\langle z, z’\rangle) .

In the Gaussian case \mathcal{E}(z)\mathcal{E}(z’)=\exp(\langle z, z’\rangle)\mathcal{E}(z+z’) , thus, in this case the
Wick symbol of X is equal to

X(z, z’)=E[X\mathcal{E}(z+z’)]=\langle I^{-1}(X), e^{z+z’}\rangle . (11)

In the Poissonian case \mathcal{E}(z)\mathcal{E}(z’)=\exp(\langle z, z’\rangle)\mathcal{E}(z+z’+zz’) , thus, in
this case the Wick symbol of X is equal to

X(z, z’)=E[X\mathcal{E}(z+z’+zz’)]=\langle I^{-1}(X), e^{z+z’+zz’}\rangle . (12)

Remark 1.2. Using the interpretation given by the triplets (2), (10), an
element X\in P(\Omega)^{*} belongs to L^{2}(\Omega) if and only if the formal series

z \in Darrow X(z, 0)=\sum_{k=0}^{\infty}(k!)^{-1}E[XI_{k}(z^{k})]

belongs to Fock (H).
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2. From the non-commutative Burgers equation to the heat
equation

We are ready to consider (the Wick interpretation of) the non-commuta-
tive Burgers equation, i.e . for (x, t)\in \mathbb{R}^{n+1} ,

\frac{\partial U}{\partial t}+\lambda(Uo \nabla)U=\nu\triangle U+\nabla A(t, x) ; U(x, O)=-\nabla\xi(x) .

Let (z, z’)\in D\cross D , if U is a solution of the non-commutative Burgers
equation then its symbol U(x, t, z, z’) is a solution of the multidimensional
deterministic Burgers equation

\frac{\partial u}{\partial t}+\lambda(u, \nabla)u=\nu\triangle u+\nabla A(t, x, z, z’);u(x, 0)=-\nabla\xi(x, z, z’) .

The latter equation admits an explicit solution via the Hopf-Cole sub-
stitution

U(x, t, z, z’)=-2\nu\lambda^{-1}\nabla ln y(x, t, z, z’) (13)

where the function y(x, t, z, z’) satisfies the linear parabolic equation

\frac{\partial\phi}{\partial t}=\nu\triangle\phi+\lambda(2\nu)^{-1}A(x, t, z, z’)\phi ;

\phi(x, 0)=\exp(\lambda\xi(x, z, z’)/2\nu) . (14)

To solve the latter equation we suppose that for all z , z’\in D :
Assumption F-K

(x, t)arrow E_{x}[\exp( \lambda(2\nu)^{-1}\xi(\beta_{t}, z, z’)

+ \lambda(2\nu)^{-1}\int_{0}^{t}A(\beta_{s}, t-s, z, z’)ds)]

is continuous on \mathbb{R}^{n}\cross \mathbb{R}_{+} , where (\beta_{t}, P_{x}) is the diffusion with generator \nu\triangle

in \mathbb{R}^{n} , (E_{x} denotes the expectation w.r.t. P_{x} ).
Under the assumption F-K and using a similar proof as in [6], there

exists a unique positive minimal solution y(x, t, z, z’) of the linear parabolic
equation (14). This solution is given by the Feynman-Kac formula

y(x, t, z, z’)=E_{x}[\exp(\lambda(2\nu)^{-1}\xi(\beta_{t}, z, z’)

+ \lambda(2\nu)^{-1}\int_{\dot{0}}^{t}A(\beta_{s}, t-s, z, z’)ds)] . (15)
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The proof of the following result is a consequence of (13), Feynman-Kac
formula, and the fact that the series (z, z’) – y(x, t, z, z’) is invertible in
S(D\cross D)^{*} . In fact, the latter series is invertible because y(x, t, 0,0)\neq 0 .

Theorem 2.1 Suppose that the assumption F-K is satisfied. We denote

by Y(x, t) the linear operator with symbol y(x, t, z, z’)(15) . The unique

solution in L(S(D), S(D)^{*}) of the equation Xo Y(x, t)=-2l\nearrow\lambda^{-1}\nabla Y(x, t)

is a solution of the non-commutative Burgers equation.

Now we give some illustrations.

Applications First we study the three situations:
(i) \xi(x)\in \mathbb{R} and A(x, t)=a(\phi_{x,t})+a^{+}(\phi_{x,t}) ,
(ii) \xi(x)\in \mathbb{R} and A(x, t)=a(\phi_{x,t})+a^{+}(\phi_{x,t})+a^{0}(\phi_{x,t}) ,
where \phi\in H , \phi_{x,t}(y, s)=\phi(x-y, t-s) , and
(iii) \xi(x)\in \mathbb{R} , the linear map A(x, t) is such that A(x, t, z, z’)=

z(x, t)+z’(x, t) .
It is well known that for all f\in H the operator I\circ(a(f)+a^{+}(f))\circ I^{-1}

is the multiplication operator by the Gaussian random variable W(f) . And

the process I\circ(a(f)+a^{+}(f)+a^{0}(f))\circ I^{-1} is the multiplication operator

by the centered Poisson random variable q(f)[13] .

From that the non-commutative Burgers equation in the case (i) is

equivalent to the stochastic Burgers equation

\frac{\partial u}{\partial t}+\lambda(uo \nabla)u=\nu\triangle u+\nabla W(\phi_{t,x});u(x, 0)=-\nabla\xi(x) ,

studied in [9], and in the case (ii) the non-commutative Burgers equation is

equivalent to \frac{\partial u}{\partial t}+\lambda(u<>\nabla)u=\nu\triangle u+\nabla q(\phi_{t,x});u(x, O)=-\nabla\xi(x) , studied
in [5].

From the theorem 2.1 the study of these equations is reduced to the

study of the following stochastic heat equations

\frac{\partial y}{\partial t}=\nu\triangle y+\lambda(2\nu)^{-1}W(\phi_{x,t})<>y ; y(x, 0)=\exp(\lambda\xi(x)/2\nu) , (16)

and

\frac{\partial y}{\partial t}=\nu\triangle y+\lambda(2\nu)^{-1}q(\phi_{x,t})<\rangle y ; y(x, 0)=\exp(\lambda\xi(x)/2\nu) . (17)

We can announce the following result.



Non-commutative Burgers equation 325

Proposition 2.1 The stochastic heat equation (16) has a solution in
P(\Omega)^{*} which is in L^{p} for all 1\leq p<\infty . This solution is given by

y(t, x)=E_{x}[\exp(\lambda(2\nu)^{-1}\xi(\beta_{t})+\lambda(2\nu)^{-1}\int_{0}^{t}W(\phi_{(\beta_{s},t-s)})ds

-2^{-1} \lambda^{2}(2\nu)^{-2}||\int_{0}^{t}\phi_{(\beta_{s},t-s)}ds||^{2})]

The stochastic heat equation (17) has a solution in P(\Omega)^{*} which is in
L^{p} for all 1\leq p<\infty . This solution is given by

y(t, x , \sum_{j}\delta_{(y_{j},u_{j}))}=E_{x}[\exp( \lambda(2\nu)^{-1}\xi(\beta_{t})

- \lambda(2\nu)^{-1}\int_{\mathbb{R}^{n+1}}\int_{0}^{t}\phi(y-\beta_{s}, u-t+s)dsdudy)

\prod_{j}(1+\lambda(2\nu)^{-1}\int_{0}^{t}\phi(y_{j}-\beta_{s}, u_{j}-t+s)ds)] . (18)

Proof By the remark 1.2 the random variable y(x, t) is in L^{2} if and only
if the series z\in Darrow y(x, t, z, 0) is in Fock(H). We have in the two cases

y(x, t, z, 0)=E_{x}[ exp ( \lambda(2\nu)^{-1}\xi(\beta_{t})+\lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, z\rangle ds)]

which gives that

I^{-1}(y(x, t))=E_{x}[\exp(\lambda(2\nu)^{-1}\xi(\beta_{t}))e^{\lambda(2_{I/})^{-1}\int_{0}^{t}\phi_{(\beta_{s},t-s)}ds]}

where e^{\lambda(2_{I/})^{-1}\int_{0}^{t}\phi_{(\beta_{S},t-s)}ds}

is the exponential vector, element of the Fock
space, of the function (y, u)\in \mathbb{R}^{n+1} – \lambda(2\nu)^{-1}\int_{0}^{t}\phi_{(\beta_{s},t-s)}(u, y)ds .

In the Gaussian case

I(e^{\lambda(2\nu)^{-1}\int_{0}^{t}\phi_{(\beta_{S},t-s)}ds})= exp ( \lambda(2\nu)^{-1}\int_{0}^{t}W(\phi_{(\beta_{s},t-s)})ds

-2^{-1} \lambda^{2}(2\nu)^{-2}||\int_{0}^{t}\phi_{(\beta_{s},t-s)}ds||^{2})

and in the Poissonian case

I(e^{\lambda(2_{l/})^{-1}\int_{0}^{t}\phi_{(\beta_{S},t-s)}ds})(\omega)



326 A. Dermoune

= \exp(-\lambda(2\nu)^{-1}\int_{\mathbb{R}^{n+1}}\int_{0}^{t}\phi(y-\beta_{s}, u-t+s)dsdudy)

\prod_{j}(1+\lambda(2\nu)^{-1}\int_{0}^{t}\phi(y_{j}-\beta_{s}, u_{j}-t+s)ds)

where \omega=\sum_{j}\delta_{(y_{j},u_{j})} . These yields proposition 2.1.
In the case (iii) the study of the stochastic Burgers equation is reduced

to the study of the stochastic heat equation

\frac{\partial y(x,t)}{\partial t}=\nu\triangle y(x, t)+\lambda(2\nu)^{-1}W(x, t)0 y(x, t) ;

y(x, 0)=\exp(\lambda\xi(x)/2\nu) (19)

where W(x, t) is the Gaussian white noise in space-time. We have the
following result similar to [15]. \square

Proposition 2.2 The stochastic heat equation (19) has a solution in
P(\Omega)^{*} Its symbol is given by

y(x, t, z, z’)=E_{x}[ exp ( \lambda(2\nu)^{-1}\xi(\beta_{t})

+ \lambda(2\nu)^{-1}\int_{0}^{t}z(\beta_{s}, t-s)+z’(\beta_{s}, t-s)ds)] .

The solution y(x, t) is a generalized random variable given by

\langle y(x, t), I_{k}(z^{\otimes k})\rangle

= \lambda^{k}2^{-k}\nu^{-k}\int_{(\mathbb{R}^{n})^{k}}\int_{[0,t]^{k}}\prod_{i=1}^{k}z(y_{i}, t -s_{i})\int_{\mathbb{R}^{n}}\exp(\lambda(2\nu)^{-1}\xi(y))

p_{s_{1},\ldots,s_{k},t}(y_{1}, . . , y_{k}, y)dydy_{1} . . dy_{k}ds_{1}\cdots ds_{k} ,

where p_{s_{1},\ldots,s_{k},t}
(y_{1}, \ldots, y_{k}, y) is the density of (\beta_{s_{1}}, . . ’ \beta_{s_{k}}, \beta_{t}) and \langle\cdot, \cdot\rangle de-

notes the duality between P(\Omega)^{*} and P(\Omega) .

In the cases (i), (ii) and (iii) we have derived from the stochastic Burgers

equation a stochastic heat equation with a linear noise. The goal of the
following subsection is to study stochastic heat equations with a non-linear
noise.

Stochastic heat equation with a non-linear noise. Let us consider
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the equations

\frac{\partial y(x,t)}{\partial t}.=\nu\triangle y(x, t)+\lambda(2\nu)^{-1}y(x, t)0 g(W(\phi_{(x,t)}), t) ;

y(x, 0)=\exp(\lambda(2\nu)^{-1}\xi(x)) (20)

or

\frac{\partial y(x,t)}{\partial t}=\nu\triangle y(x, t)+\lambda(2\iota/)^{-1}y(x, t)0 g(q(\phi_{(x,t)}), t) ;

y(.\iota\cdot(\},1arrow\exp(\lambda(2\nu)^{-1}\xi(x))

where the functions \xi : \mathbb{R}^{r\iota}arrow \mathbb{R} and g:\mathbb{R}^{2} – IR are continuous.
The study of these equations is similar. Thus we study only the equatic)ll

(20). To use the Feynman-Kac furlll[lla we suppose that the function

(x, t) arrow E_{x}[\exp(\lambda(2\nu)^{-1}\xi(\beta_{t})+\int_{0}^{t}\lambda(2\nu)^{-1}G(\beta_{s}, t-s, z)d6^{\cdot})]

where E[g(lt’(\phi_{(x,t)}), t)\mathcal{E}(z)]=G(x, t, z) , is finite alld continuous with re.

spect to (x, t)fo1^{\cdot} all z\in D .
Thus the equation (20) has a solution in P(\Omega)^{*}- givc^{l}n by its sy_{111bo}1

y(x\cdot, t, z, z’)=E_{x}[\exp\{ \lambda(2_{l^{y}})^{-- 1}\xi(\beta_{t})

+ \int_{0}^{t}\lambda(2\nu)^{-1}G(\beta_{s}, t-s, z+z’)ds)] .

Now we prove that in the case g(u)=u^{2} the genel\cdot alized ra1ldonl vari-
able y(x, t) is square integrable.

Proposition 2.3 Suppose that the function \xi is such that

E_{x} [exp (\lambda(2\nu)^{-1}\xi(\beta_{t})) ] <\infty .

If \phi\in H , t>0 are such that t|\lambda|\nu^{-1}||\phi||^{2}<1 , then y(x, t)\in L^{2}(ft) ,
and we have the estimate

||y(x, t)||_{L^{2}(\Omega)}

\leq(1-t^{2}\lambda^{2}\nu^{-2}||\phi||^{4})^{4} exp (t\lambda(2\nu)^{-1}||\phi||^{2})E_{x} [exp (\lambda(2\nu)^{-1}\xi(\beta_{t})) ].

Proof. From the remark 1.2, y(x, t) is in L^{2} if and only if the formal series
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z\in Darrow y(x, t, z, 0) is in Fock(H). By (4) this is equivalent to

||y(x, t, ., 0)||^{2}:= \int_{H+iH}y(x, t, z, 0)y(x, t, z, O)^{*}\gamma(dz, dz^{*})<\infty .

From the formula of the product of the Hermite polynomials we have

W(\phi_{x,t})^{2}=I_{2}(\phi_{x,t}\otimes\phi_{x,t})+||\phi||^{2} .

From that and from the Feynman-Kac formula we have the estimate

||y(x, t, ., 0)||\leq\exp(t\lambda(2\nu)^{-1}||\phi||^{2})

E_{x}[||\exp(\lambda(2\nu)^{-1}\xi(\beta_{t})+\lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, \cdot\rangle^{2}ds)||] (22)

where

|| \exp(\lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, \cdot\rangle^{2}ds)||^{2}

= \int_{H+iH} exp ( \lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, z\rangle^{2}

+\langle\phi_{(\beta_{s},t-s)}, z^{*}\rangle^{2}ds)\gamma(dz, dz^{*}) .

\square

Now, we need the following lemmas.

Lemma 2.1 Let \psi \in H and A=-2 \int_{0}^{t}\psi_{(\beta_{s},t-s)}\otimes\psi_{(\beta_{s},t-s)}ds be the
Hilbert-Schmidt operator on H, defined for all z , z’\in H by

\langle z, Az’\rangle=-2\int_{0}^{t}\langle\psi_{(\beta_{s},t-s)}, z\rangle\langle\psi_{(\beta_{s},t-s)}, z’\rangle ds .

If 2t||\psi||^{2}<1 , then we have \det(I-A^{2})\geq(1-4t^{2}||\psi||^{4})^{-1}

Proof. We have

det (I-A^{2})=\exp(tr (ln (I-A^{2}) ) )= \exp(-\sum_{m=1}^{\infty}\frac{tr(A^{2m})}{m}) (22)

If \lambda_{n} , n\in \mathbb{N}*are the eigenvalues of A , then we have for all m\in \mathbb{N}* ,

tr(A^{2m})= \sum_{n=1}^{\infty}\lambda_{n}^{2m}\leq(\sum_{n=1}^{\infty}\lambda_{n}^{2})^{m}=(tr(A^{2}))^{m}
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From that and from the estimate tr(A^{2})\leq(2t||\psi||^{2})^{2} we have for all m\in

\mathbb{N}* , tr(A^{2m})\leq(tr(A^{2}))^{m}\leq(2t||\psi||^{2})^{2m} \square

From that, and from (22) we have \det(I-A^{2})\geq(1-4t^{2}||\psi||^{4})^{-1}

Lemma 2.2 Let B be a symmetric Hilbert-Schmidt operator on H , \lambda_{n} ,
n\in N*be the eigenvalues of B , and (e_{n}, n\in N*) be an orthonormal base
of H such that, for all n\in N* , Be_{n}=\lambda_{n}e_{n} .

For z , h_{1} , h_{2}\in H+iH , we put z= \sum_{j=1}^{\infty}z_{j}e_{j} , h_{1}= \sum_{j=1}^{\infty}h_{1}^{j}e_{j} ,
h_{2}= \sum_{j=1}^{\infty}h_{2}^{j}e_{j} , where z_{j}=x_{j}+iy_{j} , h_{1}^{j} , h_{2}^{j}\in \mathbb{C} , and x_{j} , y_{j}\in \mathbb{R} . Suppose
that for all n\in N* , \lambda_{n}^{2}<1 , then

\int_{H+iH} exp (z.h_{1}+z^{*}.h_{2}- \frac{1}{2}(z.Bz+z^{*}.Bz^{*}))\gamma(dz, dz^{*})

=[\det(I-B^{2})]^{-\frac{1}{2}} exp ( \sum_{j=1}^{\infty}\frac{(h_{1}^{j}+h_{2}^{j})^{2}}{2+2\lambda_{j}}-\sum_{j=1}^{\infty}\frac{(h_{1}^{j}-h_{2}^{j})^{2}}{2-2\lambda_{j}})

where the product u.v signifies for example for u=z, v=h_{1} that

z.h_{1}= \sum_{j=1}^{\infty}z_{j}h_{1}^{j} .

Proof If we denote by \pi_{n} the orthogonal projection on (e_{1}, \ldots, e_{n}) , then
we have for all n\in N* ,

\int_{H+iH} exp (\pi_{n}(z).h_{1}+z^{*}.\pi_{n}(h_{2})

- \frac{\pi_{n}(z).Bz+\pi_{n}(z^{*}).Bz^{*}}{2})\gamma(dz, dz^{*})

= \pi^{-n}\int_{\mathbb{C}^{n}} exp ( \sum_{j=1}^{n}z_{j}h_{1}^{j}+\sum_{j=1}^{n}z_{j}^{*}h_{2}^{j}

- \sum_{j=1}^{n}(\frac{\lambda_{j}z_{j}^{2}+\lambda_{j}z_{j}^{*2}+2|z_{j}|^{2}}{2}))dx_{1}dy_{1} . dx_{n}dy_{n}

= \pi^{-n}\int_{\mathbb{R}^{2n}} exp ( \sum_{j=1}^{n}(x_{j}(h_{1}^{j}+h_{2}^{j})+iy_{j}(h_{1}^{j}-h_{2}^{j})
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+(1+\lambda_{j})x_{j}^{2}+(1-\lambda_{j})y_{j}^{2}))dx_{1}dy_{1}\cdot\cdot dx_{n}dy_{7l}

= \prod_{j=1}^{n}(1-\lambda_{j}^{2})^{-1/2} exp ( \sum_{j=1}^{7l}\frac{(h_{1}^{j}+h_{2}^{j})^{2}}{2+2\lambda_{j}}-\sum_{j=1}^{n}\frac{(h_{1}^{j}-h_{2}^{j})^{2}}{2-2\lambda_{j}})

=[\det(I_{n}-B^{2}\circ\pi_{n}))]^{-1/2} exp ( \sum_{j=1}^{n}\frac{(h_{1}^{j}+h_{2}^{j})^{2}}{2+2\lambda_{j}}-\sum_{j--1}^{n}\frac{(h_{1}^{j}-h_{2}^{j})^{2}}{2-2\lambda_{j}})

I_{n} denotes the identity of \mathbb{C}^{n} . From that, and by tending \mathcal{T}\iotaiota\acute{L}J’\grave{A}\vee ve have
lemma 2.2. \square

We want now to calculate

|| \exp(\lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, \cdot\rangle^{2}ds)||^{2}

= \int_{H+iH} exp ( \lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, z\rangle^{2}

+\langle\phi_{(\beta_{s},t-s)}, z^{*}\rangle^{2}ds)\gamma(dz, d_{\sim}^{\gamma^{*}}) .

Let us apply lemma 2.2 with

h_{1}=h_{2}=0 , B=A=- \lambda\nu^{-1}\int_{0}^{t}\phi_{(\beta_{s},t-s)}\otimes\phi_{(\beta_{s},t-s)}d_{\delta}

we obtain

\int_{H+iH} exp ( \lambda(2\nu)^{-1}\int_{0}^{t}\langle\phi_{(\beta_{s},t-s)}, z\rangle^{2}

+\langle\phi_{(\beta_{s},t-s)}, z^{*}\rangle^{2}ds)\gamma(dz, dz^{*})=[\det(I-A^{2})]^{-1/2}

From that and from (21) we have

||y(x, t, ., 0)||

\leq\exp(t\lambda(2\nu)^{-1}||\phi||^{2})E_{x} [\exp(\lambda(2\nu)^{-1}\xi(\beta_{t})) [det (I-A^{2})]^{-1/4} ].

From that and from the lemma 2.1 we derive the estimate

||y(x, t, ., 0)||

\leq(1-t^{2}\lambda^{2}\nu^{-2}||\phi||^{4})^{4}E_{x} [exp (\lambda(2\nu)^{-1}\xi(\beta_{t})) ] \exp(t\lambda(2\nu)^{-1}||\phi||^{2}) .
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Finally, if t\lambda_{l^{y}}^{-1}||\phi||^{2}<1 then y(x, t)\in L^{2}(\Omega) , and

||y(x, t)||_{L^{2}(\Omega)}

\leq(1-t^{2}\lambda^{2}\nu^{-2}||\phi||^{4})^{4} exp (t\lambda(2\nu)^{-1}||\phi||^{2})E_{x} [exp (\lambda(2\iota\nearrow)^{-1}\xi(\beta_{t})) ].
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