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On contracted codes: an extension
of Pless’ theorem on codes

Tsuyoshi ATSUMI
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Abstract. Using Higman’s algebra homomorphism, we prove an extension of Pless’
theorem on self-0rthogonal symmetry codes. Let C be a self-0rthogonal code over F ,
where F is one of GF(2) , GF(3) , GF(4) , or GF(pa) . Let \tau be an automorphism of C .
Then, under some additional conditions on \tau , the code can be mapped onto a code of a
smaller length that is still self-0rthogonal.
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1. Introduction

Pless [10] proved the following interesting result on self-0rthogonal sym-
metry codes:

Result 1 Let C be a symmetry code over GF(3) and \tau an automorphism
of C. Under some additional conditions on \tau , the code can be mapped onto
a code of a smaller length which is still self-Orthogonal.

In this paper we shall extend Result 1 so that we can apply it to a
wider class of orthogonal codes with automorphism groups. Our result will
be given in Theorem 1 of Section 4.

Our proof of the main theorem in Section 5 is based on the fact that
a contraction map given in [4] and [10] is nothing but Higman’s algebra
homomorphism (Section 2), which puts contraction of codes in a new per-
spective.

In Section 6 we study the contracted codes of the Golay code G_{24} and
the extended binary quadratic residue code of length 48 as examples. Fur-
thermore, we shall prove the useful lemma 5 which can be applied to de-
cide the contracted code of a given code with a large automorphism group.
(This lemma is interesting because it is related to Research Problem (16.4)
of MacWilliams-Sloane’s book [7].)

The method of attack is based on Higman’s algebra homomorphism.
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2. Contraction of Matrices

Here we shall state Higman’s result and a few lemmas on contraction of
matrices. Let R be a commutative ring with identity and X, Y, Z all finite
non-empty sets. Let M_{R}(X, Y) be the totality of maps A:X\cross Y\mapsto R . A
is called an X\cross Y matrix over R. For A\in M_{R}(X, Y) and B\in M_{R}(Y, Z) ,
define AB\in M_{R}(Y, Z) by

AB (x, z)= \sum_{y\in Y}A(x, y)B(y, z)
(x\in X, z\in Z) .

The transpose of a matrix A is denoted by A^{t} . If P , Q are partitions of X ,
Y , respectively, then we say that A\in M_{R}(X, Y) has property (P, Q) if for
all S\in P , T\in Q ,

\sum_{t\in T}A(s, t)
is independent of s\in S .

Assume that A\in M_{R}(X, Y) has property (P, Q) . Then for S\in P , T\in Q ,
we set \delta(A)(S, T)=\sum_{t\in T}A(s, t) for some s\in S . Higman [5, p. 1] proved
the following proposition.

Proposition 1 If A\in M_{R}(X, Y) has property (P, Q) and B\in M_{R}(Y, Z)

has property (Q, U) , then AB\in M_{R}(X, Z) has property (P, U) and \delta(AB)

=\delta(A)\delta(B)

Proof. See Higman [5]. \square

We call \delta in Proposion 1, Higman’s algebra homomorphism. Let P=
\{S_{1}, , S_{l}\} be a partition of X or Y We define an P\cross P matrix D(P) as
follows: Let S_{i} , S_{j}\in P ,

D(P)(S_{i}, S_{j})=\{
|S_{i}| if S_{i}=S_{j}

0 otherwise.

Then we have

Proposition 2 Suppose that P=\{S_{1}, \ldots, S_{l}\} and Q=\{T_{1}, . , T_{m}\} are
partitions of X and Y , respectively. If A and A^{t} have property (P, Q) and
property (Q, P) , respectively, then

D(Q)\delta(A^{t})=\delta(A)^{t}D(P) .
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Proof. See Atsumi [2]. \square

The following lemma plays an important part in the calculations of the
dimension of contracted codes.

Lemma 1 (Block) Assume that R is a field. Suppose that P=\{S_{1} ,
. ., S_{l} } and Q=\{T_{1} , . ., T_{m}\} are partitions of X and Y , respectively. If

A\in M_{R}(X, Y) has property (P, Q) , then rank A – rank \delta(A)\leq|Y|-m .

Proof. See Hughes and Piper [6, p. 43]. \square

3. Terminology

Let F be a finite field GF(p^{a}) , where p is a prime. Let C be a k-
dimensional subspace of F^{n} . Then C is called an (n, k) code over F A
vector in C is called a codeword. The weight of a vector of F^{n} is defined to
be the number of its non-zero coordinates. The minimum weight d(C) of a
code C is the weight of the non-zero codeword of smallest weight.

Conjugation in F=GF(p^{a}) is defined by x\mapsto\overline{x}=x^{p} for x\in Fr For
vectors u , v of F^{n} , the usual inner product (u, v) of u and v is defined by

(u, v)=u_{1}\overline{v}_{1}+ , \ldots,
+u_{n}\overline{v}_{n} , (1)

where u= (u_{1}, . . , u_{n}) and v=(v_{1}, \ldots, v_{n}) . The dual code of C , denoted
by C^{\perp} , is the subspace of F^{n} consisting of all vectors v\in F^{n} with (v, c)=0
for all c\in C . C^{\perp} has dimension n-k . C is called self-Orthogonal if C\subseteq C^{\perp}

and self-dual if C=C^{\perp} .
A monomial transformation on F^{n} is a linear map given by a monomial

matrix, that is, a map of the form

\tau : (v_{1}, \ldots, v_{n})\mapsto(\epsilon_{1}v_{(1)\pi}, \ldots, \epsilon_{n}v_{(n)\pi}) ,

where \pi is a permutation \{1, \ldots, n\} and \epsilon_{1} , \ldots , \epsilon_{n} are non-zero elements
of F . Two codes C and C’ in F^{n} is called equivalent if there exists a
monomial transformation \tau such that C’=C\tau . Let C be a code over F in
F^{n} . The group G(C) consisting of all monomial transformations which send
C onto itself is called the automorphism group of the code C . For further
information on coding theory, see MacWilliams-Sloane [7]. For codes with
automorphism groups, see Yoshida [13] which contains several interesting
problems.
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4. Contracted codes

Let C be an (n, k) code and \tau an element in G(C) . As in [3], we
call \tau\in G(C) orderly if the order of \tau equals the order of its induced
permutation \pi . From now on we assume that \tau\in G(C) is orderly and its
induced permutation \pi is a product of disjoint r cycles of length m with
no fixed points. (Note that \tau is order m , n=mr and \pi is conjugate to
\tau in the monomial transformation group of F^{n} .) In order to define the
contracted code of C with respect to \tau\in G(C) , we need a lot of notations.
Let \pi=\pi_{1}\cdot\cdot\pi_{r} be a cycle decomposition of the permutation associated to
the monomial automorphism \tau of the code C , so that every \pi_{i} is a cycle
of length m by the above assumption. For each cycle \pi_{i} , there is a unique
non-zero vector w^{i} of F^{n} which has 1 at the smallest coordinate index of
the given cycle and O’ s elsewhere. Clearly

w^{1} , w^{1}\tau , \ldots , w^{1}\tau^{m-1} , w^{2} , w^{2}\tau , \ldots , w^{r} , w^{r}\tau , . , w^{r}\tau^{m-1} (2)

form a basis of F^{n} . For each vector v\in F^{n} , we denote by \tilde{v} the coordinate
vector of v with respect to the above basis (2). For vectors u, v of F^{n} ,
another inner product (u, v)_{\tau} is defined by

( u, v)_{\tau}=\sum_{i=1}^{r}\sum_{j=0}^{m-1}x_{ij}\overline{y}_{ij} , (3)

where u=\sum_{i=1}^{r}\sum_{j=0}^{m-1}x_{ij}w^{i}\tau^{j} and v=\sum_{i=1}^{r}\sum_{j=0}^{m-1}y_{ij}w^{i}\tau^{j} . As in [10], we
define a linear transformation \sigma on F^{n} by

u\sigma=u+u\tau+\cdot\cdot+u\tau^{m-1} for u\in F^{n} ,

and set

F^{n}\sigma=\{u\sigma|u\in F^{n}\} and C\sigma=\{u\sigma|u\in C\} .

For i=1 , \ldots , r , set

v^{i}=w^{i}+w^{i}\tau+ +w^{i}\tau^{m-1} .

Then v^{1} , . . ’
v^{r} form a basis of vector subspace F^{n}\sigma . Every element w of

F^{n}\sigma is of the form

w=\sum_{i=1}^{r}x_{i}v^{i} for some x_{i}\in F .
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The linear transformation \varphi defined by (w)\varphi=(x_{1}, . . ’ x_{r}) for w\in F^{n}\sigma ,
is an isomorphism from F^{n}\sigma onto F^{r} (compare with the definition of \varphi in
Section 3 in [10] ) .

Now we define contracted code \tilde{C}_{\tau} of code C with automorphism \tau to
be the subspace

\tilde{C}_{\tau}= { ( x_{1} , . , x_{r} ) | w=\sum_{i=1}^{r}x_{i}v^{i} for all w\in C\sigma }.

Note that \tilde{C}_{\tau}=(C\sigma)\varphi=(C)\sigma\varphi , the image of C under \sigma\varphi .
Clearly \tilde{C}_{\tau} is an subspace of F^{r} . which is endowed with the usual inner

product,

(u, v)=u_{1}\overline{v}_{1}+ +u_{r}\overline{v}_{r} , (4)

where u= (u_{1}, \ldots, u_{r}) and v=(v_{1}, \ldots, v_{r}) . Our main purpose in this
paper is to prove the following

Theorem 1 If C is self-Orthogonal with respect to the inner product (1)
and for \tau\in G(C) , its induced permutation \pi has r cycles of equal length m
and no fixed points, then \tilde{C}_{\tau} is also self-Orthogonal with respect to the inner
product (4) under one of the following conditions, (a) F is GF(2) , (b) F
is GF(3) , (c) F is GF(4) , (d) F is GF(p^{a}) and \tau is a permutation, i.e. ,
\tau=\pi .

Remark. This theorem implies that the linear transformation \sigma\varphi preserves
the property of self-0rthogonality.

For contracted codes, see Conway and Pless [3] and Pless [10].

5. Proof of Theorem

Now we start to prove our theorem. From now on suppose that F will
denote one of GF(2) , GF(3) , GF(4) , or GF(p^{a}) in Theorem 1. We shall
divide our proof of the theorem into several lemmas. Let us set

C_{\tau}= { v\sim|for all v\in C }.

(Here recall that \tilde{v} denotes the coordinate vector of v with respect to the
basis (2).) Then we have the following.

Lemma 2 (a) C_{\tau} is self-Orthogonal with respect to the inner product (1).
(b) Permutation \pi sends C_{\tau} onto itself
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Proof. When F is GF(2) , GF(3) or GF(4) , (u, v)=(u, v)_{\tau} . Also, when
F is GF(p^{a}) and \tau is a permutation, (u, v)=(u, v)_{\tau} . These equations
imply part (a). We next prove part (b). Let u=\sum_{i=1}^{r}\sum_{j=0}^{m-1}x_{ij}w^{i}\tau^{j} be a
codeword. Clearly u\tau=\sum_{i=1}^{r}\sum_{j=0}^{m-1}x_{ij}w^{i}\tau^{j+1} . Since \tau is of order m , we
have \tilde{u}\pi^{-1}=\overline{u\tau} . This equation proves part (b). \square

If F=GF(4) , then the lemma above is Theorem 2 of Conway and Pless
[4].

Lemma 3 Let u=\sum_{1}^{r}x_{i}v^{i}\in C\sigma . That is, (x_{1}, . . ’ x_{r})\in\tilde{C}_{\tau} . Then,
there exists u’\in C such that u=u’+u’\tau+ \cdot\cdot+u’\tau^{m-1} . Let \tilde{u}’=

(x_{11}, \ldots, x_{1m}, x_{21}, \ldots, x_{r1}, \ldots, x_{rm}) be the coordinate vector of u’ with re-
spect to the basis (2). Then the following hold:
(a) For i=1 , . , r , x_{i}=x_{i1}+ , . . +x_{im} .
(b) \tilde{u}=\tilde{u}’+\tilde{u}’\pi^{-1}+ +\tilde{u}’(\pi^{-1})^{m-1} .

Proof. Clear. \square

Let R be a principal ideal domain such that (a) F is a homomorphic
image of R and (b) the quotient field K of R has characteristic 0. (For
existence proof for such a principal ideal domain R, see Theorem 13.13 in
[8, p. 81] and Theorem 13.27 in [8, p. 91].) So let *:R – F be the ring
homomorphism and the kernel of *\wp . \Lambda(C) in R^{n} is defined by taking
as its elements all u= (u_{1}, . . , u_{n})\in R^{n} such that u_{i}\in R and u^{*}=

(u_{1}^{*}, . . , u_{n}^{*})\in C_{\tau} , where u_{i}^{*}\in Fr

To prove our theorem, we need the following simple notation. For x\in

R, we set \overline{x}=x^{p} , where p is the characteristic of F. (Note that \overline{x}^{*}=x^{*}i-n

F , wherex^{*is}- the conjugate of x^{*} in F (see Section 3).) For A\in M_{R}(X, Y) ,
we define \overline{A}\in M_{R}(X, Y) by

\overline{A}(x, y)=\overline{A(x,y)} (x\in X, y\in Y) .

Now we shall finish the proof. Let \{u_{1}, \ldots, u_{l}\} is a basis of Co.
Then by Lemma 3 for i=1 , \ldots , l , there exists u_{i}’\in C such that \tilde{u}_{i}=

\tilde{u}_{i}’+\tilde{u}_{i}’\pi^{-1}+\cdot . +\tilde{u}_{i}’(\pi^{-1})^{m-1} . For i=1,\ldots , l , let w_{i}\in\Lambda(C) such
that w_{i}^{*}=\tilde{u}_{i}’ . The vector w_{1} , w_{1}\pi^{-1} , \ldots , w_{1}(\pi^{-1})^{m-1} , w_{2} , w_{2}\pi^{-1} , \ldots ,
w_{l} , w_{l}\pi^{-1} , . . ’

w_{l}(\pi^{-1})^{m-1} form an lm\cross n matrix A (with rows labeled
1, . . . . m , m+1 , \ldots , 2m , \ldots , (l-1)m+1 , \ldots , lm). Let us set S_{i}=\{(i-

1)m+1 , \ldots , im }, T_{j}=the set of the coordinate indices in \pi_{j} , where \pi_{j} is
a cycle of \pi .
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Let P=\{S_{1}, . . ’ S_{l}\} , Q=\{T_{1}, \ldots, T_{r}\} . Then we see that \overline{A} and \overline{A}^{t} have
property (P, Q) and property (Q, P) , respectively. By Proposition 2

D(Q)\delta(\overline{A}^{t})=\delta(\overline{A})^{t}D(P) ,

where D(Q)=mI_{r} , D(P)=mI_{l} . Hence,

\delta(\overline{A}^{t})=\delta(\overline{A})^{t}- (5)

By Proposition 1 we have

\delta(A\overline{A}^{t})=\delta(A)\delta(\overline{A}^{t})

=\delta(A)\delta(\overline{A})^{t} , by (5). (6)

It follows from Lemma 2 that every (i,j) component of matrix A\overline{A}^{t} is in \wp ,
the kernel of * . So is that of matrix \delta(A\overline{A}^{t}) . So this fact and Equation (6)
show that

\{\delta(A)\delta(\overline{A})^{t}\}^{*}=0 (zero matrix). (7)

Lemma 4 The rows of matrix \delta(A)^{*} generate \tilde{C}_{\tau} and \tilde{C}_{\tau} is self-OrthO-
gonal.

Proof Lemma 3(a) implies that the rows of \delta(A^{*})(=\delta(A)^{*}) generates
\tilde{C}_{\tau} . This completes the first statement.

\{\delta(\overline{A})^{t}\}^{*}=\{\delta(\overline{A})^{*}\}^{t}

=\delta(\overline{A^{*}})^{t}

=\overline{\delta(A^{*})}^{t}

=\overline{\delta(A)^{*^{t}}} ,

where the third equation holds since \delta andcommute- with one another.
By this equation and (7), we have

\delta(A)^{*}\overline{\delta(A)^{*^{t}}}=0 (zero matrix),

which shows that \tilde{C}_{\tau} is self-0rthogonal. \square

This lemma completes a proof of our theorem.
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6. Examples

To determine the contracted codes of codes given below in Examples
1 and 2, we need the following lemma (cf. Research Problem (16.4) [7,
p. 498]).

Lemma 5 Let C be an (n, k) code over F , having a permutation, \pi_{0}(=\tau_{0})

in G(C) such that the cycle structure of \pi_{0} is

(1, \ldots, m)(m+1, . , 2m) , . . , ((r-1)m+1, . , rm) . (8)

Let G’ be a generator matrlx for C. Let G be obtained from G’ by arrang-
ing the columns of G’ in the order 1, , m , m+1 , \ldots , 2m , \ldots , (r-1)m+
1 , . , rm given in (8). Suppose G=[L|R] , where L is an k\cross lm matrix of
rank lm, R is a k\cross(r-l)m matrix. Then, the dimension of \tilde{C}_{\tau_{0}} is greater
than or equal to l .

Proof. We let the vectors in the basis G=[L|R] be denoted by e_{i} . The
vectors, e_{1} , e_{1}\pi_{0}^{-1} , , e_{1}(\pi_{0}^{-1})^{m-1} , e_{2} , e_{2}\pi_{0}^{-1} , \ldots , e_{k} , e_{k}\pi_{0}^{-1} , \ldots , e_{k}(\pi_{0}^{-1})^{m-1}

form an km\cross n matrix A=[L’|R’] (with rows labeled 1, . . . , m , m+
1 , \ldots , 2m , , (k-1)m+1 , . , km), where L’ is a km\cross lm matrix, R’
is a km\cross(r-l)m matrix. Let us set S_{i}=\{(i-1)m+1, \ldots, im\} ,
T_{j}=\{(j-1)m+1, , jm\} . Let us set P=\{S_{1}, . , S_{k}\} , Q’=\{T_{1}, \ldots, T_{l}\} ,
Q’=\{T_{l+1}, \ldots, T_{r}\} . We see that A and L’ have property (P, Q’\cup Q’) and
property (P, Q’) , respectively. Clearly

rank \delta(A)\geq rank\delta(L’) . (9)

By Lemma 1,

rank L’ –rank \delta(L’)\leq lm-l . (10)

Since rank L’=rank L=lm, by (10) we have

rank \delta(L’)\geq l .

From this inequality and (9),

rank \delta(A)\geq l . (11)

Since the e_{i}+e_{i}\pi_{0}^{-1}+ ). +e_{i}(\pi_{0}^{-1})^{m-1} ’s generate C\sigma_{0} , it follows from
Lemma 3 (a) that the rows of \delta(A) generate \tilde{C}_{\tau_{0}} . So this and (11) prove
our lemma. \square
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Example 1. We take for C the (24, 12) Golay code over GF(2) . Note that
when F=GF(2) , for every \tau\in G(C)\tau equals \pi , the induced permutation
of \tau . We shall use the following results (a) and (b) from [7, p. 498]. (a) A
double circulant generator matrix G for this code is given by

G=[I_{12}|A] ,

where I is the identity matrix of order 12, and

A=[000010111111 000011101111 0_{1}0000111111 0_{1}0000111111 000011101111 001010101111 001101101011 0_{1}0101010111 001011001111 000100111111 00_{1}001011111 0_{1}0001011111]

and the columns of G are labeled 21, 7, 16, 12, 19, 22, 0, \infty , 14, 15, 18,
2, 20, 17, 4, 6, 1, 5, 3, 11, 9, 13, 8, 10. (b) Permutation \pi=(21,7,16 ,
12, 19, 22, 0, \infty , 14, 15, 18, 2) (20, 17, 4, 6, 1, 5, 3, 11, 9, 13, 8, 10) is an
automorphism of C .

Here in order to define the basis (2) we introduce the following con-
vention: \infty<0<1< <22 . Let us set \tau=\pi^{6} . Then, \tau satisfies the
assumptions of Theorem 1. So

\tilde{C}_{\tau} is self-0rthogonal. (12)

We apply Lemma 5 with \pi_{0}=\tau and G’=G. Then we have

dim \tilde{C}_{\tau}\geq 6 . (13)

Hence by (12) and (13) we have that

\tilde{C}_{\tau} is self-dual.

Note that \tilde{C}_{\tau} has no codewords of weight 2. For if \tilde{C}_{\tau} has a codeword of
weight 2, then the code C has a codeword of weight 4, which contradicts
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the fact that the minimum weight of the Golay code is 8. We see that \tilde{C}_{\tau}

is equivalent to B_{12} as described in [9].

Example 2. We take for C the (48, 24) extended quadratic residue code
over GF(2) . Let N denote the set of nonresidues modulo 47. Let

g(x)=(1+x)(1+x+x^{2}+x^{3}+x^{5}+x^{6}+x^{7}+x^{9}

+x^{10}+x^{12}+x^{13}+x^{14}+x^{18}+x^{19}+x^{23}) .

Then

g(x)(1+ \sum_{n\in N}x^{n})\equiv g(x) mod (x^{47}-1) .

By this equation and Theorem 1 in [7, p. 217],

<g(x)> \subseteq<1+\sum_{n\in N}x^{n}>

Since both <g(x)> and<1+\sum_{n\in N}x^{n}>are of 23 dimensions, we must
have

<g(x)>=<1+ \sum_{n\in N}x^{n}>

From this equation and a generator matrix (28) in [7, p. 490] it follows
that a generator matrix \hat{G} for C is given by

\hat{G}=(\begin{array}{lllll} 0 \overline{G} \vdots 01 1. 1 1 1\end{array}) ,
\overline{G}

0..\cdot

0
1 1 . 1 1 1

where \overline{G} is a generator matrix for the cyclic code <g(x)>of length 47
and the columns of \hat{G} are labeled 0, 1, . ., 46, \infty . Theorem 10 in [7, _{P}492]

states that the automorphism group of the code C contains PSL_{2}(47) . So,
this code has a permutation \tau of order 2 in G(C) , which is given by

\tau : y\mapsto-1/y ,

where y\in\{0,1, . . , 46, \infty\} . The cycle structure of \tau is

(0, \infty)(1,46)(2,23)(3,31)(4,35)(5,28)(6,39)(7,20)(8,41)(9,26)



On contracted codes: an extension of Pless’ theorem on codes 91

(10, 14)(11, 17)(12, 43) (13, 18) (15, 25) (16, 44) (19, 42) (21, 38)

(22, 32)(24, 45) (27, 40) (29, 34) (30, 36) (33, 37)

In order to define the basis (2) we make the following convention: \infty<0<

1<\cdot . <46 . Clearly \tau satisfies the conditions of Theorem 1. So,
\tilde{C}_{\tau} is self-0rthogonal. (14)

We start to calculate the dimension of \tilde{C}_{\tau} . We see that the columns of \hat{G}

whose labels are in 12 cycles of \tau , (0, \infty) , (1, 46) , (3, 31) , (4, 35) , (5, 28) , (6,
39), (8, 41) , (24, 45) , (27, 40) , (29, 34) , (30, 36) , (33, 37) , are independent.
We apply Lemma 5 with \pi_{0}=\tau , and G’=G. Then we have

dim \tilde{C}_{\tau}\geq 12 . (15)

Hence by (14) and(15) we have that

\tilde{C}_{\tau} is self-dual. (16)

In order to determine \tilde{C}_{\tau} we need the following easy

Lemma 6 \tilde{C}_{\tau} has no codewords of weight 4, but codewords of weight 6.

Proof. If \tilde{C}_{\tau} has a codeword of weight 4, then C has a codeword of weight
8, which contradicts the fact that the minimum weight of the code C is 12
(see [7, p. 483]). Let v be the third row of \hat{G} . Since an 1\cross 48 matrix v+v\tau

has property (\{1\}, Q) , where Q is the set of the orbits of \tau on { \infty , 0, 1, \ldots ,
46}. So by using Proposition 1 \delta(v+v\tau) is a codeword of weight 6 in \tilde{C}_{\tau} .

\square

This lemma and (16) prove that \tilde{C}_{\tau} is equivalent to Z_{24} , which is de-
scribed in [11].

Remark. We see that the symmetry codes are good ones from a viewpoint
of Lemma 5. The Mathematica [12] was used to compute various properties
of the code in Example 2.

7. Concluding Remarks

We found that by modifying Pless’ method (see the proof of Theorem
4 [10] ) over a suitable principal ideal domain we can give a straightforward
proof to the theorem. If we define contracted code for the code with an
“orderly” automorphism group, then all results of this paper hold when



92 T. Atsumi

\tau is replaced with an “orderly” automorphism group G which induces a
semiregular permutation group on \{1, \ldots, n\} .

Acknowledgments I would like to thank the referee for his many sug-
gestions that have helped to improve the paper.
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