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Equilibrium vector potentials in R®
(Dedicated to Professor Makoto Ohtsuka on his 70th birthday)
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Abstract. In the potential theory it is well known that the notion of equilibrium po-
tentials for a bounded domain D with smooth boundary surfaces ¥ in R3 is rested on
the basis of the electric condenser. In this paper we introduce the notion of equilibrium
vector potentials for D based on the electric solenoid. We then find that such vector
potentials are related to harmonic 2-forms on D whose normal component with respect
to X vanishes at any point of X.

Key words: vector potential, solenoid, harmonic forms, newton kernel, weyls’ orthogonal
decomposition.

Introduction

Let D be an electric condenser with smooth boundary surfaces ¥ in
R3. Then D carries the equilibrium charge distribution pdS, on ¥, where
dSg is the surface area element of ¥, which induces the electric field E(z)
in R?\ X being identically 0 in D:

1 / p(y)
u(lz) = — | —2—dS for x € R3,
D= ST — o1 ™ .

The function u(z) is called the equilibrium potential for D. We consider
the total energy 1 = [gs || E(z)||? dv, of the electric field E(z). Now assume
that the condenser D; varies smoothly with real parameter ¢. Then the total
energy p(t) varies with parameter ¢t. In [Y1,§2] and [LY, §9], we formed the
variation formula of second order u”(t) for u(t) with respect to t. We
intend to make the corresponding studies in the magnetic fields’ version. In
this paper, motivated by the electric solenoid (see the beginning of §8) we
introduce the notion of equilibrium current density JdS, on ¥, the magnetic
field B(z) induced by JdS, and the equilibrium vector potential A(x), and
study their properties. We consider the total energy v = [gs || B(z)||*dv, of
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the magnetic field B(z). In [Y3], we shall construct the variation formula
of second order v”(t) for v(t), when the domain D; varies smoothly with
real parameter t.

Let J(x) be a C$° vector field in R3 such that div J(z) = 0. Then
Jdv,, where dv, denotes the volume element of R3, is called a volume
current density in R3. For a 1-cycle v in R® with v = 8Q, we put J[y] =
fQ J(z) - ngdS;, where n, and dS; denote the unit outer normal vector
and the surface area element of Q at x, respectively. J[v] is called the total
current of Jdv, through [v], or through Q. Now let D be a bounded domain
with real analytic smooth boundary surfaces ¥, and put D' = R3\ (DUX).
Let J(z) be a C* vector field on X. If there exists a sequence of volume
current densities {J,dv;}, in R? such that J,,dv, — JdS, on ¥ in the sense
of distribution, then we say that JdS, is a surface current density on .
For a 1l-cycle v in R3 \ ¥, we put J[y] = limp—0 Jn[7], which is called the
total current of JdS, through [y]. We consider the following vector-valued
integrals:

1 J(y)
Aa::—/ ds. for z € R3,
@)= G Js o — o] *
-y
B —rotA /J ————=dSy for z € R3\Y .
(@) = E=E \

Following Biot-Savart we say that the surface current density JdS; on ¥
induces the magnetic field B(z) in R*\ X. If a surface current density JodS;
on ¥ induces a magnetic field B(x) which is identically 0 in D', then JodS,
is called an equilibrium current density on ¥.. We say that A(x) for JodS,
is an equilibrium vector potential for D. Now let {v;};=1,..q be a base of
the 1-dimensional homology group of D. Then we shall prove

Main Theorem  There exist q linearly independent equilibrium current
densities {3;dS; }i=1,...q on T such that J;[y;] = 6; (1 < j < q) (Kronecker’s
delta). Further, any equilibrium current density on ¥ can be written by a
linear combination of {3;dSz}i=1,. 4

Let v be a l-cycle in D. By H. Weyl , there exists a unique
harmonic 2-form Q. on DU such that [ w = (w,*8)p for all C* square
integrable closed 1-forms w in D. {2 is called the reproducing 1-form for
(D,~). We write Q, = adyAdz+pdzAdz+ydzAdy on DU, and consider
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artificially the following vector field B, (z) in R\ X:

(a,8,7) in D

B (z) =
(@) (0,0,0) in D'.

We put J,(z) = ng X (@, 3,7) on X. Then the essential part of the proof of
the main theorem is to show the fact that J, dS; is an equilibrium current
density on ¥ which induces B, (x) as a magnetic field. In §§5 ~ 6 we canoni-
cally construct a sequence of volume current densities {J,dv; }, in R3 which
converges J,dS; on ¥ in the sense of distribution. Such a construction of
{Jndvy}y, is useful not only for the proof of the above fact but also for the
studies in §§7,8 and Appendix. In §§1 ~ 4 we give physical and mathe-
matical preparations for the theorem. In §7 we study extremal properties
of equilibrium current densities and equilibrium vector potentials. We then
find that an equilibrium current density induces the magnetic field with min-
imum total magnetic energy among all surface current densities on ¥ with
given total currents through [y;] (7 = 1,...,¢), while an equilibrium vector
potential is regarded as a magnetic field induced by a (generalized) volume
current density in R? with minimum total current energy among all volume
current densities with given total currents through Q;(i = 1, ..., q), where Q;
is a 2-chain in D such that 0Q; C ¥ and Q; xv; =6;; (j =1,...,q). In §8,
we study examples of (D, ;) such that D is a z-axially symmetric domain
in R3, and show the explicit formulas for J;dS, in the main theorem and
for its vector potential A; and magnetic field B;. They will be written by
use of functions u(z, z) which satisfy the Stokes-Beltrami partial differential
equations:

u 0% n 1 du
822 + 822~ 10z
Such equations are classical and have been studied by E. Beltrami [B], A.
Weinstein [Wi], R.P. Gilbert [G], etc.. Our research gives a different view
on those equations. In Appendix, we show the electromagnetic meaning of
the fundamental solutions for A*u = 0 obtained by A. Weinstein in order
to apply them to our study.

The author would like to thank Professors F. Maitani and T. Ueda for
their suggestions and valuable conversations concerning this work. He also
thanks Professors A. Kaneko and S. Miyatake for their comments especially
about the theory of partial differential equations. He finally appreciates the

Aty =



4 H. Yamaguchi

referee for his sharp and kind remarks.
The main results in this paper have been announced in [Y2].
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1. Surface current densities

We use the simple notation: z = (z,v, z) = (1,72, 73) € R3. We recall
some notions in the static electromagnetism. Let J(z)=(f1(z), f2(x), f3(z))
be a vector field in R? such that

3 .
(i) fiz) e CLR?), (i) divJ(z)= Z 0fi

Then Jdv,, where dv, is a volume element in R3, is called a volume current
density in R3. Let v be a 1-cycle in R® which bounds a 2-chain @, namely,
0Q = ~. We set

T = /Q J(z) - ngdSs, (1.1)

which is called the total current of Jdv, through [y]. We consider the fol-
lowing vector-valued integrals:

1 J(y)
Az :_/ % _dv, for xz € R3, 1.2
@) = 4x Joo o — o™ (
B(z) = rot A(z) 1/J()x Y gy, forz e R% (1.3)
= Tr0 = — ——av r T . .
ar Jra TN T e =P

Then A(z) is called the vector potential for Jdv,, and B(x) the magnetic
field induced by Jdv,.

Let D cC R3 be a domain bounded by a finite number of real analytic
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smooth closed surfaces £(= 0D). We denote by dS, the surface area ele-
ment of ¥. Throughout this paper, we put D' = R3\ D, where D = DU X.
Let J(z) = (fi(z), f2(z), f3(x)) be a vector field on ¥ such that

() fi(z) e =)

(ii') There exists a sequence of volume current densities {J,dvg }ne1 2.

R3 such that J,dv, — JdS, (n — o) on X in the sense of dlstrlbutlon.
Precisely, (ii’) means that {Supp Jn}n=12,.. are uniformly bounded in R?
and limy, o [gs ¥Jpdvy, = [ ¢ JdS, for any ¢ € C$°(R3). Then JdS, is
called a surface current density on X. For any l-cycle v in R3\ X, we set

Jhl = lim Ju[v], (1.4)

which is called the total current of JdS, through [y]. In [Corollary 3.1 we
shall represent J[y] by JdS; itself (without using {J,,(z)dv;},). We set

1 J(y)
Az / ——dS, for z € R3, 1.5
D= s Te—ul -
B = Az J(y f 3\ ¥
(x) = rot 47r/ |m—yl|3ds or x € R\
(1.6)

Then A(z) is called the vector potential for JdS,, and B(z) the magnetic
field induced by JdS;.

Theorem 1.1 Let J(z) = (fi(z), fa(z), f3(x)) be a C* vector field on X.
We put ny, x J(z) = (91(z), 92(z), g3(x)) for z € ¥ and

bj(z) = gidz + gody + gsdz  on X. (1.7)

Then JdS; is a surface current density on X, if and only if
(1) J(z) is a tangent vector of ¥ at z,
(2) by(z) s a closed 1-form on X.

To prove this, we shall prepare concerning the signed dis-
tance function R(x) for 3 defined as follows: Given z € R? sufficiently close
to X, we find a unique point y = y(z) € X such that

r—y=R(z)n, where R(z)€ R, (1.8)

where n, is the unit outer normal vector of ¥ at y. Then R(z) is a C%
function in a neighborhood U of ¥ in R? such that n, = grad R(z) on &
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and
UND(resp. 2, UND") = {z € U | R(x) < (resp. =, >) 0}.

We define a sequence of C* functions {xn(R)}n=12,. on (—oo,00) such
that

1
1 on (—oo,—;]
0 <xn(R) <1, Xn(R) = 1 (1.9)
0 on [—%,oo).

Then, xn(R(z)) is a C* function in U. We take an integer ng such that
1 1
I'y={zecU|—-=<R(z) - 5—} cc U foralln >ng. (1.10)
n n

Thus I', — £ (n — oo) and Supp X, (R(z)) C I', where x,(R) = %2. By
putting x,,(R(z)) = 0 in R?\ [, we may consider x/ (R(z)) € C°(R3).

Similarly, x”(R(z)) € C§°(R3).

Lemma 1.1 Let f € C°(R3). Then

(1) x,(R(z))f(z)dvy — —f(x)dS, (n — o) on X in the sense of distri-
bution.

(2) {xn(R(2))f(z)dvr},>,, s convergent on % in the sense of distribu-
tion, if and only if f(x) =0 on X. In this case, the limit is %dS’m
on X.

Proof. Let z € ¥. By a Euclidean motion of R?, we assume z = 0

and ny = (0,0,1), so that ¥ near 0 is of the form: { = ¢(&,n) where
2 2

6(€,m) = O(€? +n?) at (0,0). We put H(z) = (4% + 5:#) (0,0), which is

called the mean curvature of ¥ at x. Now fix 0 < § < 1 such that

YcUW):={zxeU|-6<R(z) <6} CcCU.

We divide U(6) into a finite number of disjoint piecewise smooth domains

{U;};=1,..n such that U(6) = ?_’__17] and we can write, under a certain

Euclidean motion T} of R3,

(a) U; N X is of the form { = ¢; (§,n) where (§,n7) € K; : = a domain
bounded by a finite number of piecewise smooth arcs in the (£, n)-plane
and ¢;(,m) = O(¢2 +n?) at (0,0),

(b) U; ={z = (&n,¢;(&n)) + Rny | (§,n,R) € V;}, where V; = K; x
(—=6,6) and y = y(z) = (&, 7, 9;(&,m))
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We thus have, for each j (1 < j < N),

o(z,y, 2

dv, = la_((-f,’_i,f_z)j dédndR = J;(£,n, R)dédndR in U;
J;(€,7m,0)d¢dn = dS, on £NU;, (1.11)
aJ;
OR

We only give the proof of (2) of Lemma 1.1, since the proof of (1) is
similar. We first note that Supp x/.(R(z)) C I'y C U for n > ng. Next let
¥ € C§°(R?). Since x(R(z)) = 0 in R3\ U(6) for sufficiently large n, it
follows that

i = [ XURE)S @),
_ 21:: { /K j ( /j X' (R) fszde)dgdn}.

From x;(—1/n) = xp(=1/2n) = xa(=1/2n) = 0 and xn(—1/n) = 1, we
have, by the integration by parts twice,

(§,m,0)dédn = H(x)dS, on ENU;.

-1

/_Tn Xn(R)fJ;dR
a(fzbJj)] /— 0%(fyJ;)
= ) + [T xR
BR (5’77)_1/") _Tl aRz
OR (&€,1,0)

The last limiting formula follows, since 0 < x,(R) < 1 and 8%(fyJ;)/9R?
is bounded in Vj. By (1.11), we have

N

T of vy 00, . 0J;
A I, = Z{/Kj(aRWJ +faRJJ+f¢aR)

J=1

AR

by which (2) follows. ]

d§ dn}
&m0

Proof of Theorem 1.1. Assume that JdS, is a surface current density on
Y. We take a sequence of volume current densities {Jndv}n = {(fin, fon,
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f3n)dvz },, in R? which converges to JdS, on ¥ in the sense of distribution.
For any p € C*®°(R3) and x € C§°(R?), it holds

/(Zﬁ oz ) - nll%o/ﬂkp,g(fin%ﬁvx (1.12)

= — lim [ (div Jp)pxdv; = 0.

n—oo RB

As p we take a defining function v of D in R? such that ||grad ¢ (z)| = 1
on ¥. Then is reduced to [ x - ( 3 | fi0y/0x;)dS, = 0 for any
X € C§°(R3), so that J(z) L n, at any z € X. (1) is proved. By taking
x = 1 in a neighborhood of ¥ in R3 for (1.12), we obtain

3
0
/ (Z fi P )d&lC =0 for any p € C®(R?). (1.13)
s\i5 Oz
We note that (2) is a local property and that our argument is invariant
under the Euclidean motions of R3. Let zy € ¥. We may assume zg = 0
and ng = (0,0,1). Thus, ¥ in a neighborhood V' C R3 of 0 is of the form:
z = ¢(z,y) for (z,y) € K := {x? + y? < r?} such that ¢(z,y) = O(z* + y?)
at (0,0). For any = = (z,y, #(z,y)) € VN X, we have, by (1),
_9¢, 09 99 06

dz dy = f1—
8(1,' +8 Y, f3 fl +f2 y

Hence, by use of local parameter (z,y) of XNV, the 1-form b;(z) is written
as

by(z) =

o (2) (%) e+t m sz

Given any h(z,y) € C°(K), we consider a function p € C*(R?) such that
p(z,y,2z) = h(z,y) in V, and p = 0 in a neighborhood of ¥\ (V NX). Then
(1.13) gives

o:/m(f%m%)dsx:/K(dh)AbF—/Kh(de%

so that by(z) is closed on XN V. (2) is proved.
Conversely, let J = (f1, fo, f3), fi € C®(X) satisfy (1) and (2). By

(1.7) and (1), we have (1') (g1,92,93) X Ny = (f1, f2, f3) for x € ¥. By
(2) we can construct a C* closed 1-form bj(x) = gi1dz + gady + g3dz in a
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neighborhood Uy C U of £ in R3 such that by(z) = bs(z) as 1-forms on X,
namely, (2') (1,82,93) X nz = (91,92, 93) X ng for x € ¥. We may assume
that Uy D T',, for sufficiently large n (> n1), where I',, is defined in (1.10).
Using R(x) of (1.8) and x,(R) of (1.9), we define

1 in D\U
¥n(z) = { xn(R(z)) inU (1.14)
0 in D'\ U,

M = *[(dXn(x)) A bs(2)]
= findz + fondy + f3ndz in R®.

That is, fi, = x,,(R(z))(g3 %—g — g9 %) etc.. We put

Indvg = (flna fon, f3n)dvx in R?. (1'15)

Then X,(z) is a C* function in R® with Supp X, C D, and 7, is a C*®
co-closed 1-form in R3 with Supp 7, C I',. Hence J,dv, is a volume current
density in R3 such that Supp J, — ¥ (n — o0). It suffices for the converse
to prove that {Jpdvg}, converges to the given JdS, on ¥ in the sense of
distribution. For any ¢ € C§°(R?), we have from (1) of [Lemma 1.1,

OR OR
. . . / ~ Ui Ul
lim /RS Y findvy; = lim o ¢Xn(R(x))<g3 3y Jo o )dvx

n—oo n—00

OR OR
— Go— — G3— )dS,
/E¢<gz o gsay) S

= [E wfidS; by (1) and (2).

Similar formulas for =2, 3 hold. [I'heorem 1.1 is completely proved. L]

Corollary 1.1 Let JdS, be a surface current density on ¥X. Then there
exists a sequence of volume current densities {J,dvg}, in R3 which con-
verges JdS,; on X in the sense of distribution such that, if we denote by
Ay or A the vector potential for J,dv, or JdS;, and B, or B the mag-
netic field induced by J,dv, or JdS,, respectively, then A,(z) — A(x) and
B, (z) — B(z) uniformly on any compact set in R>\ X.

Proof.  In the proof of the converse of [[Theorem 1.1, we considered C*°
functions x,(R) on (—o0,00) with (1.9). We here use x,(R) with the addi-
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tional property: There exists an M > 0 such that

IXn(R)| < nM,
IXn(R)| < n’M for Re¢ (—oo,00) and n > 1. (1.16)

We analogously define J,dv; = (fin, fon, fan)dve by (1.15). Then we can
show that {J,dv;}, satisfies [Corollary 1.1. In fact, we already proved that
JndSy — JdS; (n — 00) on X in the sense of distribution. Hence A, (z) —
A(z) (n — oo) pointwise in R?\ X. It follows from Jr, dvz = O(1/n) that
there exists a constant ¢ > 0 (independent of n) such that

_OR _ OR
/ (Finldvg = / )
R3 T'n

/ R ( e i
We may assume that c satisfies similar inequality for fo, and f3,. Let
K CcC R3\X. If we take a large ny such that m(K) = dist(K, Unzr, I'n) >0,
then we have, for any n > n; and z € K,

/ (f1n(¥)s fon(¥), fan(y))
T'n |z -yl

dv, < c.

1
 dr

V3c
< 4rm(K)’

| An ()l

dvug

so that {A,(z)}, is uniformly bounded in K. Since each component of
Ap(z) is a harmonic function in R3\ T, {A,(x)}, is a normal family in K.
Hence, A,(z) — A(z) uniformly on K, by which B,(z) — B(z) uniformly
on K. []

The vector field A(z) is continuous in R3, while B(z) has the following
jump property along ¥ (cf. [FLS]):

Proposition 1.1 Let JdS; be a surface current density on ¥ and denote
by B(z) its magnetic field in R3 \ . Then, for any ( € X, the limits
B*(¢) = limpsz—¢ B(z) and B~(¢) = limprs,—.c B(z) ezist such that

BH(¢) = B™(¢) =n¢ x J(C).

Proof. ~ We may assume that ( = 0 and ng = (0,0, 1), so that the tangent
plane of ¥ at 0 is the (z,y)-plane. If we put J = (fi1, f2, f3) on X, then
Theorem 1.1 implies that J(0) = (f1(0), f2(0),0). We consider the Newton
potential u;(z) of f;(z) (i = 1,2,3) defined by

1 fi(y) 3
- = — d fi R”.
u;(x) o /E e Sy or x €
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Then the following theorem is well-known:

. Oy,
lim
D>3z—0 87’

(z) 8ui()_{0 when r=uzx,y

im =
D'5z—0 Or fi(0) when r=2z.

Hence, by definition (1.6) of B(x), we see that B*(0) and B~(0) exist such
that B*(0) — B~ (0) = (—f2(0), f1(0),0) = ng x J(0). ]

2. Statement of the main theorem

Let D CC R3 be a domain bounded by C* smooth surfaces £ and put
D' = R3\ D. Let {7j}j=1,..,¢ be a 1-dimensional homology base of D. A
surface current density JdS, on X is called an equilibrium current density
on X, if the magnetic field B(z) in R?\ ¥ induced by JdS, is identically 0
in D'. A(z) defined by (1.5) for such JdS, is called the equilibrium vector
potential for JdS,. Then we shall prove

Main Theorem

(1) For a firted i (1 < i < q), there exists a unique equilibrium current
density J;dS; on X such that J;[v;] = 6;; (1 < j <gq).

(2) Any equilibrium current density JdS, on X is written by a linear com-
bination of {J;dSz}i=1,. 4

We denote by A; and B, the vector potential and the magnetic field
induced by the above J;dS;. The proof of the main theorem will be given
in §§3 ~ 6.

Proposition 2.1 (FLEMING’S LAW). For a magnetic field B(z) in R3\ X

induced by an equilibrium current density JdS, on ¥, we have J(z) L n,
and B*(z) = n, x J(z) forz € ¥.

Proof.  Since B~ (z) = 0 on ¥, this proposition follows by (1) of
1.1 and [Proposition 1.1]. []

3. Correspondences

We regard volume current densities or magnetic fields as co-closed 1-
forms or closed 2-forms in R? (cf. [F1], [H]). In this section we shall show
results concerning C*™ 1- or 2-forms in R3, some of which correspond to
theorems in the theory of Maxwell’s equations in the time independent case

(cf. [FLS]). Given a C® l-form o = 3_, fidz; in R3, we put ||o||(z) =
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3 2\ /2 3
( o1 fi(z) ) > 0 and Ao = ) ;_;(Afi)dz;. In the case of o such that
o(z) = O(1/||z||?) near oo, we also put

3

=1

This as well as Ao is a C* 1-form in R3. We analogously define corre-
sponding ones for any C*° i-form o; (¢ = 0,1,2,3). From the property of
the Newton kernel 1/||z — y||, we see that, for any C§° i-form o in R3,

i [ . ?yn)d"’y - /. ﬁi“-“iﬁ oy

(i . ;n)d”y - /s ﬁd

We often use

1 o(y) ) : :
A(— / ———dv, | = —0o(x Poisson’s equation),
47 R3 ”x _ y” Yy ( ) ( q )

Ao = (-1)Y(6d — d6)c  where &= xdx.

Lemma 3.1 Letn = fidr + fody + fsdz be a C§° co-closed 1-form in R3,
namely, f; € C(R?) (1 = 1,2,3) and én = 0. We set

_ 1 n(y)
p(z) = . /IR3 mdvy for z € R3, (3.1)

w(z) = dp(z) for z € R3. (3.2)

Then
(1) pis a C*® co-closed 1-form in R3 such that Ap = —n.
(2) n=éwinR3.

Proof.  Assume that 1 is a C§° co-closed 1-form in R3. Then we have

op(z) = % Jrs (If;’l(;’”) dvy = 0. By Poisson’s equation, we have Ap = —7 in

R3. Thus, (1) is proved. (2) follows by éw = &dp = dép — Ap = . []

When w is defined by 1 through (3.1) and (3.2), we say that 1 induces
w. By Lemma 3.1|, this w is a C* closed 2-form in R® which is harmonic
outside the support of 7 and ||w||/(z) = O(1/||z||?) near co. Conversely, we
have
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Lemma 3.2 Let w be a C™ closed 2-form in R such that

(1) w is harmonic outside a compact set in R3.

(2) [wlli(z) = O(1/||=|[) near co.

Then there exists a unique C§° co-closed 1-form n in R® which induces w.
Namely, n = éw.

Proof.  Uniqueness is clear from (2) of Lemma 3.1. Putting 7 := éw, we
shall verify that 7 induces w. By (1), n is a C$° co-closed 1-form in R3. We
construct p(z) by (3.1) for this n(z). From dw = 0, we have

dp(z) = 1/ Mdv — _1/ Mdv

Cdn e flz -yl Y dmJee oyl
= ady ANdz + Bdz A dx + ydx A dy.

We write w = g1dy A dz + godz A dx + gsdx A dy. Since each g;(z) is a

harmonic function outside a compact set, (2) implies (2') |lgrad g;(z)|| =
O(1/||z||?) near oo. It follows from Stokes’ formula that

o(z) = ;1/ Aygl($+y)dv
dr Jre lyl|

Yy

-
= gl(:c)+E lim

r—00

0 (1) 1 dg(z+y)
{/wn:r(gl(“y’any(uyn) Il on, )dSy}
= g1(x) by (2) and (2).

Similarly, 3 = g, and v = g3 in R3, so that dp = w. ]

Lemma 3.3 Let w be a C° closed 2-form in R3 and put n = éw in R3,
If we set, for any © € R3,

pe) = - [, Mo = [,

R ||z — y| Am Jws flz — o

then p=6X in R3.

Proof.  We note that A(z) is of class C™ in R3. We put q := p — ) €
C{°(R3). Since ép = 0 by én = 0 in R?, we have §g = 0 in R3. On the other
hand, we see that d\ = 0 by dw = 0, and A\ = —w in R3. Since
is applicable for our w with compact support in R3, we have dp = w in R3.
Thus, dg = dp — d6X = w + (A — 6d)) = 0 in R3. Hence, g is a harmonic
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1-form in R3. Since g(z) = O(1/||z||) near oo, it follows that ¢ = 0 in R3.
]

If we use a simple notation No(z) = (1/47) ng |m yll dvy for z € R3,

then Poisson’s equation says — AN = identity, and [Lemma 3.3 with (2) of
[Lemma 3.1 gives the following commutative diagram:

VAN
A

For j = 1,2, we denote by C5° (R3) or CJ"S(R3) the set of C* or C§° j-forms
in R3. For f; € CP(R3)(i = 1 2,3), we consider the following injections:

T : Jdvm = (f1>f2,f3)dvz == fldx + fody + fadz € CH(R?),

Tp: A(@) = & fpo 2l dvy — p(z) = & [po 2%rdvy € C°(R?),
T : B(z ) = rot A(x) — w(m) = dp( ) € C$°(R3).
(3.3)

Clearly, Jdv, is a volume current density in R3, iff n is a co-closed 1-form
in R3. In that case, B is the magnetic field induced by Jdv,, and n induces
w.

Let JdS,; be any surface current density on X, and denote by A and B
its vector potential and its magnetic field. We write JdS; = (f1, f3, f3)dSz,
A = (a,b,c), B = (a,8,7) on ¥, R3 R3\ X, respectively. We consider the
following injections:

Se:JdS, — n= fide + fody + fzdz on X,
Sp:A  —p=adr+bdy+cdz inR3 (3.4)
Sm:B —w=adyAdz+pBdzAdr+~vdzAdy inR3\X.

Thus, p is a continuous 1-form in R3, and dp = w in R3\ ¥. The surfaces
2. are regarded as Riemann surfaces with conformal structure induced by
the restriction of the Euclidean metric of R3. Then by(z) of (1.7) is equal
to the conjugate differential of 7 on the Riemann surfaces X, so that 7 is a
co-closed differential on X.
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Corollary 3.1 Let JdS; be a surface current density on ¥ and define the
1-form bj(x) on ¥ by (1.7). Let ~y be a 1-cycle in R3\ ¥ bounding a 2-chain
Q inR3and puty =Q x ¥ (intersection curves Q N'Y). Then we have

Tl = [ b

Proof.  For the JdS, on ¥ we find a sequence of volume current densities
{Jndvg }n, which satisfies [Corollary 1.1. We use A,, A, By, B defined in that
corollary. By (3.3), we consider n,, p,, and w, for J,dvz, A,, and B,.
By (3.4), we consider 7, p, and w for JdS;, A, and B. Then 7, is a C§°
co-closed 1-form in R? such that 7, = 6w, and w, is a C® 2-form in R3
such that w, = dp,. Moreover, wy, is harmonic outside the support of 7,,.
Corollary 1.1 means that limy, .o pp(z) = p(z) and lim,—oo wp(z) = w(2)
uniformly on any compact set in R3 \ X. Since Supp7n, — Z(n — o), we
thus have

d+p =0, w=dp, and w is harmonic in R?\ . 3.5)

Let v and @ be given in [Corollary 3.1. Since 1, = éw, in R3, it follows that

Jy] = lim Jp[] = lim [ *n, = lim /*wn :/*w. (3.6)
v v

n—oo n—oo Q n—oo

We simply set Dt = D,D~ = D', and w(z) = w¥(z) for £ € D*. By
[Proposition 1.1] and (1.7), w®(z) are continuous up to ¥ and

swh(z) —*w™(z) =bs(z) on . (3.7)

We separate the intersection curves v/ = @ N X into the following sets:

Y =~ + ...+ )y such that

(a) Each ; consists of a finite number of disjoint closed curves,

(b) If we denote by Q (k=0,1,..., N — 1) the subregions of Q bounded
by 74, then Qx O Qpy1, where 4f =+ and Qo = Q,

(c) If Qr \ Qr+1 C D*, then Qi1 — Qi C DT,

It follows that v, + ;. ~0(k=1,...,N —1) and )y ~0in D" or D~.

Consider the case when vy C D*. Then v ~ ~} in D*. Since d * wt =0 in

D™, we have

Jy] = /*w+=/ *w"’:/ bJ“I“/ *w
v " m g

/
1
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:/bJ~/ *w~  bydxw” =0and v+, ~0in D™.
M V2

By repeating this procedure we obtain

) = (g/%bj)ﬁm*ﬁ

= / by by d*wT =0 and ~) ~0in DT.
,y/

We similarly have the same formula in the case when v C D™. []

Corollary 3.2 Let p and w be defined in notation (3.4) through A and B

induced by a surface current density JdS, on X. Then

(1) pis a co-closed 1-form in R3 and satisfies fw p= wi for any 1-cycle
y1 and 2-chain Q in R3 such that 0Q =v; and QN X is a 1-chain.

(2) w is a (discontinuous) closed 2-form in R3.

Proof. Since p is continuous in R3, formula (3.5) implies the integral
formula in (1) and fw xp = 0 for any 2-cycle 73 in R3. So, *p is closed in
R® by H. Weyl [Wy]. (1) is proved. Since w is closed in R?\ ¥ and since
the normal component of w™(z) is equal to that of w™(z) on X by (3.7), we
have f,yz w = 0 for any 2-cycle v2 in R® such that v, N Y is a 1-cycle. So, w

is closed in R® by [Wy]. ]

4. Reproducing 1-form x{2

Let D cC R3,¥. D and D’ be the same as in §2. We usually put
C>®(D) = the space of C* functions in a neighborhood of D and C§°(D) =
the space of C*° functions in D with compact support in D. For i = 1, 2,
we consider the following spaces:

the space of i-forms of class C'° with compact support in D,

the set of real analytic i-forms in U C R3,

= the Hilbert space of square integrable ¢-forms in D,

L [Z=(D)];

)
)
)
zZ:> E) = the space of closed i-forms of class C™ in a neighborhood of D,
)
) C

) = CL; [dCi2, o(D)] where C5H(D) = Cg (D),
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H;(D) = the space of square integrable harmonic i-forms in D,

where Cl;[ | means the closure of [ | in L?(D). Weyl’s orthogonal decom-
position theorems are

L{(D) = Z(D)+* B3_4(D),  Zi(D) = Hi(D)+B;(D). (4.1

Let i = 1,2 and w; € C*(U), where U DD X. If all three coefficients of
w; vanish identically on ¥, we write w; = 0 on X. If the restriction w! of
w; to the surfaces ¥ is 0 as an i-form on X, we write w; = 0 along ¥. Put
w1 = adr + bdy + cdz and wy = ady A dz + Bdz A dx + vdz A dy. Then it is
clear that w; = 0 or wy = 0 along ¥, iff the vector (a,b,c) or (a,3,7) is a
normal or tangent vector of ¥ at each x € X, respectively.

Proposition 4.1 Let w; € C°(D) (i = 1,2). Then

(1) Ifwe € By(D), then we =0 along .

(2) Assume that wa = dw; on D. Then wy = 0 along ¥, if and only if the
restriction w] of wy to the surfaces ¥ is a closed 1-form on ¥.

Proof.  Let wg € By(D) N C3°(D). Then, (wy,*df)p = [5p fws for any
f € C®(D). Thus (4.1) implies (1). Let wy = dw; on D. For any 1-cycle v
on Y which bounds a 2-chain Q(C X), it holds [ w} = [,w2. This implies

(2). ]

Now let v be a 1-cycle in D. We consider a linear functional L, on

ZX(D):
L,y :wl—+/w€R.
v

By [Wy], we find an M > 0 such that | [yw| < M ||w||p for all w € ZP°(D).
There thus exists a unique %2, € Z;(D) which satisfies

/w = (w,*Qy)p for any w € Z$°(D). (4.2)
.

We call (2, the reproducing 1-form for (D,~). We note that Q. € Hy(D).
Indeed, for any f € C§°(D), (4.2) implies that (df,*Qy)p = J,df =0, 0
that €1, € Z3(D) from the first formula of (4.1). Hence, 2, € Hy(D).

We need a rather concrete construction of the 2-form Q. (due to F.
Maitani). We consider the u-axially symmetric solid torus K := I x A with
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corners in R3, where

I={ueR|-1<u<1},
A={(v,w) €R?|1/2 < Vv +w? < 2}.

In K, we take the circle Cp = {(0,cos0,sinf) | 0 < 6 < 27} and the
rectangle So = I x {(v,0) € A|1/2 < v < 2}, so that Sy x Cp (intersection
number) = 1. We here construct C* functions x(u) on I and ¢(v,w) on A
such that

0 on[-1,-1/2]
X(u>:{ 1 on[1/2,1],
0 on1/2<vv2+w?<2/3
(b(U,w):{ 1 on3/2<Vv2+w?<2,

and put

oo = dx(u) A do(v,w) € Zg; (K).

Proposition 4.2 This 2-form oo in K has the following properties:

(1) (w,x00)k = Jg,w  for any w € Z°(K).
(2) Js,00=1.

Proof.  For any w € Z{°(K), we have from Stokes’ formula,

(w, *00) K =/Kd(xdq§/\w)

(W) dd (v, w) Aw = / (b (v, w)w)

—/[(BI)XA]U[IxaA] {1}xA

/ o=[ v

(1} x{Vo2Tw? =2} Co

Thus, (1) is proved. We similarly have

2

/ oo= | d(xd¢)= / x(u)dp(v,w) = do(v,0) = 1.
So So 050

1/2
]

__ Now let v be a smooth 1-cycle in D. We take a tubular neighborhood
K of v in D which admits a C* (orientation preserving) transformation
T : K — K with T(v) = Cy. We denote by Tog the pull back of og by T,
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and put

T in K
&:{ boo in (4.3)

0 inD\R,

so that ¢ € Z55(D). For any w € Z$°(D), (1) of [Proposition 4.2 implies

(w,*3)p = (w,*¥THo0) z = (T~ Hw, x00)k = /c T Hw = /w-

vy

It follows from the first formula of (4.1) that 2, is the orthocomponent of
o to Ha(D) in the second one of (4.1):

~

=Qy +7 where Q, € Hy(D) and 7 € By(D). (4.4)
Note that 7 € Bo(D) N C$°(D) and Q, 4+ 7 = 0 in D\ K. Further we have

Proposition 4.3 Q. and 7 in (4.4) is extended onto a neighborhood U of
¥ in R® such that Q, € Ha(D) N CY(U) and 7 € BP(D) N CY(U) with

(@) Qy+7=0 U, (b) Qy=7=0 ualongX.

Proof.  For a given zy € X, we take a small ball B C R3 centered at zg
such that BN D C D\ K and BN D is simply connected. Then there
exists a single-valued harmonic function u in B N D such that *(), = du in
BND. Since 2, +7=0in BN D and Z;(D) L *By(D), it holds, for any
f € G (B),

0 = (df,+7)p = ~(df du) prp = lim / P

where L, = {x € DNB | R(z) = —1/n} and R(z) is defined by (1.8). Since
L, - ¥NB (n — o0) and ||dullpnp < [||lp < oo, it follows that u is
of class C! up to ¥ N B and O0u/Ony = 0 on ¥ N B. ¥ being real analytic
in R?, u is extended harmonic in a neighborhood U(zq) of £N B in B (see
[LM]). Thus, €, is harmonic in U(zo), and , = 0 along & N B. If we
put 7 = —Q, in U(xg), then €2, and 7 satisfy (a) and (b) in U(xg). Since
xo € X is arbitrary, [Proposition 4.3 follows from the uniqueness theorem
for harmonic functions. ]

Corollary 4.1 For any 2-chain Q in D such that 0Q C 8D, it holds

/QQ7:Q><7.
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Proof. Let Q be given as above. For later use we first show that, for any
T € Bo(D)NCP(U) where U DD %,

/QT = 0. (4.5)

In fact, take a larger smooth domain D in R3 and a 2-chain Q in D such
that D D> D,DNQ = Q and 8Q C 8D. We put Q = S Q; where
Q; (1 <i<n)isa 2-cell in R3. For any z € R3, we consider a solid angle
w;i(x) of Q; seen from the point  such that

1 0 1
i(x) = — —-—-]dS G i 1).
pi(x) o /@z <8ny Tz ?JH) Y (Gauss integral)

Then p;(x) is a bounded harmonic function in R3 — @, and is harmonically
extended beyond Q; from both sides such that p;(z*) — p;(z~) = 1 for any
z € Q;, and du;(z) is a harmonic 1-form in R®\ 8Q;. If we put u(z) =
S*  wi(z) for z € D, then p(z) is a harmonic function in D \ Q such that
du(z) € Hi(D) and p(zt) — u(z™) = 1 for any € Q. Since By(D) L
xZ1(D) and 7 = 0 along 3, we have

0 = (7,*du)p :/ d(pr) = / UT = / T.
D\Q BUQ* Q

Thus is proved. We next show [Corollary 4.1. By (4.4), and (2)
of [Proposition 4.2, we have

= o= g o
QmK T(Q)NK

Q)NK) xCo=Q x~,

which proves Corollary 4.1, O

We here consider the subspaces Hog(D) of Ha(D) and Hie(D) of Hi(D):

Hyo(D) = {w € Ho(D) | w is harmonic on D and w = 0 along L}
Hy.(D) = {du € Hy(D) | u is a harmonic function in D}.

Proposition 4.4 Let {7i}i=1,.. 4 be a 1-dimensional homology base of D,
and denote by x); the reproducing 1-form for (D,~;). Then
(1) {%}iz=1,. q s a base of Hay(D).
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(2) For eachi (1 <i<q), there exists a unique w; € Hoo(D) such that
/ *wiz@j (ISJSQ)
v

(3) The orthogonal decomposition Ha(D) = Hao(D)+ * H1e(D) holds.
(4) If we put w;= 23:1 cij€2j, then the (q,q)-matriz (c;;); j is non-singular.

Proof.  First we show (a) {€;}i=1,...q are linearly independent in Hoq(D).
Indeed, [Proposition 4.3 implies ; € Hoo(D). By de Rahm’s theorem there
exists a 0; € Z{°(D) with f')’j o; = 6;; (1 < j < q). Thus (a) follows by (4.2).
Next we show (b) An element w € Hso(D) such that *w has no periods in
D is 0. In fact, we then find a single-valued harmonic function v on D
such that du = *w. From w € Hyy(D), we have Ou/dn, = 0 on . Hence
u = const. in D, which proves (b). By (a) and (b), (f% *€);); j is non-
singular. This fact implies (1) ~ (3). From (4.2) we have ¢;; = (wj,w;)p,
by which (4) follows. ]

This proposition is analogue to L.V. Ahlfors . Precisely, let R be
a Riemann surface with border R and let v be a 1-cycle in R. He studied
about the reproducing differential x(2, defined by

/ w= (w,*Qy)r for any C* closed differential w on R,
y

and has then proved the corresponding results for R to [Proposition 4.4

Further, A. Accola showed a geometrical meaning of the norm
|©2,]|% in terms of the extremal length of the family of curves C such that
C ~ 7 (homologous) in R. Modifying his method, we have the following
different kind of geometric result which will be useful in §7:

Corollary 4.2 Let D be any bounded domain of R3 with C¥ smooth
boundary surfaces ¥.. Let {v;}j=1,. 4 be a 1-dimensional homology base
of D. Then we find C¥ smooth 2 dimensional surfaces {Qi}iz=1,. 4 on D
such that

Qixvj=6j  0Q;CX, @ LX (4.6)

Proof.  For each ¢ (1 < ¢ < q), take w; in (2) of Proposition 4.4, We
consider the Abel integral u(z) of *w;. That is, for any « € D, u(z) = ] *w;,

where [ is an arc on D connecting a fixed starting point zo and z. Then u(z)
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is a locally harmonic function on D such that w; = ;T'idsx =0atany z € X.
By (2) of [Proposition 4.4, the period for any 1-cycle in D of u(z) is always
integer. It follows that, for a fixed ¢ € R (except for an isolated set), the level
surface  of u in D defined by Q = {z € D | u(z) = ¢ mod Z} consists of a
finite number of 2-dimensional C¥ disjoint smooth surfaces ,(v = 1,...,p)
in D such that 8, C ¥ and 6, L . We divide D\Q = Y-7*.; Dx (connected
components). Then 0Dy = O + ¥ where ¥ C ¥ and Oy consists of a
finite number of +6, or —6,,, and u(z) is a single-valued harmonic function
on Dy with du /On; =0 on ¥ and with boundary values

c+ 1+ Ng on O},
u(z) = "
¢+ Ng on O,

where Nj ia an integer and O = O}, — ©}. If we set Q; = > i, ©}, then
we see from *wyp = du in D that, forany 1 <5 <gq,

(4.7)

5ij = / *XW; = (*wi,*ﬂj)p by (4.2)
i

J

m
=Y du/\Q—Z Q by (4.7) and Q; = 0 along ¥

= }; = Q; xy; by Corollary 4.1.
Qi

Consequently, this @); satisfies all three conditions in [Corollary 4.2. L]

We say that {Q;}i=1,.4 is a dual base of {7j}j=1,..¢-

5. Vector potential 4 with boundary values 0
We shall show a general property for elements in By(D):

Lemma 5.1 LetT € BL(D)NCY(U) where ¥ CC U C R3. Then we find
an eg € C°(D) N CY(U") where ¥ CcC U’ C U such that

(@) T=deg imnDUU, (b) eo=0 onk.

Proof.  We take a tubular neighborhood U; C U of ¥ in R3. First we
show

(o) There exists an e € C$°(D) N CY (V1) such that 7 =de in D U Uj.
Indeed, since 7 € B3°(D)NCY(Uy), T belongs to Z5°(D U U )N Z§(U;) and
has no periods along any 2-cycle in DUU;. De Rahm’s theorem implies that
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there exists an e; € C7°(DUU,) such that 7 = de; in DUU;. Analogously,
Cartan’s theorem (de Rahm’s theorem for real analytic category) implies
that there exists a ¢ € CY{'(U1) such that 7 = do in U;. Note that e; — o €
Z°(U1). We choose a p € Z¢(Uy) such that p and e; — o have the same
period along each 1-cycle in U;. Thus, we find an f € C*°(D U U;) such
that df = u— (e; — o) in U;. By putting e = e; + df in D U Uy, we obtain
(). By (2) of Proposition 4.1], the restriction €’ of e to the surfaces ¥ is a
C* closed 1-form on X. Moreover, €’ has the following property (P):

/ e’ =0 for any 1-cycle ' C ¥ such that v ~ 0 on DU X.
,-Y/

For, since we can take a 2-chain @ C D such that 6Q = v/, it follows from
that [, e’ = [ode = [, 7 =0. Next we show
(B) There exists an n € C{°(D) N CY¥(Uy) where ¥ CC U, C Uy such that
7 = dn in D U U, and the restriction 1’ of n to ¥ is a C* closed 1-form
on Y with no periods.
Indeed, for each 1-cycley; C D (1 < i < g) we find a 1-cycle v/ C ¥ such that
¥i ~ i on DUY. We put a; = f%{ e’. Using w; € Hyo(D) in (2) of Proposition|
4.4, weset n = e— Y _ ar*w, on DUX. Then n € C°(D) U CY(Us)
where % CC Uy C Uy, and [, 7' =0 (1 < i < g). Since +wy, € Hy(D UUy),
it follows that dnp = 7 in DU [ZJQ and ' on ¥ has property (P) like /. Let ~/
be any 1-cycle on ¥.. We find a cycle & = Y% | n;v} on ¥ such that 4 ~ &’
on DUZX. Then [,n' = [, _on' + XL n; f% n' = 0. Hence, (8) holds.
Finally, from (8) we find an f(z) € C¥(X) such that df = 1’ on . We
denote by h(z) the outer normal component of 7 at z € . Since ¥ is real
analytic, h(z) € C*(X). Then we can construct an F(z) € C*(U')NC>®(D)
where ¥ CC U’ C U, such that F = f and 0F/0n; = h on X. If we put
eo =n—dF in DUU’, then e satisfies (a) and (b) in Lemma 5.1. []

Theorem 5.1 Let w € Ho(D). Then there ezists a unique A € C¥(V)
where ¥ CC V C R3 such that

i) dA=w DNV, (i) 6A=0 nV,
(i) A=0 on X.

Proof.  (Uniqueness) Assume that there exists another A € C¥(V) satis-
fying (i) ~ (iii). Then (i) implies that A — A is closed in D NV and hence
in V. For any zo € X, we can find a ball B C V centered at zy and an
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f € C¥(B) such that A — A = df in B. By (ii) we have Af = —édf = 0,
so that f is harmonic in U. Since (iii) implies grad f =0 on ¥ N B, we see
that f = const. in B. Hence A = A in B, or in V.

(Ezistence) By [Proposition 4.4 it suffices to prove for w = €, defined
in (4.4). By [Proposition 4.3|, there exists a neighborhood U : ¥ CC U such
that Q, € Hy(DUU), 7 € B¥(D)NCY(U),y+7=0inU and ), =7=0
along ¥. By Lemma 5.1, there exists an eg € C{°(D) N CY(U’) where
Y cc U’ C U such that 7 = deg in DUU’ and eg = 0 on X. For any zg € X,
we take a ball B C U’ centered at zo. From ., € Hy(B) C Z4(B), Poisson’s
equation implies that there exists an a € C{(B) such that da = 2, and
ba = 0 in B. Since Q, + 7 = 0 in B, there exists an f € C*(B) such that
a+ey=df in B. Now let S = BN %, which is a C* smooth surface in B
such that 0S C dB. By solving the Cauchy problem:

{ Au(z) =0 near S in B (5.1)

grad u(z) = grad f(z) on S,

we find a harmonic function u in a neighborhood V' (zg) of S in B such that

du =df on S. Put A =a —duin V(z¢). Then, in V(xp), dA = Q, and

0A = ba — Au =0, while, on S, A = —ep + df — du = 0. Hence A satisfies

(i) ~ (iii) in V(zp). Since xg € ¥ is arbitrary, it follows from the uniqueness

that we find a neighborhood V of ¥ in R? and A € C{ (V') which satisfy (i)

~ (iii). O
A is called the vector potential of w with boundary values 0 in V.

Lemma 5.2 Let w € Hy(D). Denote by A the vector potential of w
with boundary values 0 in V. Then there exist a triple {W, o9, €1}, where
W with ¥ CC W CV, 09 € ZS§5(D) with Suppoy C D\ W, and e; €
C(D)NCY (W), such that, putting oo =0 in W \ D, we have

(@) og=w+de; in DUW, (b) A+e1=0 inW.

Proof. It suffices to prove for w = Q. of (4.4). [Proposition 4.3 and
imply that there exist U’ with ¥ CcCc U’ C 'V, ¢ € C53(D) with
Supp ¢ C D\ U’, and ey € C°(D) N C¥(U’) such that ep = 0 on ¥ and
o = Qy+deyin DUU’. Since 0, =dAin V and A = 0on ¥, it follows that
A+ egis a C¥ closed 1-form in U’ such that A + ey = 0 on X. Thus, for a
tubular neighborhood W of ¥ in U’, there exists a function g € C¥(W) such
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that A+eg = dg in W. We can extend g to a function g € C*°(DUW). By

putting o2 = & and e; = eg — dg in D U W, we obtain [Lemma 5.2. L]
In Theorem 5.1 we write A = Ajdx + Aady + Asdz in V| where A; (i =

1,2,3) is necessarily a harmonic function in V. We identify the 1-form A
with the vector field (A1, A2, A3) in V. Thus, (ii) and (iii) for A are of the

forms

S Z=0 v, Ai=0 on¥ (i=1,2,3). (5.2)
B:ci

For any vector r in R® with ||| = 1, we put § 3'4 (‘95}}, 353,2, 88’13) in V.
Lemma 5.3 For any x € X, 6r( x) is a tangent vector of ¥ at x, while

grad A;(z) (1 =1,2,3) is a normal vector of ¥ at z.

Proof. ~ We use the function R(z) of (1.8) defined near ¥. By the second
formula of (5.2), we have a C* function ¢;(z) such that A;(x ) = CZ(SC)R(LU)
in a neighborhood W of ¥. Thus, for any direction r, 8‘4 =28 a on X. By

the first one of (5.2), we have 23 1 c”9 =0 on X, by which Lemma 5.3
follows. ]

6. Key lemma

The following lemma gives the relation between elements of Hyo(D) and
magnetic fields induced by equilibrium current densities on X::

Key Lemma Letw € Hyo(D). We write w = adyNdz+pBdzAdz+ydxAdy
in D. Define the following vector field B(x) in R®\ ¥ :

B(z) = { (o, B,v) in D

(0,0,0)  in D' (6.1)

Then there exists a unique surface current density JdS,; on ¥ which induces
B(z) as a magnetic field. Precisely, JdS; = %%dSw on X where A is the
vector potential of w with boundary values 0.

Proof.  Uniqueness is clear from Fleming’s law. To prove existence, let
w € Hyg(D) and let B(x) be defined by (6.1). By [Theorem 5.1, we have the
vector potential A of w with boundary values 0 in V where ¥ CcC V C R3.
We write A = Aijdx + Asdy + Asdz in V and consider g:t at z € X. It is

T
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enough to prove the following claims:

oA
(c1) ong
0A

(c2) a—dSm induces the above B(z) as a magnetic field.
n$

Indeed, we apply for the given w in Key Lemma to obtain a
triple {W, o9, e;} satisfying all conditions in Lemma 5.2. We recall the
functions R(z) in U DD X, xn(R) on (—oo, +00), and X, (z) in R3 defined
by (1.8), (1.9) and (1.14), respectively. We may assume that W = U. We
put

dS; is a surface current density on X.

Dp={z€D| Xn(z) >0}, Dpi1={zeD| Xn(z)=1}.
We always consider sufficiently large n such that D, ; > D\ W. By (1.10),
we have 'y UDp1 C D, CC Dand Dy /' D(n — 00). We set

d(—Xne1) in D
Wy, and 7, :=6®, in R3. (6.2
N {0 nR\D O T (62

Then &, € Z55(R®) with Supp @p C Dy, and 7, € *Z53(R3).
implies that 7, induces &,. By direct calculation, we have

M = —6[(dXn) A e1] — *[(dXn) A *de1] — Xnbde; in D.
Since w € Hy(D) and Dp; D Suppoy, it follows from (a) of
that

Xnbde; = Xnb(0s —w) = b0y in D,
which is independent of n. We set
N { o9 in D
o

= and 7 := 65 in RS,
0 in R3\D =07

Then ¢ € Z35(R3) with Supp 6 € D\ W, and 7 € *Z55(R3). By
3.2, 1) induces 6. We put 7, := 7, + 7 in R3, namely,
~6[(dXn) A e1] — x[(dXn) A *de1] in D
R in R3\ D.
It follows that 7, € *Z55(R3) and Supp 7, C I',, C W N D. We denote by
wy, the C* 2-form in R3 induced by 7, in the sense of Lemma 3.1. Since
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Wy = Op, + & in R3, it holds by (a) of Lemma 5.2

d(—ey) + o9 = in D,
o = (—e1)+ o =w Tn 1 (6.3)
0 in R3\ D.
In particular, we pointwise have
w(z) forzeD
T = I — 6.4
“ nirglown(w) { 0 for z € R3\ D. (6:4)
By (a) and (b) of Lemma 5.2, we have
_ [él(dxn) A A} + %[(dXn) AxdA] in DNW (6.5)
"o in R3\ (DNW) '

= findz + fondy + fandz in R3.

We put wp(z) := andy A dz + Bndz A dx + ypdz A dy for z € R3, so that

1 / (z3 — y3) fon(y) — (T2 — y2)f3n('y)d
R3

dm Iz — y]|3

an(x) vy etc., (6.6)

where x = (21, z2,23) and y = (y1,y2,y3). By (3.3), we put
Jndvg = Tc_l(nn) = (flm fon, f3n)dvcc in R®. (67)

Since 1, € *Z55(R3), Jndv, is a volume current density in R3. It thus
suffices for claim (c;) to prove

0
Jndvg — 8—4dS’m (n—o00) on X in the sense of distribution. (6.8)
Ny

In fact, to get the explicit formula of f;, (i = 1,2,3), we note that, in W,

3
Bn(2) = X(R()) Y -,
=1 4
3
D (R(@)) = Xa(R&) Y i

Substituting these for (6.5), we have, in DNW,

3 3
M = Xo(R(2)) Y gidz; + x4(R(2)) Y Gida,
1=1 1=1
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where

0 (OR OR 0 (OR OR
gl(.’IZ) = — (—-——AQ — —Al) — a— ( Al — —A3)

Oy \ Oz 0 z \ 0z 0
N OR <8A2 8A1) _OR (6A1 B (9A3)
Oy \ Ox Oy 0z \ 0z Ox
OR (OR OR OR (OR OR
= == Ay — o= _9ty
Gi(z) Oy (6:1: 27 by Al) 8z <8z = Ox 3) ’

and g;(z), G;(z) (i = 2,3) are written cyclically. Hence,
fin() = Xn(R(2))gi(2) + Xn(R(2))Gi(z) in DNW. (6.9)
From and (5.2), we have, on X,

3
OR 0A; OR 0A; OR 0A 0A
q(z) =" ( 9 1) _ 1

— —2 .
Oxry Ox; * Ox; 0xq ox; Ox; ong

From (1) of Lemma 1.1, x,,(R(z))g1(z)dv, — Q%dSm (n — o0) on ¥ in
the sense of distribution. Again using and (5.2), we have, on %,

Gl(:L‘) = O,
8G1 ) 8A1 OR - (OROA;\ A,
on, lgrad R + gm_l Z (axi Bnm)  On,

i=

It follows from (2) of Lemma 1.1 that x/'(R(z))G1(x)dv, — ——%ds (n —
00) on ¥ in the sense of distribution. Therefore, (6.9) implies that findvgy —
g—ﬁ;dsm (n — o0) on ¥ in the sense of distribution. Cyclically we have
similar formulas for ¢ = 2, 3. Hence, (c;) is proved.

Next we shall prove (cz). We put JodS, = %dsx, and denote by By(x)
the magnetic field induced by JydS;. By (3.4) we consider

A;
no(z) 1= Se(JodSz) = Zg dr; on Y,

i=1 9t
wo(z) 1= Sm(Bo(z)) = aody A dz + Bodz A dx + Yodz A dy in R3\ X,
so that

(25— 15) 222 — (a — 1) o
3~ U3 on, 2 y28

1 Ny
oaolxr) = — ds ete.
@ =4 . e v
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For any fixed z € R3\ ¥, limiting formula (6.8), together with (6.6), implies
that wyp(z) — wo(z) (n — o0). By (6.4), we thus have wo(r) = w(x)
in R?\ ¥, or equivalently, By(z) = B(x) where B(x) is defined by (6.1).
Hence, (c2) holds. Key lemma is completely proved. []

Converse of Key Lemma Let B be a magnetic field induced by an
equilibrium current density on ¥. We write B(z) = («,3,v) in D. If we
put w := ady AN dz + Bdz ANdz + ydx Ady in D, then w € Hog(D).

Proof. By (3.5), we proved w € Hy(D). By [Proposition 1.1, w is continu-
ous up to X and the normal component of w with respect to ¥ vanishes on

Y. By the same use of in the proof of [Proposition 4.3, we see that w
is harmonic beyond ¥ and w = 0 along ¥, so that w € Hyy(D). []

We extend any w € Hao(D) to @ € Hao(R3\ X) by putting @ = 0 in D’,
and define the following spaces:

Hzo(D) ={w € L3(R’) | we Ha(D) },
B = the set of all magnetic fields B; induced

by equilibrium current densities JdS, on X.

By (3.4), we considered the injection S,, from the set of magnetic fields
induced by all surface current densities on X, into Ho(R3\ ¥). Key Lemma
and its converse imply that

Sm : B+ Hao(D) is bijective. (6.10)
We here give the final step of

Proof of the main theorem  (Uniqueness in (1)) Let JdS, be an equilib-
rium current density on ¥ and denote by B its magnetic field in R3\ X. It is
enough to prove that, if the total current J[v;] = 0 for each 1-cycle v; (1 <
j < q) in D, then J(z) = 0 on X. In fact, we put @ = S,,(B) € Hayo(D).
By (3.6), [y, 2w =J[v] =0 (1 <j < q). It follows from (2) of [Proposition|
4.4 that w = 0 in D. Thus, BT (z) = 0 for any z € . Since B~ (z) = 0 on
¥ and J(z) is tangential on ¥, [Proposition 1.1 implies J(z) =0 on .
(Ezistence in (1), and (2)) For any fixed ¢ (1 < ¢ < q), we obtain, from
(2) of Proposition 4.4, w; € Hso(D) with f,yj sw; = 0;; (1 < j < gq). By
(6.10), we have B := S_1(w;) € B. We thus find an equilibrium current
density JdS; on ¥ which induces B as a magnetic field. Again using [3.6),
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we have J[v;] = 6;;, so that JdS, on ¥ is the desired one for the existence in
(1). (2) of the main theorem is clear from (1) and [Proposition 4.4, []

This proof implies that
Sm(Bz) = w; (1 <1 < q), (6.11)

where B; and w; are stated in the main theorem of §2 and in (2) of Propo-
sition 4.4, respectively. For the reproducing 1-form *§2; for (D,~;), we have
a unique B; € B such that S,,(B;) = ;. We put

~

A; = the equilibrium vector potential of éi,
p: = Sp(A;) € C1(R?),

so that dp; = Q; in R3 \ ©. Then we have the following result which is
related to how D is embedded in R3:

Remark 6.1. Let A be an equilibrium vector potential in R and put p =
Sp(A) € C1(R3). Then the restriction of p on ¥ is a closed 1-form on ¥. In
the case when A = Ri, namely, p = p;, its period of any 1-cycle § on ¥ is
given by

Lﬁi:QXVia

where Q is a 2-chain in R3 such that 8Q = 6.

Proof.  Let v be any small 1-cycle on ¥. Then we can take a 2-chain
S C D’ such that S = 4. Since dp = 0 in D’ and p(zx) is continuous in
R3, we have J,p = [sdp = 0. Hence p is closed on X. In the case when
P = pi, let 6 and Q be given as above. We divide @ into two 2-chains
{Q1,Q1} : @ = Q1+ Q) such that Q; ¢ D, Q) c D',0Q; C ¥ and
Q) C X. Since Q; = 0 in D', it follows from [Corollary 4.1 and (1) of
Corollary 3.2 that

/I~3i=/§i—_—/ O =Q1 xv=Q X.
6 Q Q1

[]

Let JdS, be a surface current density on ¥ and denote by A and B its
vector potential and its magnetic field. We put p := S,(4) € CY(D U D’)
and w := Sp(B) € Hy(D U D'). Since ¥ is of class C*, we have the C¥
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extensions p* and p~ of p from D and D’ beyond ¥, respectively. Hence,
p:=p" —p~ is of class C* in a neighborhood W of ¥ in R%. By continuity

of pin R%, = 0 on X. Moreover, (3.5) implies 65 = 0 in W. Therefore, we
obtain

Remark 6.2. Under these notaions, if JdS; is an equilibrium current den-
sity on X, then the vector potential A of w with boundary values 0 is written
into

A=pt —p~ in W.

7. Extremal properties

We need the following approximation condition for the equilibrium cur-
rent densities which is compared with [Corollary 1.1 for the surface current
densities.

Lemma 7.1 Let JdS, be an equilibrium current densities on ¥ and de-
note by A and B the equilibrium vector potential and the magnetic field for
JdS;. Then we find a sequence of volume current densities {J,dv, }, in R3
converging to JdS; on X in the sense of distribution such that, denoting by
An and By, the vector potential and the magnetic field for J,dv,, we have
(1) Supp J, C D forn>1 and SuppJ, — = (n — 00).
(2) Bp,=B=01in D forn>1. Given K CC D, there exists an ny such
that B, = B in K for n > n;.
(3) An(z) = A(x) and B, — B(z) uniformly on any compact set in R3\ X.
(4) There exists an My > 0 such that | B, (z)|| < Mg forn > 1 and z € R3.
(5) limp—oo fgs | Bn(2)l|*dvs = fR3\§3 |B()[|*dvs.

Lemma 7.1  All are same as Lemma 7.1 except that (1) and (2) are

replace by

(1) Supp J, C D’ forn>1 and Supp J, — £ (n — o0).

(2") B,=B inD forn>1. Given G DD D, there exists an n, such that
B,=B=0inR3\G forn>n,.

Proof of Lemma 7.1 Let JdS;, A and B be given as above. By (6.10) we
put @ = Sy, (B) € Hao(D). From the uniqueness, JdS; is identical with the
one obtained from this w in Key Lemma. In that proof we here use C* func-
tions x,(R) on (—oo,+00) with (1.16). We keep all notations 1, wp, 7, - - -
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in the proof of Key Lemma. By (6.7) we again define a sequence of volume
current densities {J,dv;}, in R3, so that it converges to JdS, on ¥ in the
sense of distribution. Further, we can show that the vector potential A, (x)
and the magnetic field B, (x) for such J,dv, satisfy (1) ~ (5) in Lemma 7.1.
In fact, since 7, = T.(Jpdv,) and w, = T;(By), (1) and (2) follow from
(6.5) and (6.3), respectively. Since Supp dx, C I'y C W N D, we have from
(6.9) and (6.2)

Jn = Xn(R(2))(91, 92, 93) + Xn(R(2))(G1,G2,G3)  in Ty,
wn(z) = @p(z) +6(z) in R,
where
(dxn) N A+ Xnw in WNnD
On(z) = —de; in D\W
0 in D'UX.
Since A =G; =0 (i = 1,2,3) on X, it follows from (1.16) that there exists
an M; > 0 such that ||J,(z)|| < nM; and ||@,||(z) < M; for all n > 1 and
all z € R3. The first inequality like [Corollary 1.1 implies (3) of Lemma 7.1.
The second one with & € CS3(R3) implies (4). (5) follows from (2) and (4).
]

Proof of [Lemma 7.1  Instead of x,(R) and X»(z) in the above proof, we
take C* functions K, (R) on (—oo,+00) and K,(z) in W(DD X) such that

1 on (—oo, %]

0 on %,—}—oo),

0< Ko(R) <1, Kn(R)= {

—~—

[Kn(R)| <nM,  |K(R)| <n’M,  Kn(z)=Kn(R(z)),

where M > 0 is a constant independent of n > 1 and R € (—o0,+00).
Then, by the same argument as [Lemma 7.1, we have Lemma 7.1/ ]

Now let Jdv, be a volume current density in R3 and denote by Bj(x)
the magnetic field in R? induced by Jdv,. We put

I1Bsl3s = [ I1Bs@)dvs,

which is called the total energy of the magnetic field Bj(z). We analogously
define the total energy ||B ”1?«3\2 of the magnetic field B(x) induced by a
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surface current density JdS, on ¥. We consider

V = the set of all volume current densities Jdv, in R3,
S = the set of all surface current densities JdS, on X,

&€ = the set of all equilibrium current densities JdS, on X.
For any fixed i (1 < i < q), we put
Vi = {Jdv, €V | SuppJ C D' and J[yj]=6; (1<3j<q)},
Si={JdSz € S| Jy]=6i; (1<j<q)}
For J;dS; € S; and B;(z) stated in the main theorem of §2 we have

Theorem 7.1 J;dS; and B;(z) have the following extremal properties:
(1) [IBillga\s, = inf{l|Bs%a | Jdvs € Vi}.
(2) JidS; is a unique element in S; minimizing {||BJ||§3\E | JdS; € S;}.

Proof. By [6.11), we put w; = Sp,(B;) € Hag(D). To prove (1), we first
take any Jdv, € V;. By (3.3), we put wy = T,,(By) € Z$°(R?). From
Supp J C D', xwy; € Hi(D) by (3.5). Since w; = > 31 ¢ijS by (4) of
[Proposition 4.4, it follows from (4.2) and (3.5) that

q
lwill b =Y eij(kwi, Q) p = s
Jj=1
q
= ZCij(*LUJ,*Qj)D = (*wJ,*wi)D,
1=1
so that [|Bill3as = lwilly < llwslldh < lwslEs = [1Bsl3s. We next ap-

ply Lemma 7.1" to the case when JdS, = J;dS; on ¥ to find a sequence
{Jndvz}rn in V converging to J;dS, on ¥ in the sense of distribution which
satisfies (1') ~ (5) in Lemma 7.7. By (1’), we have Supp J,, C D'. By (2/)
and (3.5), Jn[v;] = Ji[v;] = 6;; for all n, so that J,dv, € V;. Further, (5)
of Lemma 7.1 implies lim,_,o || By, ||5: = |lBi”12R3\E' Thus, (1) of MTheorem|
7.1 is proved. We similarly have (2) of Theorem 7.1. []

To show the extremal property of equilibrium vector potentials A (see
(I’heorem 7.2), we generalize the notion of volume current density Jdv, in
R3. Let J = (fi1, f2, f3) be a vector field in R® with compact support such
that each f; is (not necessarily continuous) bounded and piecewise smooth
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in R3. Assume that there exists a sequence {J,dv;}, in V such that

(i) {||Jn(x)||}n is uniformly bounded in R3,

(") Jpdvy — Jdv, (n — 00) in the sense of distribution.

Then Jdv, is called a generalized volume current density in R3. We put

1 J(y)
A = — —d f R3
1) = 4 /R EET e
1 —
Bj(z) = 1 e J(y) x Y dv, for z € R3,

I —yl?

which are called the wvector potential for Jdv, and the magnetic field in-
duced by Jdv,. It is clear that A; € C1(R?) and By € C(R3). Moreover,
Lebesgue’s convergence theorem implies

Bj(z) =rot Aj(z) in R, div Aj(z) =0 in R (7.1)
We define
| Javals = [ 19@)]%dvz,

which is called the total energy of the generalized current density Jdv,. Let
Q be any 2-dimensional smooth surface in R3 such that Q intersects the set
of discontinuous points of J at most along a 1-chain. We then define the
total current J[Q] through Q of Jdvg:

J[Q] :/ J(x) - ng dS;.
Q
Using {J,dvz}, with (i) and (ii”), we have

JQ]= lim [ J,(z) nydS;, ||Jdvg|gs = nh_)rrc}o | Jndvg||gs- (7.2)

n—oo

Let {7;};=1,.. 4 be a 1-dimensional homology base of D, and {Q;};=1,... 4 its
dual base defined in [Corollary 4.2. For each i (1 < i < q), we define

G = the set of all generalized volume current densities Jdv, in R3,
Gi = {Jdv, € G | I{Jndv, }, satisfying (i”), (ii”), and
SuppJ, C D and J[Q;]=6;; (1<j<q)}.

Then we have the following extremal property for equilibrium vector poten-
tials:
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Theorem 7.2 For each i (1 <i < q), we have

(1)  There ezists a unique element G;dv, in G; which minimizes {||Jdv, |35
I Jdv, € QZ}

(2) Let Jdv, € G;. Then Jdv, = G;dv,, if and only if Bj(z) is reduced to
an equilibrium vector potential A(z) for a certain JdS, € €.

To prove this theorem we need two lemmas.

Lemma 7.2 (Recurrence) If JdS, € &, then Bydv, € G and Aj = Bg,
in R3.

Physically speaking, a surface current density JdS, on ¥ always induces
the magnetic field B; and the vector potential A;. In case when JdS, is
equilibrium, By makes a generalized volume current density Bjdv,, whose
magnetic field is identical with A :

o 1 B;(y)
Aa) =rot 1 [ To—

dv, forz € R3. (7.3)
Proof. Let JdS, € £ We find a sequence {J,dv,}, in V satisfying
(1) ~ (5) of Lemma 7.1, and use the same notations A,, B, defined in
that lemma. Since div B,(z) = 0 in R3, it follows from (2) and (4) that
{Bndvg}, CV such that Supp B, C D and B,,dv, — Bdv, (n — 00) in the
sense of distribution, so that B;dv, € G. By (3.4), we put n = S.(JdS,) on
Y, p=Sp(As) € C1(R®) and @ = Sy, (By) € Hao(D). If we define

_ _ 1 w(y) 3
AMz) = Nw(z) = o /R3 o — g dvy for z € R?,

then A(z) is a C! 2-form in R3. It suffices for (7.3) to verify
p(z) =6\(x)  for z € R3. (7.4)

For each n = 1,2,..., we put, by (3.3), n, = Tc(Jndvz), pn = T,(A,) and
wp = T (By), so that w, = dp, and p,(z) = Nn,(z) for z € R3. If we put
A (z) = Nwy(z) for x € R3, then implies p, = 6\, in R3. On
the other hand, (2), (3), and (4) of imply that p,(z) — p(z),
An(x) — A(z), and 6\, (x) — 6A(z) uniformly on any compact set in R3\ 3.
Therefore, (7.4) is true for z € R® \ . Since both p(z) and §A(z) are
continuous in R3, (7.4) holds for all z € R3. ]
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For a given JdS, € £, we consider the vector potential A; for Bydv; :

1 By(y) 3
A = — ————d fi R 7.5
J(x) o fRB T v, for xz € R, (7.5)

so that A; = rot A by Lemma 7.2. For each i (1 < i < q), we define the
following subspaces of Zy(D):

E = {0 € Z(D)| o =0along } D Hy(D),
EiI{JEEI/ O'Z(Sij(lgqu)}.
Qj

Lemma 7.3 The 2-form w; € Hy(D) defined in (2) of Proposition 4.4
satisfies
(1) (wi,o)p = [, 0 forany o € E.
(2) The set Hao(D) N Z; consists of a unique element, which we denote by
'S O ; — g2 = 2 _ g2 =.
o;. This 0; satisfies |0 — a;||p = ||lo||p — lloillp  for any o € Z;.

Proof.  Since Q; x v; = 6;; and f *w; = 6;5, the 1-form *w; in D is exact
in D\ Q;. We thus find a harmonic functlon u; in D\ Q; such that *w; = du;
and u;(z%) — u;(z7) = 1 for any = € Q;. Then, for any 0 € =,

(wi,U)D:/ dui/\a——-/ uiaz/ o.
D-Q; S+Q -QF i

(1) is proved. To prove (2), we put 0 = wj € Hyo(D) in (1). Then, (4) of
[Proposition 4.4 implies that fQi wj = ¢;;. Since (ci5)s,; is non-singular and
{w;}j=1,..q is a base of Hao(D), Hag N Z; consists of a unique element, say
oi, of the form o; = Zzzl zrwy. Using assertion (1) twice, we have, for any
o€ =j,

q q
(04,0 Z (wk,0)p =z = »_ k(wk, 03)p = |loillD-
k=1 k=1
l
Proof of Theorem 7.2 For each i (1 <14 < q), we take o; € Hyo(D) in (2)
of Lemma 7.3 and define G; := S,.}(7;) € B. By Lemma 7.2, G;dv, € G.

We also have G;[Q;] = fQj o; = 6;; (1 < j < q), so that Gydv, € G;. For
any Jdv, € VN G; with Supp J C D, we put n = T.(Jdv;) € *xZ55(R?).
Since 6;; = J[Q;] = fQj 1, we have xn € Z;. It follows from (2) of Lemma
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7.3 that
[Jdvz—Gidvg||gs = || % n—03l|H = || Jdvz||2s—||Gidvg||2s (>0).

This equality, together with (7.2), implies (1) of Theorem 7.2.

To prove (2) of Theorem 7.2, let Jdv, € G;. First, assume that Jdv, =
G;dv;. By (6.10), G; is a magnetic field 1nduced by an equilibrium current
den31ty J;dS; on ¥. If we denote by A the equilibrium vector potential
for J; idSz, then we have By = Bg, = A; by Lemma 7.2, so that “only if”
part is proved. Next, assume that the magnetic field B; induced by Jduv,
is identical with an equilibrium vector potential A(z) for some equilibrium
current density J dS’ onY: By = A in R3. If we denote by B the magnetic
field induced by J dSz, then we have from Lemma 7.2,

rot / Mdvy = rot / —Bﬂdvy for z € R>. (7.6)
R ||z =y r® [z — |
Like (3.3) we let correspond the integral in the left or right hand side to a
1-form p(x) or p(z) in R3, respectively. Then both p(x) and p(x) belong to
C1(R3). By (7.6), we have dp = dp in R3. On the other hand, the second
formula of (7.1) implies ép = 6p = 0 in R3. Therefore, p — p is a harmonic
1-form in R3. Since p(z), p(z) = O(1/||z|) near oo, we have p = p in R3.
Thus, Poisson’s equation implies that Jdv, = Bdv,, so B [Q;] = J[Q;] = &
(1 < j < gq). Hence, Sp(B) € Hyo(D) N E;. Tt follows from (2) of Lemma
7.3 that Sp(B) = 7; = Sm(G:), or equivalently, B = G; by (6.10). We
thus have Jdv, = G;dv,. []

By Lemma 7.2, any equilibrium vector potential A(z) satisfies
IA(z)| <O(1/|lz|*)  near z = oo. (7.7)

We finally make the following two remarks in this section:

(I) Professor L. Hérmander gave a comment that the main theorem
is so stable that it would permit passage to the limit, and the same result
would then hold also in the non-analytic case. This is true. In fact, let
D be a bounded domain in R? with C* smooth boundary surfaces Y, and
let {v;};=1,.4 be a 1-dimensional homology base of D. We then find a
sequence of bounded domains {D,}, with C* smooth boundary surfaces
Yn such that, as n — oo, D,, /' D and ¥,, — ¥ with their first and second
derivatives. We may assume that {v;};=1. , is a 1-dimensional homology
base of each D,. Fix 1 < ¢ < q. The same reasoning as Proposition
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4.4 implies that there exists a unique w € Hy(D) such that | ) ¥w = i
(1 <j <gq),wis of class C* up to ¥ and the normal component of w

vanishes on X. For each n = 1,2,..., we consider w, € Hao(Dy,) such that
fvg' *wp = 0;;. Then

lwm — wnld, < loml,, ~ lwnllh, — (n<m <o),

where wo = w and Dy, = D. It follows that w(z) = lim, o wy(x) uni-
formly on any compact set in D. We put w,(z) = apdy Adz + Brdz Adzx +
Yndx Ady on D, UY, and w(z) = ady A dz + fdz A dz + yvdx A dy on D.
By the normal extension, we can continuously extend w, and w to w, and
& in a domain G DD D, respectively, such that lim,_ |0, — @||% = 0.
It follows that the vector field (au, Bn,¥n) converges (o, 3,7) uniformly on
D. Thus we find a sequence of volume current densities {I,dvg}n=12. . in
R3 such that I,dv, — JdS; (n — o0) on ¥ in the sense of distribution.
Since formulas (6.11) and (3.6) for each w, hold, we conclude that JdS; on
Y is an equilibrium current density on ¥ such that J[v;] = 6;;. Therefore,
the existence of (1) in the main theorem for C* category is proved. The
uniqueness of (1) and (2) are similarly proved.

(IT) We have treated the bounded domain D with C*° boundary sur-
faces ¥ so far. We consider the unbounded domain D'(= R3\ D) with the
same boundary ¥ and with {oo}. Since any w € Hy(D') always satisfies
|wl||(x) = O(1/||z]|?) near oo (which is proved by Kelvin’s transformation),
all arguments for D are available for D’. So, the results for D similarly hold
for D’. For example, the main result for D’ is stated as follows:

Theorem  Let {v;};=1,. 4 be a 1-dimensional homology base of D'. (1)
For any fized i (1 < i < ¢'), there exists a unique surface current density
J;dS, on T such that J;[v;] = 6i; (1 < j < ¢') and the magnetic field B;(x)
in R3\ ¥ induced by J;dS; is identically 0 in D. (2) Any surface current
density JdS; on X which induces a magnetic field B(x) identically 0 in D
is written by a linear combination of {J;dSz}i=1,. -

8. Examples

In the textbooks of electromagnetism, we see the description about a
solenoid: For b > a > 0, consider a symmetric torus Yo in R? given by
(r — b)? 4+ 22 = a?, where [r, 0, 2] is the cylindrical coordinates of R3. We
denote by Dy the solid torus bounded by g, and put D} = R?\ (Do U Zp).
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We positively and symmetrically wind a coil L with electric current I around
Y0, n times. Then the solenoid (= ¥y equipped with I) induces the static
magnetic field:

. (_smG,cosO,O) in Dy
By(z) = r r
(0,0,0) in D),

where ¢ = nl/2m. This formula holds approximately but not rigorously.
For, By(z) must be singular only on L, but not on Xj. Let us show that
Bo(z) is the magnetic field induced by an equilibrium current density JodS,
on ¥. We use the torus coordinates {R, 9,0} as well as cylindrical coordi-
nates [r,0, z] :

z = (z,y, 2)
= {R, 9,0} = ((b — Rcos¢)cosb, (b — Rcos¢)sinb, Rsin @)
= [r,0,2] = (rcosf,rsinb, z),

where 0 < R < band 0 < ¢,8 < 27. Hence, £y = {R = a}, Dy = {R < a},
dS; = ard¢df on ¥y and dv, = R(b — Rcos ¢) dRdddf. We consider

T

—sin 6 0
Qo=c ( S dy Ndz + o8 dz/\d:z:).
7
It is clear that Qy € HQO(D). So, Key Lemma implies that By(z) is a
magnetic field induced by the following equilibrium current density JodS,
on X:

r r o

05 O si
JodSa=(Bo(z) X ng)dS,=c (cos sm(b’ sinfsin ¢ cos ¢) ds, .
The equilibrium vector potential Ag(z) for Jy(z) is then

2w 27 : ; 3
Ao(2) :C'/ / (cos@sm@,sm@sm@,cosq))dq)d@
o Jo Iz — yll

for z € R3,

where C = nla/(87%) and y = {a,®,0}. To give examples more, we
introduce some notations:
1. We consider the half-plane II defined by

II={(r,z)|0<r<+o0, —00< z < +x0},
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and put 9l = {(0,z) | —oo < z < +o0} and IT = ITUAII. It is occasionally
identified IT with the half (z, 2)-plane 7 in R? with z > 0 by (r, 2) = (=, 2).
Given a set K C w4 (= II), we consider the z-axially symmetric set < K >
in R3 which is obtained by rotating K around the z-axis, namely, < K >
={[nb,z]| (nz)eK, 0<6<2r}.

2. Let v = (a,b,c) be a vector field in a domain G of R?\ {the z-axis}.
At any fixed point = = [r, 8, z] € G, we choose the orthogonal basis of R3
: {er,eg, €.} (depending on z) such that e, = (0,0,1), e, = (cos#é,sin8,0),
eg = e, X e, = (—sinf,cosh,0), so that

v = (acosf + bsinf)e, + (—asinf + bcosb)eg + ce,

= ae, + beg + ce,.

We then use the abbreviation: v = (@,b,&) in G. By simple calculation we

have
o ~_. _1(a(ra) ab 8(re)
le(a,b,C>—;(W+%+—a—£— , (8].)

_ > 19¢ 8b da O 1(8(rb) da
f°t<“’b’@—<;@—£’a—a’;( or ‘@»’ (82

<6,5,E) X <51,51,51> = <351 —515, E'dl — 61&, 651 — 615) (8.3)
By means of (8.1), the vector field v in G of the form v = (0, f(r,z),0) or
= 1(g1(0), 0,92(8) ) is of divergent 0. Therefore, if f(r, z) € C§°(II), then

(0, f(r,2),0) dv, is a volume current density in R®. (8.4)

Given a vector potential A = (a,b,c) and a magnetic field B = («, 3,7),
we considered the injections in (3.3): Tp(A) =p € C°(R3) and T,,(B) =
w € Cy(R3). When we denote by A = (@,b,¢) and B = (&,3,7), such
definitions are equivalent to

p = adr + rbdf + &dz, «w = adr + r3d6 + Fdz. (8.5)
For example, the above g, By, Jop and Ay are written into the forms:

*Qy = cdf in Dy, By(z) = c(0,1,0) in Dy,

Jo = —C-<sin ¢,0,cos ¢) on X,

r
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2m 2™ (cos O sin P, 0, cos )
=C d®dO in R3.
/ / 1(r,0,2) — {a, @, 0}]] "

3. We consider the following Stokes-Beltrami operators A* in II:

L 02 02 190

AT = or? + 922 £ ror

Lemma 8.1 Let X be a domain inII and consider the z-azially symmetric

domain G =< X > in R3. Then, we have

(1) (Beltrami) Let f(r,z) be a C*° function in X. Then, f(r,z) is har-
monic as a function in G, if and only if AT f =0 in X.

(2) Assume that X is simply connected. Let w be a C® 1-form in X of
the form w = f(r,z)dr + g(r,z)dz. Then w is harmonic as a 1-form
in G, if and only if there exists a C*® function v(r, z) in X such that

0 AT =0, () ()= (-30 o).

Proof. (1) is clear from the identity Af(y/z% +y2,2) = AT f(r,z). To
prove (2), assume that w = f(r, z)dr + g(r, z)dz is harmonic in G. By

dw = 0, we have %{ = 6_9 in G, or equivalently, in X. Since

xdr = rd0 Ndz, =*df = 1dz Ndr, xdz=rdrAdb, (8.6)
T

we have sw = rfdf ANdz + rgdr ANdf. By d*xw = 0 in G, it follows that
8(Tf) + grzg) = 0 in X. We thus find C* functions u(r, z) and v(r,2) in X
such that

ou_, o _
or or g
ou ov
a_z'_‘gv a__rf

If we eliminate u by differentiations, v satisfies (i) and (ii) in Lemma 8.1.
Conversely, let w = f(r, z)dr + g(r, 2)dz € Cf°(X) satisfy (i) and (ii) of

Lemma 8.1. Then (i) and (ii) imply dw = 0 and d*w = 0 in G, respectively.

Hence, w is harmonic in G. (]

Similarly, w = f(r, z)dr + g(r, z)dz € C{°(G) is harmonic in G, if and
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only if there exists a C* function u(r, z) in X such that

ou Ou
-/ + _ XY .
(1) A ’LL(’I‘,Z)—O, (11) (f)g)_(ar7 8Z)
These functions u and v satisfy a kind of Cauchy-Riemann equations:
Oou 1 0v ou 10v
or 1oz’ oz ror (87)

In [Wi], u satisfying (') is called a z-axially symmetric potential and v
related with u in (8.7) its associated stream function. We shall find that v

satisfying (i) is concerned with a vector potential for the z-axially symmetric
domain.

Lemma 8.2 Let h(r,z) be a bounded continuous function on II and of
class C* in II. If h(r,2) satisfies A"h(r,z) = 0 in II and h(r,z) = 0 on
OI1, then h(r,z) = 0 identically on II.

Proof.  Given € > 0, we consider the following two functions ¢Z(r, z) on
II:

¢E(r,z) = +h(r,z) +¢ log \/(r +1)2 + 22.
It is clear that

A"¢E(r,2) <0 onIl, ¢F(r,2z)>0 ondll
lim ¢F(r, z)
(r,z2)—o00
It follows from the maximum principle that ¢Z(r,z) > 0 in II. Hence,
|h(r,2)| < €log+/(r+1)2 + 22. Letting ¢ — 0, we have h(r,2z) = 0 in II
[]

Let K CC II be a doubly connected domain bounded by two C* smooth
closed curves C; and Cj such that 0K = C; — C;. Weset K' = 1\ K
where K = K U 8K, which consists of the bounded component K’ such
that K] = C; and the unbounded one K7 such that 8K} = —Cs in II. For
i = 1,2, we define the z-axially symmetric sets in R3:

D =< K >, Y =< C; >, Y =0D =39 — 3y,

so that D’ consists of a bounded solid torus D} =< K} > with 0D} = ¥,
and an unbounded domain Dy =< K5 > with 0Dy = —X5. We draw a
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closed cycle v; C K such that v; ~ Cy on K, and a z-axially symmetric
circular ring v9 =< pg >C D where pg is a fixed point of K. Then,
{71,72} forms a 1-dimensional homology base of D. It follows from the
main theorem that, for each ¢ = 1,2, there exists a unique equilibrium
current density J;dS; on ¥ with J;[y;] = 6;; (j = 1,2). We denote by A;
and B; the equilibrium vector potential and the magnetic field for J;dS,. By
(7.5), we have the vector field A J, in R3 for J;dS,, which is simply denoted
by Az

Let us give explicit formulas of J;dS;, A;, B;, and A;. For this purpose
we construct the following functions V, W, and U in II:

(1°) We solve the following boundary value problem on K:

N _ 1 on C)
A7v(r,z) =0 in K, v(r,z) =
0 on Cs.
Such function v(r, z) uniquely exists. We put
1/k in K]
1 ov —
k= ——dsp (< 0), V(r,z) =< v(r,z)/k on K
c, T Ong .

0 in K,

where p = (r,2). Thus, V(r, 2) is a piecewise smooth continuous function
with compact support in II. We also find a unique C? function W (r, z) on
II which satisfies

A” W(rz)=-V(r,z) inll (8.8)
and assumes boundary values 0, namely,

W(r,z) =00on 0l  and ( li)m W (r,z) =0. (8.9)
(2°) We have a unique function U(r, z) € C*(II) N C?(IT \ 8K) which

satisfies

1 on K
— n
A"U(r,z)=¢ 27 (8.10)

0 on K’
and assumes boundary values 0.

The integral representations of the functions W and U will be given in
(A.7) and (A.8). Using these V, W, and U, we obtain
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Expression 1°  We have, for any x = [r,0, 2],

v
Ae) = 202 01,0y in R,

1

- <—8—V,O, 3_V> in D
Bi(z)=¢T 0z or

0 in D',

10V
Jl(w) = ; 85:’ Z) <01 1a0> on Za
P

1 W aw\ .,
Ay (z) = ;<_E’O’—c‘—97> in R,

where 8/0n,, is the outer normal derivative at p = (r,z) of 0K in II.

Expression 2°  We have, for any z = [r,0, 2],

Ay(z) = ! < ou ,0, 8U> in R3,

T 8z 8
1
—(0,1,0) in D
By(z) = ¢ 277
0 in D',
1
Jo(z) = Dy (r',0,2') on X,
U
ro@) = 722 40.1,0) in B2,

where (', 2') is the unit tangent vector of K at (r,z) in II.

Proof.  For ¢ = [r,0,z] € D, we consider *xQ(z) = i%‘:dr + i%‘:dz
Since V(r,z) = const. on C; (i = 1,2), it follows from (2) of Lemma 8.1
that Q(z) € Hao(D). Moreover, [ *Q = [, %%dsp =1and [ 0 =0,
because v is independent of (r,z). Hence, 2 = w;, which is defined in
(2) of Proposition 4.4. By (6.11), we get B1(z) = S;.}(Q). By the second
formula of (8.5), S-1(Q) is equal to the right-hand side of B; in Expression
1°. From Fleming’s law: J;(z) = Bf(:c) X ng for x € 39 — 31, we have by
(8.3)

1 ov. oV ov 8V
niw) = - (5o 0 g ) % (G0 5 ) /lerd Ve )]
_ LOVInz) 14 g,

T Onp
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From the symmetry of ¥ and J;dS,, we see from (1.5) that A;(z) is of
the form Ai(z) = (0, F(r,2),0) for z = [r,0,2] € R3, where F(r,z) €
C(II)NC¥(I1\ 8K). Since rot A;(z) = B;(z) in R3\ X, we have from (8.2),

R A
<—%E,0,18((;F)>: r 0z’ 7 Or o
©n 0 in D',

It follows that, for i =1, 2,

V(r,z) 4+ const. ¢y in K

rF(r,z) = {

const. ¢; in K.

We take a point gy € C5 and consider the 1-cycle § =< gy > on ¥3. Then
we can draw a 2-chain @ in Dj such that 8Q = §. From (3.4) and (8.5),
we have p; := Sp(A1) = rF(r,0)dd € C1(R3). Since V(r,2) = 0 on Cy, we
have pi(xz) = copdf on ¥s. It follows from dp; = 0 identically in D’ that
2meog = [5p1 = [odp1 = 0, so that co = 0. Because A;(z) is continuous in
R3, we obtain ¢; = 1/k on C; and ¢; = 0 on Co. Thus, rF =V in all R3,
namely, A;(z) = (0,V(r, z)/r,0) in R3. Expression 1° except for A{(z) is
proved.

In order to prove Expression 2°, we define xQ(z) = & for z = [r,6, 2] €
D. Then it is clear that (z) € Ho(D) with [ *Q =1 and [ *Q = 0.
Hence, 2 = wy, which is defined in (2) of Proposition 4.4. It follows from
(6.11) that By(z) = S;,1(Q2), which is equal to the right-hand side of By(z)
in Expression 2° by the second formula of (8.5). From Fleming’s law, we
have Ja(z) = B (z) X np = 5 (r’,0,2') for z € £. By use of the symmetry

of ¥ and JodS; with respect to the z-axis, we see from (1.5) that Ay(z) is
of the form

(1) Ag(z) = (f(r,2),0,g(r,2)) for any z =[r,0,z2] € R

where f and g belong to C(II) N C¥(I1\ 8K). By (8.1) and (8.2), we have
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Since rot Ay = By and div A; =0 in R3\ X, f and g satisfy

@) of dg [ 1/(2nr) in K
9z dr |0 in K,

a(fr) , dlgr)

3 =0 inlIl\OK.
) or 0z in IT\
From (7.7) there exists an M > 0 such that
M —
() VfrePtornz?s 57— onll

For a given (r, z) € II, we connects the origin (0,0) and the point (r,z) by
an arc £ in II, and consider the line integral:

u(r, z) = /e—f(r, 2)rdz + g(r,z)rdr.

By (3), u(r, 2) is independent of the choice of the arc £ connecting (0, 0) and
(r, z) on II. Therefore, u(r, z) € CY(II) N C¥(IT \ AK) and satisfies

Ou
9.~ T
(5) Bz in IT\ 9K, (6) u=0 on JIl
o _
or

Further, u is bounded in TI. Indeed, let (rg, 29) be any point in II and let
\/Té + 22 = Ry. We take, as an arc £ connecting (0, 0) and (rq, 2), £ = £1+/5
such that 41 = {(0,2) | 0 < z < Ry} and £, = {(r,2) | r = Rysinp,
z = Rgcosp, 0 < ¢ < o}, where tanpg = 19/20 (0 < o < 7). Since the
integrand of u vanishes identically on /; and |f| + |g| < 2M/R3 on ¢; by
(4), we have |u(ro, 20)| = | [, —f(r, 2)rdz + g(r, z)rdr| < 2Mn. Hence, u is
bounded in II. By (1) and (5), it is enough for the expression for As(z) to
prove that u = U in II. To show this, we put h(r,2) := u(r,2) — U(r, 2)
on II. Hence, h € C(II) N C}(II). Eliminating f, g from (2) and (5) by
differentiations, we see that u as well as U satisfies (8.10). Thus, h € C1(II)
and A"h =0in II\ OK. It easily follows that A is of class C? in all II and
satisfies A"h = 0 there. By (6) we have h = 0 on 9II. Since h is bounded
in II, it follows from Lemma 8.2 that h = 0, or equivalently, © = U on II.
Expression 2° except for Ay(z) is proved.
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By the same methods as for A;(x) and Ay(z) we have the expressions
for Ao(z) and A;(x), respectively. ]

The above proofs for A;(z) and A;(z) (¢ = 1,2) are due to Professor

T. Ueda. Ours will be given in Appendix by use of fundamental solution
for A™.

We remark that the constant k£ defined in (1°) has the following mean-
ing:

k = —2m (the total energy of By(z)) .

Proof.  For any f, g € C%(G) where G C II, it holds the following Stokes-

Beltrami formula:

1 1 _ 1 /0fdg Of0g
d <;f*dg) _{Tf(A 9+ (EE 4 5£>}dz/\dr, (8.11)
where *dr = —dz and *dz = dr by the orientation of II. From the form of

Bi(z) in Expression 1°, we have

IBi(@)lfnys =2 [ ((2—‘/)2 " (21)2) drdz.

Since A™V = 0in K and V = 1/k (resp. 0) on C; (resp. C2), it follows
from (8.11) that

1. 8V o [ 10V o
By g=2r [ Vids=— T [ 12 o=,

Co—Cy T Ony
which is the desired formula. L]
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Appendix

A. Fundamental solutions for ATu =0

We briefly recall the works of E. Beltrami [B] and A. Weinstein [Wi]
about fundamental solutions for A* u = 0. In this section we use the simple
notations:

p_—_('r,Z)EH, .’L':[’r,e,z]:[p,QJER3’
q=(p,¢) €1, y=1[0,0,¢] = [q,0] € R®.
Considering the uniform charge distribution with magnitude 1/p on the z-

axially symmetric circular ring v(q) passing through the point (p,0,¢) in
R3, E. Beltrami made the fundamental solution & for Aty = 0:

_ 1 1/p s
K0 = o [ T2

27
= 1 L dO in IT x II,
dr Jo /T2 +p?+ (2 — ()2 —2rpcos©

where ds, is the arc length of v(g). A. Weinstein generalized the equations
AT 4 = 0 to the following ones for any real number a:

Py 0%u  adu
+ = — =
Agu = Oor? + 022 r Or

and established the generalized axially symmetric potential theory. It was
not a formal generalization, but some interesting problems were solved by
this theory. By the similar method to E. Beltrami, he found the fundamental
solution K} for Afu = 0:

sin®"1 @

Kt (p,q)=S _1/7r dO in II x II,
(p.9)=5 0 [r24p2+(2—p)2—2rpcos O]/

where 1/5,_1 = [§ sin®~! © d©, and showed that K} (p, ¢) has the following
development at pole p = g:

1
Vr—p3+(z-¢)

where uq, v, are regular analytic at p = ¢ and u,(q,q) = So_1/p%. By use
of the remarkable identity: r***AY , f(p) = AZ[r**!f(p)] for any f(p) €

KX (p,q) = ua(p,q) log

> + Va (P, 9),
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C?(II), he constructed the fundamental solution K for AJu = 0:

So_
K (p,q) = Sa—j: r*t It o(p,q) in I xIL

Now we consider the case « = 1 and put

p So,._
L(p,q): = %S_ZKI (p,q)

or? sin? ©

/ 7240 in T xIL.
21t Jo [r24-p24-(2—p)2—2rpcos O]

Then L(p, q) is a C* function in II x II except for the diagonal set and has
the following properties:

Proposition (A. Weinstein [Wi])
(i) For any fized q € II, A=L(p,q) =0 for p € I1\ {q}.
(ii) L(p,q) has the following development at pole p = q:
1
(r—=p)*+(z—¢)
where u, v are regular analytic at p = q, and u(q,q) = 1/(27).

(iii) (Boundary values) For any fized q € II, L(p,q) = %(p, q) = 0 for
p € OIl and lim, . L(p,q) = 0.

(iv) (Symmetry) E(f’q) = E(Z’p) in IT x II.

(v) For any f € C(I), A~{fy f(q)L(p,q) dpdC} = —f(p) forp € 1L

Let us show the electomagnetic meaning of £(p, q). We first note that
the integration by parts implies the following expression of L:

L(p,q) = u(p,q)log 7 5+ v(p, 9),

ro (2 cos ©
Lip.q) = — dO® in II x II.
(p,q) 4 Jo T2+ p2+ (2 — ()2 —2rpcos© "

(A1)

We fix ¢ € II and move y = [q,0] (0 < © < 27) in R3. We then have, for
any ¢ = [p,0] € R® and any f, g € C(II),

i/2n<0a1’0>yd@:£(7Q)<010> (AZ)
47'(' 0 |1$_y|| r y T .

1 2m (f(q),O,g(q)>y _ E(p’ q)
e e e ECL NS
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Further, the integration by parts implies the identities:
9L(p,q) _  0L(p,q) 9L(p, q) 9K(p, q)

—_— _— = -7

oz o¢c or Op

Given any piecewise smooth continuous function f in IT with compact sup-
port in II (like the function V defined in (1°) of §8), we set

in IT x II.

1
Lylp)= 4 / f(@)L(p,q)dpd¢(  for p eIl
T JI
By the above identities and the integration by parts under property (ii),
0Ls(p) _ 1 / 0f(q)
I

L(p,q)dpd¢  for p €I,

0z Am o¢ (A.4)
0Ls(p) _ r [ Of(9) '
S = an /H —8—p—lC(p, q) dpd( for p € II.

We next recall the magnetic field B, (z) induced by the usual electric current
Jyds, along the ring coil v. Precisely, let ¢ = (p,() be any fixed point in
II and draw the z-axially symmetric circular ring y(q) passing through the
point (p,0,¢) in R3. We consider the electric current J(q)dsy of magnitude
1/p along the ring v(q) such that, for y = [¢, 0] € ¥(q),

1
Jy(q)dsy = p (—sin©®,cos ©,0)dsy = (0,1,0), dO,
where dsy is the arc length of v(g) at y. The current J, 4 ds; induces the
vector potential A4 (z) and the magnetic field B,y (z) for z € R?\ 7(q).
From (A.2) and (8.2), we have

J
Aw(q)(x) — i/ M(_y_)dsy — M (0,1,0),, (A.5)
am Jy(g) Iz — 9| r

B (q)(2) = ot Ay () = <— (A.6)

It follows that
L(p,q)

r

9L (p, q) 0 aﬁ(p,q)>
8z 77 or [,

means the magnitude of the vector potential A, q) ().

Our consideration naturally leads us to property (i) for £(p, q) in the above
proposition as follows: We construct a sequence of volume current densities
{Jndvz }n such that J,dv, — +(q)@Sy in the sense of distribution and such
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that, if we denote by B,(x) the magnetic field induced by J,dv,, then
Bn(z) — B,(g)(x) uniformly on any compact set in R3\ v(q). (For example,
put Jp(x)dvy = (0, fn(R),0) dv; by (8.4), where R = /(r — p)? + (2 — ()2
for x = [r, 6, 2], and f,(R) (> 0) is a C* function on [0, +00) with support
[0,1/n) and with fol/n fn(R)RdR = 1/p.) Since rot B,(z) = 0 outside
Supp Jp, it follows from (A.6) and (8.2) that (0,0,0) = rot B, (z) =
%(O,A_E(p, q),0) in R?\ v(q). Hence, L(p, q) satisfies (i).

Let us give our proofs of the expressions for A; and A; (i = 1,2) by
use of those for B; and J; in Expression 1° and 2° of §8: By property (v)
for £, the functions W and U of (1°) and (2°) of §8, are written into the
following forms:

W(p) = Lv(p) = Ju V(9)L(p, q) dpd( for p €11, (A.7)

U(p) = 9= Jxc L(p, q) dpd( forpell.  (AS8)
Since dv, = pdpd(dO at y € R3, we have

oV oV
_9 0.9\ 4,d¢d® fory € D
oc’™
Bl(y)dvy:{ < ¢ p>

0 forye D'
We thus have from definition (7.5)

e (5005,
Az) = /H{E/o e d@}dpdc

10V oV

1 ow ow
= (- 0 b . 7).
< 0, >m v (A.4) and (A.7)

T

Hence, the expression for Aj(x) is proved. By applying Lemma 7.2 to J;(z),
we have from (7.3) and (8.2)

A;(z) = rot Ai(z) :rot{l < oW 0 3W>}

P\ B
— _A_—‘;[@@,LO) = Vip) (0,1,0) by (8.8).

Thus, the expression for A;(x) is proved.
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Since By (z) in Expression 2° is written into the following form:

1
Ba(y) dvy = 2m
0 for y € D,

(Jy(q) dsy) dpd(  for y € D

it follows from definition (7.5) that

_ 1 1 Jo(a) ()
hal@) = 5 /K {47r [y(q) e -y ) %

= 10105 (5 [ Lo.0dedc) by (A5)
- Uip) (0,1,0)z by (A.8).

Thus the formula for Ay(x) is proved. For the expression of Ay(z), we apply
Lemma 7.2 to J2(x) and obtain

U(p) } 1< oU 8U>
A =rot A = 0,1,0)p = - ( ———,0, — ).
2(¢) = rot Ag(e) =rot {2 (0,1,00} = = (-T2,0, %
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