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Asymptotic characterization of stationary interfacial
patterns for reaction diffusion systems
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Abstract. We discuss asymptotic characterization of stationary interfacial patterns for
reaction diffusion systems in higher dimensional spaces when the thickness of interface
(denoted by\in ) tends to zero. The fact due to [14] that any stationary interfacial pattern,
which has a smooth limiting configuration up to\in=0 , must become unstable for small
\in implies that stable solutions must become finer and finer as \xi j \downarrow 0 . This leads to
the necessity of rescaling in order to capture the limiting configuration of the stable
stationary interfacial patterns. An appropriate scaling turns out to be order\in^{1/3} . The
rescaled reduced equation, which determines the asymptotic profile of the interface, as
well as the spectral behavior of the associated linearized eigenvalue problems are studied
by using the matched asymptotic expansion method.
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1. Introduction

One of the pioneering works in pattern formation problem can be traced
back to Turing [17] who found that spatially inhomogeneous patterns can
be formed by diffusion-driven instability if the inhibitor diffuses faster than
the activator. A typical model system is of the form

\{

u_{t}=\epsilon^{2}\triangle u+f(u, v) ,
(x, t)\in\Omega\cross(0, \infty) ,

\delta v_{t}=D\triangle v+g(u, v) ,

\frac{\partial u}{\partial n}=0=\frac{\partial v}{\partial n} , (x, t)\in\partial\Omega\cross(0, \infty) .

(1.1)

where u is the activator, v is the inhibitor, \delta>0 , and \in is a small positive
parameter, \Omega is a bounded domain in R^{N}(N\geq 2) , and its boundary \partial\Omega

is a connected C^{\infty} hypersurface. The precise assumptions for (f, g) are
displayed at the end of this section. It is widely accepted that (1.1) capture
the essence of pattern formation driven by Turing’s instability observed
typically in chemical reactions (see [1]). Although (1.1) exhibits a variety of

1991 Mathematics Subject Classification : 35B25,35C20,35K57 .



632 H. Suzuki

patterns depending on diffusion and\backslash or reaction rates, we focus our study
on the stationary patterns in higher space dimensions. The basic issue is
that “Does (1.1) have stable stationary solutions for small \in? And, if it
does, what are the asymptotic configurations of them as\in\downarrow 0 ?” As we
shall see, this is closely related to knowing the location of free boundaries
called an interface separating two different states. Numerically a variety
of stationary patterns have been observed such as hexagons, stripes, and
snaky patterns for (1.1) (see for instance [1]). Hence one can naively expect
that (1.1) has a lot of stationary solutions for small \in and there seems to
be no essential difficulty in the construction of stationary patterns in a way
parallel to one dimensional cases, once we know the asymptotic forms as
\in\downarrow 0 . In this paper and the accompanied one [14], we shall show that this
view point is too optimistic and the situation in higher dimensional spaces
is completely different from the one dimensional cases,

For one dimensional cases, many important works have been done. Es-
pecially, singular perturbation methods are quite useful for the construction
of stationary solutions, e.g., Fife [2], Mimura, Tabata, and Hosono [8], Ito
[7]. Concerning the stability of such solutions, the SLEP method is a pow-
erful tool originally developed by Nishiura and Fujii [12] and Nishiura [10].
Fujii, Mimura, and Nishiura [4] and Nishiura [9] study the global bifurcation
structure of the stationary solution of (1.1), and Hale and Sakamoto [5] and
Sakamoto [15] give an bifurcation theoretical approach to construction and
stability analysis of the stationary solutions.

On the other hand, we know very little about the existence and stabil-
ity of stationary solutions of (1.1) in higher space dimensions. The main
difficulty lies in the fact that we have to control the objects which have
infinite degrees of freedom, such as curves and surfaces, in order to match
quantities at the interface.

Here we restate the first part of our basic question:

Does (1.1) have an\in -family of stable stationary layered solutions with
smooth interface \Gamma^{\in}up to\in=0 ?

Unfortunately the answer turns out to be negative.

Theorem A (Nishiura and Suzuki [13], [14]). Suppose that (1.1) has
an\in -family of stationary matched asymptotic solutions whose interface is
smooth up to\in=0 . Then, it must be unstable for small \in .
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Theorem A suggests that the configuration of a stable interface must
become fine and/or complicated as \in\downarrow 0 . In order to answer the second part
of our question, namely, “ What are the asymptotic configuration of stable
solutions?”. it seems necessary to apply an appropriate rescaling to blow up
the degenerate situation and consider again the whole issue for the resulting
new system, since there are no well-defined asymptotic limit of interfaces in
the original coordinate. In fact, under nice rescaling (see \S 2), we have the
rescaled problem for (1.1), that is,

\{

\tilde{u}_{t}=\in\triangle\sim 2\tilde{u}+f(\tilde{u},\tilde{v}) ,
(x, t)\in\Omega^{*}\cross(0, \infty) ,

\delta\tilde{\epsilon}\tilde{v}_{t}=D\triangle\tilde{v}+\tilde{\in}g(\tilde{u},\tilde{v}) ,

\frac{\partial\tilde{u}}{\partial n}=0=\frac{\partial\tilde{v}}{\partial n} , (x, t)\in\partial\Omega^{*}\cross(0, \infty) ,

(1.2)

where \Omega^{*} is a rescaled domain and \tilde{\in}\equiv\in^{2/3} . Our main result is twofold:
firstly we present a new reduced problem derived from (1.2); secondly we
show the singular limit linearized eigenvalue problem on the interface at a
stationary pattern of (1.2) when \in\downarrow 0 . These two results give the basic
mathematical ingredient to the second problem.

Theorem B (i) The rescaled reduced equation which determines the
limiting profiles of the interface \Gamma^{0} is given by

D\triangle v_{1}^{\pm}=-g(h_{\pm}(v^{*}), v^{*}) in \Omega^{*\pm}-

v_{1}^{\pm}=\beta^{*}(N-1)H_{0} , \frac{\partial v_{1}^{+}}{\partial\nu}=\frac{\partial v_{1}^{-}}{\partial\nu} on \Gamma^{0} .

\frac{\partial v_{1}^{-}}{\partial n}=0 on \partial\Omega^{*}

(ii) The principal part of critical eigenvalues \lambda^{\in} and eigenfunctions
(w^{(n)}(x, \in) , z^{(n)}(x, \in)) of the linearized eigenvalue problem of (1.2), associ-
ated with a stationary solution which has the limiting interface \Gamma^{0} , are given
by the following forms:

\lambda^{\in}\approx\epsilon^{2}\lambda_{2}^{(n)} .
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w^{(n)}(x, \epsilon)\approx\{

\omega(\frac{Y(x)}{d})\frac{\dot{\phi}_{0}(Y(x)/\epsilon)}{\dot{\phi}_{0}(0)}-O_{0}^{(n)}(S(x)) , x\in U_{d}(\Gamma^{0}) ,

0, x\in\Omega^{*}\backslash U_{d}(\Gamma^{0}) ,

z^{(n)}(x, \epsilon)\approx-\epsilon^{2(n)}\frac{1}{D}\frac{[g]}{\dot{\phi}_{0}(0)}K_{N}^{*}(\delta_{\Gamma^{0}}\otimes\ominus_{0}) .

Here, (\lambda_{2}^{(n)}, \Theta_{0}^{(n)}) are determined by the following eigenvalue problem on
\Gamma^{0} :

L^{*} \Theta_{0}^{(n)}+\frac{1}{D}c_{2}[g]J’(v^{*})\langle K_{N}^{*}(\delta_{\Gamma^{0}}\otimes-O_{0}^{(n)}) , \delta_{\Gamma^{0}}\rangle=\lambda_{20^{\sim}}^{(n)(n)}\ominus

with

\int_{\Gamma^{0}}\ominus_{0}dS=0(n) ,

where

L^{*} \equiv\triangle^{\Gamma^{0}}+\frac{1}{2}H_{1}(s)-c_{1}P_{3}(s)+\hat{\Lambda}(s) .

(For the notation and the proof of this theorem, see \S 3).

The outline of this paper is as follows. In \S 2, we make several key ob-
servations obtained so far, then expand an \in-family of matched asymptotic
stationary solution to rescaled system of (1.1), and finally derive the rescaled
reduced equation. We study the associated limiting eigenvalue problem on
the interface in \S 3.

Finally we state the assumptions for f and g (Figure 1.1), and notations.

(A.O) f and g are smooth functions of u and v defined on some open set
O in R^{2} .

(A.I) (a) The nullcline of f is sigmoidal and consists of three smooth
curves u=h_{-}(v) , h_{0}(v) and h_{+}(v) defined on the intervals I_{-} , I_{0} , and
I_{+} , respectively. Let min I_{-}=\underline{v} and max I_{+}=\overline{v} , then the inequality
h_{-}(v)<h_{0}(v)<h_{+}(v) holds for v\in I^{*}\equiv(\underline{v}, \overline{v}) and h_{+}(v)(h_{-}(v)) coincides
with h_{0}(v) at only one point v=\overline{v}(\underline{v}) , respectively.

(b) The nullcline of g intersects with that of f at one or three points
transversally as in Fig. 1.1.
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f<0 g=0

\overline{v}
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\underline{v}

Fig. 1.1. Functional forms of f=0 and g=0

(A.2) J(v) has an isolated zero at v=v^{*}\in I^{*} such that dJ/dv<0 at v=
v^{*} , where J(v)= \int_{h_{-}(v)}^{h(v)}+f(s, v)ds . Moreover we assume that v_{-}<v^{*}<v_{+} .

(A.3) f_{u}<0 on H_{+}\cup H_{-} , where H_{-}(H_{+}) denotes the part of the curve u=
h_{-}(v)(h_{+}(v)) defined by H_{-}(H_{+})=\{(u, v)|u=h_{-}(v)(h_{+}(v)) for \underline{v}\leq

v<v^{*}(v^{*}<v\leq\overline{v})\} , respectively.

(A.4) (a)

g|_{H_{-}}<0<g|_{H}+

(b)

det ( \frac{\partial(fg)}{\partial(u,v)},)|_{H\cup H_{-}}+>0 .

(A.5) g_{v}|_{H\cup H_{-}}+\leq 0 .

Remark 1.1. Let G_{\pm}(v)\equiv g(h_{\pm}(v), v) for v\in I_{\pm} . Then, the assumption
(A.4) (b) is equivalent to

\frac{d}{dv}G_{\pm}(v)|_{H\pm}<0 , respectively,
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since it follows from f(h_{\pm}(v), v)=0 and (A.3) that

\frac{d}{dv}G_{\pm}(v)|_{H}\pm=\frac{f_{u}g_{v}-f_{v}g_{u}}{f_{u}}|_{H}\pm

Remark 1.2. It holds that f_{u}=0 at (h_{+}(\overline{v}), \overline{v}) and (h_{-}(\underline{v}), \underline{v}) .

We use the following notation throughout the paper: Let \sigma =
(\sigma_{1}, \sigma_{2}, , \sigma_{N}) denote the usual multi-index of order |\sigma|=\sigma_{1}+\sigma_{2}+\cdot.+\sigma_{N}

with nonnegative integers \sigma_{i} , and write \partial_{i}=\partial/\partial x_{i}(1\leq i\leq N) .

(i) Let k be a nonnegative integer and \alpha\in(0,1) . By C^{k+\alpha}(\overline{\Omega}) we
mean the Banach space of all real-valued functions u\in C^{k}(\overline{\Omega}) for which the
derivatives \partial^{\sigma}u with |\sigma|=k are H\"older continuous on \overline{\Omega} with exponent \alpha .
The norm is

||u||_{C^{k+\alpha}}( \overline{\Omega})=\sum_{j=0}^{k}|u|_{j,\overline{\Omega}}+|u|_{k+\alpha,\overline{\Omega}} ,

where

|u|_{j,\overline{\Omega}}= \max sup |\partial^{\sigma}u(x)| ,
|\sigma|=j_{x\in\overline{\Omega}}

and

|u|_{k+\alpha,\overline{\Omega}}= \max|\sigma|=k sup \frac{|\partial^{\sigma}u(x)-\partial^{\sigma}u(y)|}{|x-y|^{\alpha}} (x\neq y)

x,y\in\overline{\Omega}

(ii) C_{0}^{k+\alpha} (\overline{\Omega}) is the subspace of C^{k+\alpha}
(\overline{\Omega}) whose elements are functions

vanishing on \partial\Omega .
(iii) C_{\in}^{k+\alpha}(\overline{\Omega}) is the Banach space of all real-valued functions in

C^{k+\alpha}(\overline{\Omega}) , but with the special norm depending on \in :

||u||_{C_{\epsilon}^{k+\alpha}(\overline{\Omega})}= \sum_{j=0}^{k}\epsilon^{j}|u|_{j,\overline{\Omega}}+\epsilon^{k+\alpha}|u|_{k+\alpha,\overline{\Omega}} .

(iv) C_{\in,0}^{k+\alpha}(\overline{\Omega}) is the subspace of C_{\epsilon}^{k+\alpha}(\overline{\Omega}) whose elements are functions
vanishing on \partial\Omega .
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2. Matched asymptotic expansion of the rescaled stationary in-
terfacial pattern and the rescaled reduced problem

Theorem A in \S 1 suggests us that any stationary interfacial pattern,
which is smooth up to \in=0 , becomes unstable for sufficiently small\in>
0 . On the other hand, for any fixed small \in , we know the existence of
observable steady states by numerical simulation. How do we make these
two observations consistent with each other? The following two results give
an insight into the issue.

Theorem 2.1 (Taniguchi and Nishiura [16]). Let \Omega be a rectangular d0-
main. Then the planar front solution loses its stability when\in\downarrow 0 , and the
fastest growing wavelength is exactly of order \in^{1/3} .

Theorem 2.2 (Nishiura [11]). The stripe pattern with width of O(\in^{1/3})

is stable for small \in in a rectangular domain.

These two results strongly suggest that the stable stationary patterns
do exist for small \in , however they become finer and finer in the limit of
\in with the characteristic domain size of order \in^{1/3} . Hence a unit pattern
itself shrinks to zero and does not have a well-defined limit. To capture
the limiting configuration of the interface, we have to magnify the shrinking
pattern by introducing the following rescaled variable

X \equiv\frac{x-x^{*}}{\epsilon^{1/3}} (2.1)

for an appropriate x^{*}\in R^{N} The aim of this section is to derive a rescaled
reduced problem, which determines the limiting configuration of the inter-
face.

We derive a new rescaled system by an appropriate magnification, and
obtain the rescaled reduced problem by using matched asymptotic expan-
sion. Our working hypotheses throughout this section are the following:

Hypotheses
1. An \in-family of stationary patterns of (1.1) has a periodic structure,

namely, it has a unit periodic cell \Omega^{\epsilon} . Moreover the domain size of \Omega^{\in} is of
order 5^{1}/3 and

\lim_{\in\downarrow 0}\frac{\partial\Omega^{\in}-x^{*}}{\in^{1/3}}=\partial\Omega^{*}
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exists for an appropriate x^{*}\in\Omega^{\in} , where

\partial\Omega^{\in}-x^{*}=\{x-x^{*}|x\in\partial\Omega^{\in}\} .

The rescaled limiting domain \Omega^{*} as well as \Omega^{\in} is at least piecewise smooth
(hence the polygonal shape is allowable).

2. The Neumann boundary condition is satisfied on \partial\Omega^{\in} and \partial\Omega^{*}

Using (2.1), the resulting rescaled system becomes

\{

u_{t}=\tilde{\epsilon}^{2}\triangle xu+f(u, v) ,
\delta v_{t}=D\tilde{\epsilon}^{-1}\triangle xv+g(u, v) ,

(X, t)\in\Omega^{*}\cross(0, \infty) , (2.2)_{a}

\frac{\partial u}{\partial n}=0=\frac{\partial v}{\partial n} (X, t)\in\partial\Omega^{*}\cross(0, \infty) , (2.2)_{b}

where \triangle x is the Laplacian with respect to X= (X_{1}, \ldots, X_{N}) , n outward
unit normal vector on \partial\Omega^{*} (we use the same notation as before), and \tilde{\in}\equiv

\in^{2/3} . Note that in this scale, the thickness of interior transition layer is o(\in)\sim .
Roughly speaking, the difference between (1.1) and (2.2) is the coefficient \in

of g(u, v) in (2.2).
Then the stationary problem becomes

\{

0=\epsilon^{2}\triangle u+f(u, v) ,

0=D\triangle v+\in g(u, v) ,
in \Omega^{*} (2.3)

with Neumann boundary condition. Here we omit tilde ^{\sim} of \in and subscript
X of \triangle and use the notation x in place of X .

In the following of this subsection, we display how the formal asymptotic
expansion can be carried out. We assume that there exists an \in-family of
smooth solutions (U^{\epsilon}(x), V^{\in}(x)) of (2.3) with interior transition layers such
that the interface

\Gamma^{\in}\equiv\{x\in\Omega^{*}|U^{\in}(x)=\alpha^{*}\equiv\frac{1}{2}(h_{+}(v^{*})+h_{-}(v^{*}))\}

is a compact smooth manifold of dimension N-1 embedded in R^{N} and
have a definite limit \Gamma^{0} as \in\downarrow 0 . \Gamma^{0} , also, is a compact smooth manifold
of dimension N-1 embedded in R^{N} For simplicity we assume that the
region surrounded by \Gamma^{0} as well as \Gamma^{\in} is simply connected. Let (X_{\phi}, \phi) be
a local chart on \Gamma^{0} . with \phi(X_{\phi}) an open subset of R^{N-1} . For x_{0}\in X_{\phi} ,
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\phi(x_{0})=s=(s^{1}, , s^{N-1}) and we denote the inverse of \phi by

x_{0}=(x_{0}^{1}(s), \ldots, x_{0}^{N}(s)) .

In some tubular neighborhood U_{d}(\Gamma^{0})=\{x\in R^{N}||y(x)|\leq d\} of \Gamma^{0} , local
coordinate system (s, y)=(s^{1}, \ldots, s^{N-1}, y) is defined and for x\in U_{d}(\Gamma^{0}) ,

x=X(s, y)\equiv x_{0}(_{S^{1}}, \ldots, s^{N-1})+y\mathfrak{l}/(s^{1}, , _{s^{N-1}}) (2.4)

holds, where \mathfrak{l}/(s^{1} , . . . ’
s^{N-1}) is unit outward normal vector at s =

(s^{1}, . , s^{N-1}) to \Gamma^{0} . Then, X is a diffeomorphism from [-d, d]\cross\Gamma^{0} to
U_{d}(\Gamma^{0}) if d is strictly smaller than the infimum of the radii of curvature of
\Gamma^{0} . Its inverse is denoted by (S(x), Y(x)) . Then \Gamma^{\in} can be represented as

\Gamma^{\in}=\{x_{0}(s)+\gamma(s, \in)\nu(s)|s\in\Gamma^{0}\}

where

\gamma(s, \epsilon)=\sum_{k=1}^{m}\epsilon^{k}\gamma_{k}(s)+\epsilon^{m}\hat{\gamma}_{m+1}(s, \epsilon) .

Here we introduce local shift variable \tau by the following relation:

y= \tau+\omega(\frac{\tau}{d})\gamma(s, \in) , (2.5)

where \omega(\tau)\in C^{\infty}(R) is a cut off function such that

\omega(\tau)=1 for | \tau|\leq\frac{1}{2} , \omega(\tau)=0 for |\tau|\geq 1 ,

0\leq\omega(\tau)\leq 1 , |\omega’|\leq 3 .

Then, by the implicit function theorem, \tau=\tau(s, y, \in) satisfying (2.5) is
defined for sufficiently small \in . In place of x , we use a new independent
variable \hat{x} , defined by

\hat{x}=\hat{X}(x, \epsilon)=\{

x , x\in\Omega^{*}\backslash U_{d}(\Gamma^{0}) ,

X(S(x), \tau(S(x), Y(x), \in)) , x\in U_{d}(\Gamma^{0}) .

Let \Omega^{\in+} (resp. \Omega^{*+} ) be the region surrounded by \Gamma^{\in} (resp. \Gamma^{0} ) and \Omega^{\in-}\equiv

\Omega^{*}\backslash \overline{\Omega}^{\epsilon i+} (resp. \Omega^{*-}\equiv\Omega^{*}\backslash \overline{\Omega}^{*+} ). Then, note that \hat{x}=\hat{X}(x, \in) maps \Gamma^{\in} to
\Gamma^{0} , and \Omega^{\in\pm} to \Omega^{*\pm} , respectively. Throughout this paper, we shall use the
following notation

u(x)=u(s, y) , \^u (\hat{x})=\hat{u}(s, \tau) .
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After the above transformation, stationary problem (2.3) are equivalent
to the following system:

\{

0=\epsilon^{2}M^{\in}\hat{u}+f( \^u, \hat{v}) ,
0=DM^{\in}\hat{v}+\in g(\hat{u},\hat{v}) .

in \Omega^{*} , (2.6)

\frac{\partial\hat{u}}{\partial n}=0=\frac{\partial\hat{v}}{\partial n} on \partial\Omega^{*} , (2.7)

where \text{\^{u}}=\text{\^{u}}(\hat{x}),\hat{v}=\hat{v}(\hat{x}) and M^{\in} is the representation of Laplacian \triangle_{x} in \hat{x} .
In \Omega^{*}\backslash U_{d}(\Gamma^{0}) , M^{\xi j} is equal to \triangle_{\hat{x}} . On the other hand, in the neighborhood
U_{d}(\Gamma^{0}) , M^{\epsilon i} is defined as in the following way: For the local coordinate
system (s, y) defined by (2.4) in R^{N} , let g^{ij} be the contravariant metric
tensor and g=\det(g^{ij}) . Here we regard y as s^{N} Then for u(x)=u(s, y) ,
Laplacian \triangle_{x} is represented as

(\triangle_{x}u)(x)=(\triangle u(s,y))(s, y)

\equiv\frac{\partial^{2}}{\partial y^{2}}u(s, y)+(N-1)H(s, y)\frac{\partial}{\partial y}u(s, y)

+ \frac{1}{\sqrt{g}}\sum_{i=1}^{N-1}\frac{\partial}{\partial s^{i}}(\sqrt{g}\sum_{j=1}^{N-1}g^{ij}\frac{\partial}{\partial s^{j}}u(s, y)) , (2.8)

where H=H(s, y) is the mean curvature of the hypersurface \Gamma(y)=

\{x_{0}(s)+y_{l}/(s)|s\in\Gamma^{0}\} at (s, y) . Using this representation, for \^u (\hat{x})=

\^u (s, \tau) , M^{\in} is defined by

(M^{\in}\hat{u})(\hat{x})\equiv\triangle\hat{u}(s,y)(s, \tau(s, y, \in)) .

Noting the above definition, M^{\in} is expanded as M^{\xi j}= \sum_{k\geq 0}\in^{k}M_{k} , where

M_{0}\equiv\triangle_{\hat{x}} , \hat{x}\in\Omega^{*} ,

and for k\geq 1 ,

M_{k}=

/0, \hat{x}\in\Omega^{*}\backslash U_{d}(\Gamma^{0}) ,

at most second order differential operator
\hat{x}\in U_{d}(\Gamma^{0}) .

\backslash

in s^{i} (i=1, , N-1) and \tau ,

From this point on, we consider (2.6), so we omit the symbol hat
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In this situation, we shall find formal matched asymptotic solutions
(U^{\in}(x), V^{\in}(x)) to (2.6) that have the following expansions:

U^{\in}(x)\approx\{

U_{+}^{\in}(x)\equiv U_{m}^{+}(x, \in)+\Phi_{m}^{+}(x, \epsilon) , x\in\Omega^{*+}-

U_{-}^{\in}(x)\equiv U_{m}^{-}(x, \epsilon)+\Phi_{m}^{-}(x, \in^{-}) , x\in\Omega^{*-} ,
(2.9)

V^{\in}(x)\approx\{

V_{+}^{\in}(x)\equiv V_{m}^{+}(x, \epsilon)+\Psi_{m}^{+}(x, \in) , x\in\Omega^{*+} ,

V_{-}^{\epsilon:}(x)\equiv V_{m}^{-}(x, \epsilon)+\Psi_{m}^{-}(x, \epsilon) , x\in\Omega^{*-}

where

U_{m}^{\pm}(x, \epsilon)=\sum u_{k}^{\pm}(x)\epsilon^{k}m , V_{m}^{\pm}(x, \epsilon)=\sum v_{k}^{\pm}(x)\epsilon^{k}m .

k=0 k=0

\Phi_{m}^{\pm}(x, \epsilon)

=\{

\omega(\frac{Y(x)}{d})\sum_{k=0}^{m}\phi_{k}^{\pm}(S(x), \frac{Y(x)}{\in})\in^{k} . x\in U_{d}(\Gamma^{0})\cap\Omega^{*\pm} ,

0, x\in\Omega^{*\pm}\backslash U_{d}(\Gamma^{0}) ,

\Psi_{m}^{\pm}(x, \epsilon)

=\{

\omega(\frac{Y(x)}{d})\sum_{k=0}^{m}\psi_{k}^{\pm}(S(x), \frac{Y(x)}{\in})\epsilon^{k} , x\in U_{d}(\Gamma^{0})\cap\Omega^{*\pm} ,

0, x\in\Omega^{*\pm}\backslash U_{d}(\Gamma^{0}) ,

\xi is the stretched variable \xi\equiv\tau/\in , \phi_{k}^{\pm} and \psi_{k}^{\pm} functions of s , \Omega^{*+} the region
surrounded by \Gamma^{0} , and \Omega^{*-}\equiv\Omega^{*}\backslash \overline{\Omega}^{*+} The coefficients u_{k}^{\pm} , v_{k}^{\pm} , \phi_{k}^{\pm} , and
\psi_{k}^{\pm} satisfy some equations and relations. We can obtain these equations
by making outer and inner expansions and equating like powers of \in^{k} . Let
\beta^{\epsilon}(s)=v^{*}+\sum_{k=1}^{m}\beta_{k}(s)\in^{k}+\in^{m}\beta_{m+1}(s, \in) be the value of V^{\epsilon:}(x) on \Gamma^{0} .

First, we divide (2.6) into two problems as follows:

\{

\epsilon^{2}M^{\in}u^{+}+f(u^{+}, v^{+})=0 ,
in \Omega^{*+} ,

DM^{\in}v^{+}+\epsilon g(u^{+}, v^{+})=0 ,

u^{+}=\alpha^{*} . v^{+}=\beta^{\in} on \Gamma^{0} ,

(2.10)_{+}
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\{

\in^{2}M^{\epsilon}u^{-}+f(u^{-}, v^{-})=0 ,
in \Omega^{*-} ,

DM^{\epsilon}v^{-}+\epsilon g(u^{-}, v^{-})=0 ,

u^{-}=\alpha^{*} , v^{-}=\beta^{\epsilon} on \Gamma^{0} ,

\frac{\partial u^{-}}{\partial n}=0=\frac{\partial v^{-}}{\partial n} on \partial\Omega^{*}

(2.10)_{-}

Then interface is regarded as the boundary layer at \Gamma^{0} .

Outer expansion
Let

u^{\pm}= \sum_{k=0}^{m}u_{k}^{\pm}(x)\in^{k} , v^{\pm}= \sum_{k=0}^{m}v_{k}^{\pm}(x)\in^{k} (2.11)

and substitute (2.11) into (2.10)_{\pm} . Equating like powers of \in^{k} , we have the
following problem for (u_{k}^{\pm}(x), v_{k}^{\pm}(x)) :

k=0

\{

f(u_{0}^{\pm}, v_{0}^{\pm})=0 ,
in \Omega^{*\pm} ,

M_{0}v_{0}^{\pm}=0 ,

\frac{\partial v_{0}^{-}}{\partial n}=0 on \partial\Omega^{*}

(2.12)

k=1

\{

f_{u}^{0\pm}u_{1}^{\pm}+f_{v}^{0\pm}v_{1}^{\pm}=0 ,
in \Omega^{*\pm} ,

DM_{0}v_{1}^{\pm}=-g(h_{\pm}(v_{0}^{\pm}), v_{0}^{\pm}) ,

\frac{\partial v_{1}^{-}}{\partial n}=0 on \partial\Omega^{*} ,

k\geq 2

\{

f_{u}^{0\pm}u_{k}^{\pm}+f_{v}^{0\pm}v_{k}^{\pm}= \sum_{i+j=k-2}M_{i}u_{j}^{\pm}+P_{k-1}^{\pm}
,

in \Omega^{*\pm} ,

DM_{0}v_{k}^{\pm}=-D \sum_{i+j=k,i\geq 1}M_{i}v_{j}^{\pm}+Q_{k-1}^{\pm}
,

\frac{\partial v_{k}^{-}}{\partial n}=0 on \partial\Omega^{*} ,
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where P_{k-1}^{\pm} and Q_{k-1}^{\pm} are functions determined only by u_{0}^{\pm} , v_{0}^{\pm} ,
u_{k-1}^{\pm} , v_{k-1}^{\pm} . This expansion is insufficient because the layer part is not rep-
resented. For example, u_{0}^{+} and u_{0}^{-} are discontinuous on \Gamma^{0} . So we need a
new variable \xi=\tau/\in that stretches a neighborhood of the interface. Also
we note that the boundary conditions for v_{k}^{\pm} are determined by matching
conditions.

Inner expansion
We introduce the stretched variable \xi=\tau/\in and let

u^{\pm}=U_{m}^{\pm}(x, \in)+\sum_{k=0}^{m}\phi_{k}^{\pm}(S(x), \frac{Y(x)}{\in})\epsilon^{k} ,

(2.13)

v^{\pm}=V_{m}^{\pm}(x, \in)+\in^{2}\sum_{k=0}^{m}\psi_{k}^{\pm}(S(x),)\in^{k}\underline{Y(x)}\in ,

where \phi_{k}^{\pm}=\phi_{k}^{\supset}(s, \xi) and \psi_{k}^{\pm}=\psi_{k}^{\pm}(s, \xi) . Substituting (2.13) into (2.10)_{\pm}

and equating like powers of \in^{k} . we obtain the following equations:
k=0

\{

\ddot{\phi}_{0}^{\pm}+f(h_{\pm}(v^{*})+\phi_{0}^{\pm}, v^{*})=0 ,

D\ddot{\psi}_{0}^{\pm}=0 ,
\xi\in I^{\mp} , s\in\Gamma^{0} ,

\phi_{0}^{\pm}(s, \mp\infty)=0 , \psi_{0}^{\pm}(s, \mp\infty)=0=\dot{\psi}_{0}^{\pm}(s, \mp\infty) ,

k=1

\{

\dot{\phi}_{1}^{\pm}+\tilde{f}_{u}^{0\pm}\phi_{1}^{\pm}=-(N-1)H_{0}(s)\dot{\phi}_{0}^{\pm}-\tilde{f}_{u}^{0\pm}u_{1}^{\pm}(s, 0)-\tilde{f}_{v}^{0\pm}v_{1}^{\pm}(s, 0) ,
\xi\in I^{\mp} , s\in\Gamma^{0} ,

D\ddot{\psi}_{1}^{\pm}=g(h_{\pm}(v^{*}), v^{*})-g(h_{\pm}(v^{*})+\phi_{0}^{\pm}, v^{*}) ,

\phi_{1}^{\pm}(s, \mp\infty)=0 , \psi_{1}^{\pm}(s, \mp\infty)=0=\dot{\psi}_{1}^{\pm}(s, \mp\infty) ,

k\geq 2

\{

\ddot{\phi}_{k}^{\pm}+\tilde{f}_{u}^{0\pm}\phi_{k}^{\pm}=-\sum_{i+j=k,i\geq 1}\tilde{M}_{i}\phi_{j}^{\pm}+\tilde{P}_{k-1}^{\pm}
,

D \ddot{\psi}_{k}^{\pm}=-D\sum_{i+j=k,i\geq 1}\tilde{M}_{i}\psi_{j}^{\pm}+\tilde{Q}_{k-1}^{\pm}
,

\xi\in I^{\mp} , s\in\Gamma^{0} ,
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\phi_{k}^{\pm}(s, \mp\infty)=0 , \psi_{k}^{\pm}(s, \mp\infty)=0=\dot{\psi}_{k}^{\pm}(s, \mp\infty) ,

where \tilde{P}_{k-1}^{\pm} depends on u_{0}^{\pm} , v_{0}^{\pm} , \ldots , u_{k}^{\pm} , v_{k}^{\pm} , \phi_{0}^{\pm} , \psi_{0}^{\pm} , , \phi_{k-1}^{\pm} , \psi_{k-2}^{\pm} and Q\sim k-1\pm

does moreover on \psi_{k-1}^{\pm} , I^{-}\equiv(-\infty, 0) and I^{+}\equiv(0, \infty) . We define \psi_{-1}\equiv 0 .
\tilde{M}^{\epsilon} is the representation of M^{\in} in variables s and \xi , and expanded as

\tilde{M}^{\in}\equiv\frac{1}{\in^{2}}\sum_{k\geq 0}\epsilon^{k}\tilde{M}_{k} .

Here \tilde{M}_{k}(k\geq 0) are at most second order differential operators in s and \xi .
The precise forms of \tilde{M}_{k} are displayed in the following lemma.

Lemma 2.3 \tilde{M}_{0},\tilde{M}_{1} , and \tilde{M}_{2} have the following form:

\tilde{M}_{0}\equiv\frac{\partial^{2}}{\partial\xi^{2}} , \tilde{M}_{1}\equiv(N-1)H_{0}(s)\frac{\partial}{\partial\xi} ,

\tilde{M}_{2}\equiv\triangle^{\Gamma^{0}}-(P_{1}(s)+P_{2}(s))\frac{\partial}{\partial\xi}+P_{3}(s)\frac{\partial^{2}}{\partial\xi^{2}} (2.14)

-D_{s} \frac{\partial}{\partial\xi}-H_{1}(s)(\xi+\gamma_{1}(s))\frac{\partial}{\partial\xi} ,

where

P_{1}(s)= \frac{1}{2G}\sum_{i=1}^{N-1}G_{s^{i}}\sum_{j=1}^{N-1}G^{ij}\partial_{s^{j}}\gamma_{1} ,

P_{2}(s)= \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}[G_{s^{i}}^{ij}\partial_{s^{j}}\gamma_{1}+G^{ij}\partial_{s^{i}s^{j}}\gamma_{1}] ,

P_{3}(s)= \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}G^{ij}\partial_{s^{i}}\gamma_{1}\partial_{s^{j}}\gamma_{1}>0 ,

D_{s}= \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}G^{ij}(\partial_{s^{i}}\gamma_{1}\frac{\partial}{\partial s^{j}}+\partial_{s^{j}}\gamma_{1}\frac{\partial}{\partial s^{i}}) .

H_{1}(s) \equiv\sum_{i=1}^{N-1}\kappa_{i}(s)^{2}

H_{0}(s) (resp. \kappa_{i}(s) ) stands for the mean (resp. principal) curvature of \Gamma^{0} at
s\in\Gamma^{0} . G^{ij} is the contravariant metric tensor for the manifold \Gamma^{0} of di-
mension N-1 , G=\det(G^{ij}) , and \triangle^{\Gamma^{0}} Laplace-Beltrami ’s operator defined
on \Gamma^{0} . The coefficients of \frac{\partial}{\partial s^{j}} in D_{s} are independent of \xi .
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Proof. See Appendix. \square

The boundary and C^{1} -matching conditions
Now we describe the boundary conditions for v_{k}^{\pm} and \phi_{k}^{\pm} on \Gamma^{0} . Then

u_{k}^{\pm} . v_{k}^{\pm} . \phi_{k}^{\pm} . and \psi_{k}^{\pm} are determined recursively. These conditions are given
by

\alpha^{*}=\sum u_{k}^{\pm}(s, 0)\epsilon^{k}+\sum\phi_{k}^{\pm}(s, 0)\epsilon^{k}mm .
k=0 k=0

v^{*}+ \sum\beta_{k}(s)\epsilon^{k}m=\sum v_{k}^{\pm}(s, 0)\in^{k}+\in^{2}\sum\psi_{k}^{\pm}(s, 0)\in^{k}mm-2 .
k=0 k=1 k=0

Equating like powers of\in^{k} . we have the following boundary conditions.
k=0

\phi_{0}^{\pm}(s, 0)=\alpha^{*}-u_{0}^{\pm}(s, 0) , v_{0}^{\pm}=v^{*} on \Gamma^{0}- (2.15)

k\geq 1

\phi_{k}^{\pm}(s, 0)=-u_{k}^{\pm}(s, 0) , v_{k}^{\pm}=\beta_{k}(s)-\psi_{k-2}^{\pm}(s, 0) on \Gamma^{0} .

In this way, we obtain the formal asymptotic solution of (2.10)_{\pm} . In order
that (U^{\epsilon}. V^{\in}) become the formal stationary solution of (2.6), (U_{\pm}^{\in}, V_{\pm}^{\in}) must
satisfy the C^{1} -matching conditions, that is,

\in\frac{\partial U_{+}^{\in}}{\partial\nu}-\in\frac{\partial U_{-}^{\in}}{\partial\nu}=0 , \frac{\partial V_{+}^{\epsilon}}{\partial\nu}-\frac{\partial V_{-}^{\in}}{\partial\nu}=0 on \Gamma^{0} .

After some computation, we have
k=0

\frac{\partial v_{0}^{+}}{\partial\nu}(s, 0)=\frac{\partial v_{0}^{-}}{\partial\nu}(s, 0) , \dot{\phi}_{0}^{+}(s, 0)=\dot{\phi}_{0}^{-}(s, 0) on \Gamma^{0}

. (2.16)

k\geq 1

\frac{\partial v_{k}^{+}}{\partial\nu}(s, 0)+\dot{\psi}_{k-1}^{+}(s, 0)=\frac{\partial v_{k}^{-}}{\partial\nu}(s, 0)+\dot{\psi}_{k-1}^{-}(s, 0) ,

on \Gamma^{0} (2.17)_{k}

\dot{\phi}_{k}^{+}(s, 0)+\frac{\partial u_{k-1}^{+}}{\partial\nu}(s, 0)=\dot{\phi}_{k}^{-}(s, 0)+\frac{\partial u_{k-1}^{-}}{\partial\nu}(s, 0) .
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Using (2.12), (2.15) and the first relation of (2.16), we can see v_{0}^{+}\equiv v^{*}\equiv v_{0}^{-}

Therefore no information can be extracted from the equation of v_{0}^{\pm} about
the configuration of \Gamma^{0} . It turns out that the equation for v_{1}^{\pm} determines
\Gamma^{0} . Here we have a condition for \beta_{1}(s) .

Lemma 2.4 \beta_{1}(s) must satisfy the following relation:

\beta_{1}(s)=\beta^{*}(N-1)H_{0}(s) , (2.18)

where

\beta^{*}\equiv\int_{-\infty}^{\infty}\dot{\phi}_{0}^{2}d\xi/J’(v^{*})<0 .

Proof We consider the C^{1} -matching condition (2.17)_{1} . By using the
representation of \phi_{1}^{\pm} , we have

\dot{\phi}_{1}^{\pm}(s, 0)=-\frac{1}{\dot{\phi}_{0}(0)}(N-1)H_{0}(s)\int_{\mp\infty}^{0}\dot{\phi}_{0}^{2}d\xi

- \frac{1}{\dot{\phi}_{0}(0)}\beta_{1}(s)\int_{h(v^{*})}^{0}\pm f_{v}(u, v^{*})du .

Then (2.17)_{1} becomes

0=\dot{\phi}_{1}^{+}(s, 0)-\dot{\phi}_{1}^{-}(s, 0)

=- \frac{1}{\dot{\phi}_{0}(0)}(N-1)H_{0}(s)\int_{-\infty}^{\infty}\dot{\phi}_{0}^{2}d\xi

- \frac{1}{\dot{\phi}_{0}(0)}\beta_{1}(s)\int_{h_{+}(v^{*})}^{h_{-}(v^{*})}f_{v}(u, v^{*})du ,

which implies (2.18). \square

Noting Lemma 2.4, the reduced problem can be written as

\{

D\triangle v_{1}^{\pm}=-g(h_{\pm}(v^{*}), v^{*}) , in \Omega^{*\pm} ,

v_{1}^{\pm}(s, O)=\beta^{*}(N-1)H_{0}(s) , \frac{\partial v_{1}^{+}}{\partial\nu}=\frac{\partial v_{1}^{-}}{\partial\nu} , on \Gamma^{0} ,

\frac{\partial v_{1}^{-}}{\partial n}=0 on \partial\Omega^{*}

(2.19)
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Here we used the fact that v_{0}^{+}\equiv v^{*}\equiv v_{0}^{-} The unknowns in (2.19) are V^{\pm}

and \Gamma^{0} , and (2.19) is like a free boundary value problem. It is a fundamental
problem to solve (2.19) for constructing a solution of (2.6) by using matched
asymptotic expansion method.

Let us rewrite (2. 19) as

\{

D\triangle v_{1}^{+}=-g(h_{+}(v^{*}), v^{*}) in \Omega^{*+}-

v_{1}^{+}=\beta^{*}(N-1)H_{0} on \Gamma^{0} .
(2.20)

\{

D\triangle v_{1}^{-}=-g(h_{-}(v^{*}), v^{*}) in \Omega^{*-}

v_{1}^{-}=\beta^{*}(N-1)H_{0} on \Gamma^{0} ,

\frac{\partial v_{1}^{-}}{\partial n}=0 on \partial\Omega^{*} ,

(2.21)

and

\frac{\partial v_{1}^{+}}{\partial\nu}=\frac{\partial v_{1}^{-}}{\partial\nu} on \Gamma^{0}

. (2.22)

For the fixed \Gamma^{0} (then H_{0} is determined), (2.20) and (2.21) have unique
solution, respectively. In order to obtain the solution of (2.19), we must
find a \Gamma^{0} satisfying C^{1} -matching condition (2.22). Unfortunately, it is not
easy to find such \Gamma^{0} since the value of V^{\pm} on \Gamma^{0} depends on the mean
curvature H_{0} of \Gamma^{0} itself.

However, when \Omega^{*} is ball, we can easily obtain the spherical symmetric
solution of (2.19). Let \Omega^{*}=\{x\in R^{N}||x|\leq R\} and r=|x| . Then, (2.20),
(2.21), and (2.22) are rewritten as

\{

V_{rr}^{+}+ \frac{N-1}{r}V_{r}^{+}=A^{+} . r\in(0, r_{0}) ,

V_{r}^{+}(0)=0 , V^{+}(r_{0})= \frac{\beta^{*}(N-1)}{r_{0}} ,
(2.23)

\{

V_{rr}^{-}+ \frac{N-1}{r}V_{r}^{-}=A^{-} ,

V^{-}(r_{0})= \frac{\beta^{*}(N-1)}{r_{0}} ,

r\in(r_{0}, R) ,
(2.24)

V_{r}^{-}(R)=0 ,
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and

V_{r}^{+}(r_{0})=V_{r}^{-}(r_{0}) , (2.25)

respectively, where V^{\pm}=V^{\pm}(r) , A^{\pm}=- \frac{1}{D}g(h_{\pm}(v^{*}), v^{*}) . Here V^{+} , V^{-} ,
and r_{0} are unknown functions and parameter. Noting that the first equa-
tions of (2.23) and (2.24) are equivalent to

(r^{N-1}V_{r}^{\pm})_{r}=- \frac{1}{D}g(h_{\pm}(v^{*}), v^{*})r^{N-1} .

we see that the solutions of (2.23) and (2.24) have the following expressions:

V^{+}(r)= \frac{\beta^{*}(N-1)}{r_{0}}-\frac{A^{+}}{2N}(r_{0}^{2}-r^{2}) ,

V^{-}(r)= \frac{\beta^{*}(N-1)}{r_{0}}-\frac{A^{-}}{N}\int_{r_{0}}^{r}(R^{N}t^{1-N}-t)dt .

Then r_{0} is uniquely determined by (2.25) and given by

r_{0}=R( \frac{A^{-}}{A^{-}-A^{+}})1/N

For the case that \Omega^{*} is generic domain, the existence of the solution of
(2.20), (2.21), and (2.22) are not trivial.

We close this section by presenting the following proposition.

Proposition 2.5 The solutions of (2.6) with interior transition layers are
formally expansible and have the asymptotic forms (2.9). Then, the rescaled
reduced problem is given by (2.19).

3. Linearized eigenvalue problem for the rescaled system

We proceed to the stability problem of the rescaled stationary patterns.
Employing the appropriate scaling obtained in \S 2, the rescaled stationary
pattern can be stable. In this section, we study the linearized eigenvalue
problem around a stationary solution (U^{\in}(x), V^{\in}(x)) of (2.6) given by

\{

\epsilon^{2}M^{\in}w+f_{u}^{\epsilon}w+f_{v}^{\in}z=\lambda^{\in}w ,

DM^{\in}z+\epsilon g_{u}^{\in}w+\epsilon g_{v}^{\in}z=\delta\epsilon\lambda^{\in}z ,
in \Omega^{*} (3.1)
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\frac{\partial w}{\partial n}=0=\frac{\partial z}{\partial n} on \partial\Omega^{*} (3.2)

Since we employ the method of matched asymptotic expansion, we first
divide (3.1) and (3.2) into the following two problems:

\{

\in^{2}M^{\in}w^{-}+f_{u}^{\epsilon}w^{-}+f_{v}^{\epsilon:}z^{-}=\lambda^{\epsilon:}w^{-} ,
in \Omega^{*-} ,

DM^{\Xi}z^{-}+\in g_{u}^{\in}w^{-}+\epsilon g_{v}^{\epsilon}z^{-}=\delta\epsilon\lambda^{\in}z^{-}

\frac{\partial w^{-}}{\partial n}=0=\frac{\partial z^{-}}{\partial n} on \partial\Omega^{*}

w^{-}=\Theta^{\in} , z^{-}=q^{\in} on \Gamma^{0} ,

(3.3)_{-}

\{

\epsilon^{2}M^{\in}w^{+}+f_{u}^{\in}w^{+}+f_{v}^{\in}z^{+}=\lambda^{\in}w^{+} ,
in \Omega^{*+} .

DM^{\in}z^{+}+\in g_{u}^{\in}w^{+}+\epsilon:g_{v}^{\in}z^{+}=\delta\in\lambda^{\in}z^{+} .

w^{+}=\ominus^{\in} . z^{+}=q^{\in} on \Gamma^{0} .

(3.3)_{+}

where

O-^{\epsilon}\equiv\sum_{k=0}^{m}\in^{k}\ominus_{k}(s) , q^{\in} \equiv\sum_{k=0}^{m}\epsilon^{k}q_{k}(s) ,

\lambda^{\in}\equiv\sum_{k=1}^{m}\epsilon^{k}\lambda_{k} .

O-\in . q^{\epsilon:} , and \lambda^{\in} are unknown boundary data and they are determined later
by the C^{1} -matching condition.

We construct the matched asymptotic solutions (w_{\pm}^{m}(x, \in) , z_{\pm}^{m}(x, \in i)) of
(3.3)_{\pm} in a parallel way as in Ikeda [6]. More precisely we have a solution
(w_{\pm}^{m}(x, \in) , z_{\pm}^{m}(x, \in)) in the form

\{

w_{\pm}^{m}(x, \in)=W_{m}^{\pm}(x, \in)+--\pm-m(x, \in)+\in^{m}r^{\pm}(x, \in)

+\epsilon^{m}h’(v_{0}^{\pm}(x))s^{\pm}(x, \epsilon) ,

z_{\pm}^{m}(x, \epsilon)=Z_{m}^{\pm}(x, \in)+\epsilon^{2}\Pi_{m}^{\pm}(x, \in)+\epsilon^{m}s^{\pm}(x, \epsilon) ,

(3.4)_{\pm}



650 H. Suzuki

where

W_{m}^{\pm}(x, \epsilon)=\sum_{k=0}^{m}w_{k(X)\in i}^{\pm k} . Z_{m}^{\pm}(x, \in)=\sum_{k=0}^{m}z_{k}^{\pm}(x)\epsilon^{k}-

–m-\pm(X, \in)=\{

\omega(\frac{Y(x)}{d})\sum_{k=0}^{m}\zeta_{k}^{\pm}(S(x), \frac{Y(x)}{\epsilon})\epsilon^{k} .

x\in U_{d}(\Gamma^{0})\cap\Omega^{*\pm} ,

0, x\in\Omega^{*\pm}\backslash U_{d}(\Gamma^{0}) ,

\Pi_{m}^{\pm}(X, \in)=\{

\omega(\frac{Y(x)}{d})\sum_{k=0}^{m}\eta_{k}^{\pm}(S(x), \frac{Y(x)}{\epsilon})\epsilon^{k} ,

x\in U_{d}(\Gamma^{0})\cap\Omega^{*\pm} ,

0, x\in\Omega^{*\pm}\backslash U_{d}(\Gamma^{0}) .

w_{k}^{\pm} , z_{k}^{\pm} , \zeta_{k}^{\pm} , and \eta_{k}^{\pm} satisfy the following equations and relations:
k=0

\{

f_{u}^{0\pm}w_{0}^{\pm}+f_{v}^{0\pm}z_{0}^{\pm}=0 ,

DM_{0}z_{0}^{\pm}=0 ,
in \Omega^{*\pm} . (3.5)_{0}

z_{0}^{\pm}=q_{0} on \Gamma^{0} , \frac{\partial z_{0}^{-}}{\partial n}=0 on \partial\Omega^{*} , (3.6)_{0}

\{

\dot{\zeta}_{0}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{0}^{\pm}=-\tilde{f}_{u}^{0\pm}w_{0}^{\pm}(s, 0)-\tilde{f}_{v}^{0\pm}z_{0}^{\pm}(s, 0) ,
\xi\in I^{\mp} , s\in\Gamma^{0} ,

D\ddot{\eta}_{0}\pm=0 ,

(3.7)_{0}

\zeta_{0}^{\pm}(s, 0)=\ominus_{0}(s)-w_{0}^{\pm}(s, 0) , \zeta_{0}^{\pm}(s, \mp\infty)=0 ,
(3.8)_{0}

\eta_{0}^{\pm}(s, \mp\infty)=0=\dot{\eta}_{0}(\pm s, \mp\infty) ,
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k=1

\{

f_{u}^{0\pm}w_{1}^{\pm}+f_{v}^{0\pm}z_{1}^{\pm}=\lambda_{1}w_{0}^{\pm}-f_{u}^{1\pm}w_{0}^{\pm}-f_{v}^{1\pm}z_{0}^{\pm} .

DM_{0}z_{1}^{\pm}=-DM_{1}z_{0}^{\pm}-g_{u}^{0\pm}w_{0}^{\pm}-g_{v}^{0\pm}z_{0}^{\pm} .
in \Omega^{*\pm} , (3.5)_{1}

z_{1}^{\pm}=q_{1} on \Gamma^{0} . \frac{\partial z_{1}^{-}}{\partial n}=0 on \partial\Omega^{*} , (3.6)_{1}

\{

\ddot{\zeta}_{1}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{1}^{\pm}=\lambda_{1}(\tilde{W}_{0}^{\pm}+\zeta_{0}^{\pm})-\tilde{M}_{1}\zeta_{0}^{\pm}-\overline{f}_{u}^{1\pm}(\tilde{W}_{0}^{\pm}+\zeta_{0}^{\pm})

-\tilde{f}_{v}^{1\pm}\tilde{Z}_{0}^{\pm}-\tilde{f}_{u}^{0\pm}\tilde{W}_{1}^{\pm}-\tilde{f}_{v}^{0\pm_{\tilde{Z}_{1}^{\pm}}}-

\xi\in I^{\mp} , s\in\Gamma^{0} . (3.7)_{1}

D\ddot{\eta}_{1}=\pm-\tilde{g}_{u}^{0\pm}(\tilde{W}_{0}^{\pm}+(_{0}^{\pm})-\tilde{g}_{v}^{0\pm}\tilde{Z}_{0}^{\pm}

-g_{u}(h_{\pm}(v^{*}), v^{*})w_{0}^{\pm}(s, 0)-g_{v}(h_{\pm}(v^{*}), v^{*})z_{0}^{\pm}(s, 0) ,

\zeta_{1}^{\pm}(s, 0)=\Theta_{1}(s)-w_{1}^{\pm}(s, 0) , \zeta_{1}^{\pm}(s, \mp\infty)=0 ,
(3.8)_{1}

\eta_{1}^{\pm}(s, \mp\infty)=0=\dot{\eta}_{1}^{\pm}(s, \mp\infty) ,

k\geq 2

\{

f_{u}^{0\pm}w_{k}^{\pm}+f_{v}^{0\pm}z_{k}^{\pm}

=- \sum_{i+j=k-2}M_{i}w_{j}^{\pm}-\sum_{i+j=k,i\geq 1}(f_{u}^{i\pm}w_{j}^{\pm}+f_{v}^{i\pm}z_{j}^{\pm})

+ \sum_{i+j=k,i\geq 1}\lambda_{i}w_{j}^{\pm}
. in \Omega^{*\pm} ,

(3.5)_{k}

DM_{0}z_{k}^{\pm}=-D \sum_{i+j=k,i\geq 1}M_{i}z_{j}^{\pm}-\sum_{i+j=k-1}(g_{u}^{i\pm}w_{j}^{\pm}+g_{v}^{i\pm}z_{j}^{\pm})

+ \delta\sum_{i+j=k-1}\lambda_{i}z_{j}^{\pm}
,

z_{k}^{\pm}=q_{k}(s)-\eta_{k-2}^{\pm}(s, 0) on \Gamma^{0} . \frac{\partial z_{k}^{-}}{\partial n}=0 on \partial\Omega^{*} , (3.6)_{k}
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\{

\dot{\zeta}_{k}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{k}^{\pm}=-\sum_{i+j=k,i\geq 1}\tilde{M}_{i}\zeta_{j}^{\pm}-\sum_{i+j=k}(\tilde{f}_{u}^{i\pm}\tilde{W}_{j}^{\pm}+\tilde{f}_{v}^{i\pm}\tilde{Z}_{j}^{\pm})

-

\sum_{i+j=k,i\geq 1}\tilde{f}_{u}^{i\pm}\zeta_{j}^{\pm}-\sum_{i+j=k-2}\tilde{f}_{v}^{i\pm}\eta_{j}^{\pm}

+ \sum_{i+j=k-1}\lambda_{i}(\tilde{W}_{j}^{\pm}+\zeta_{j}^{\pm})-\tilde{P}_{k-2}^{\pm}
,

\xi\in I^{\mp} , s\in\Gamma^{0} . (3.7)_{k}

D \ddot{\eta}_{k}\pm=-D\sum_{i+j=k,i\geq 1}\tilde{M}_{i\eta_{j}}^{\pm}-\sum_{i+j=k-1}\tilde{g}_{u}^{i\pm}(\tilde{W}_{j}^{\pm}+\zeta_{j}^{\pm})

-

\sum_{i+j=k-1}\tilde{g}_{v}^{i\pm}\tilde{Z}_{j}^{\pm}-\sum_{i+j=k-3}\tilde{g}_{v}^{i\pm}\eta_{j}^{\pm}

+ \delta\sum_{i+j=k-1}\lambda_{i}\tilde{Z}_{j}^{\pm}+\delta\sum_{i+j=k-3}\lambda_{i\eta_{j}}^{\pm}-\tilde{Q}_{k}^{\pm}
,

\zeta_{k}^{\pm}(s, 0)=\ominus_{k}(s)-w_{k}^{\pm}(s, 0) , \zeta_{k}^{\pm}(s, \mp\infty)=0 ,
(3.8)_{k}

\eta_{k}^{\pm}(s, \mp\infty)=0=\dot{\eta}_{k}(\pm s, \mp\infty) ,

where

f_{u}^{i\pm} \equiv\frac{1}{i!}\frac{d^{i}}{d\epsilon^{i}}f_{u}(\sum_{k=0}^{m}\epsilon^{k}u_{k}^{\pm}(x),\sum_{k=0}^{m}\epsilon^{k}v_{k}^{\pm}(x))|_{\in=0}

\tilde{f}_{u}^{i\pm}\equiv\frac{1}{i!}\frac{d^{i}}{d\epsilon^{i}}f_{u}\{

\sum\epsilon^{k}u_{k}^{\pm}(s, \epsilon\xi)+\sum\in^{k}\phi_{k}^{\pm}(s, \xi)mm ,
k=0 k=0

\sum_{k=0}^{m}\epsilon^{k}v_{k}^{\pm}(s, \in\xi)+\epsilon^{2}\sum_{k=0}^{m}\epsilon^{k}\psi_{k}^{\pm}(s, \xi))|_{\in=0} ,

\tilde{W}_{i}^{\pm}\equiv\frac{1}{i!}\frac{d^{i}}{d\epsilon^{i}}\sum_{k=0}^{m}\epsilon^{k}w_{k}^{\pm}(s, \in\xi)|_{\epsilon i=0} , \tilde{Z}_{i}^{\pm}\equiv\frac{1}{i!}\frac{d^{i}}{d\in^{i}}\sum_{k=0}^{m}\epsilon^{k}z_{k}^{\pm}(s, \in\xi)|_{\epsilon=0}

\tilde{P}_{i}^{\pm}\equiv\frac{1}{i!}\frac{d^{i}}{d\in^{i}}(\sum_{k=0}^{m}\epsilon^{k}M^{\epsilon}w_{k}^{\pm})|_{\in=0}- \tilde{Q}_{i}^{\pm}\equiv\frac{1}{i!}\frac{d^{i}}{d\epsilon^{i}}(D\sum_{k=0}^{-}\epsilon^{k}M^{\in}z_{k}^{\pm})m|_{\in=0} ,

f_{v}^{i\pm} , g_{u}^{i\pm}.\tilde{f}_{v}^{i\pm},\tilde{g}_{v}^{i\pm} , and the others are similarly defined. Here we used the
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following notation

\tilde{u}=\tilde{u}(s, \xi)\equiv u(s, \in\xi)

for the function u defined on a tubular neighborhood U_{d}(\Gamma^{0}).\tilde{P}_{k}^{\pm} and \tilde{Q}_{k}^{\pm}

depend on w_{0}^{\pm} , z_{0}^{\pm} , . , w_{k}^{\pm} , z_{k}^{\pm} .
Now we shall show that \zeta_{k}^{\pm} and \eta_{k}^{\pm} are uniquely determined. First

we define a functional space. Since the definition domain of \zeta_{k}^{\pm} and \eta_{k}^{\pm} is
semi-infinite, the inhomogeneous terms of their equations must have some
decaying property for solvability.

Definition 3.1 Let \mathcal{E}^{\pm} be the set of functions E^{\pm}(s, \xi, \in) defined on \Gamma^{0}\cross

I^{\mp}\cross[0, eo) with the property that for each C^{\infty} linear differential operator
D of any order in the variables s and \xi , there exist positive constants C_{\pm}

and K (possibly depending on D and E^{\pm} , but not on s , \xi , and\in ) with
|DE^{\pm}|\leq Ke^{-c_{\pm}|\xi|} .

We see that \dot{\phi}_{0}^{\pm}(>0) are fundamental solutions of the equation for \zeta_{k}^{\pm}-

In fact, the boundary value problem

\{

\dot{\phi}_{0}^{\pm}+f(h_{\pm}(v^{*})+\phi_{0}^{\pm}, v^{*})=0

\phi_{0}^{\pm}(0)=\alpha^{*}-h_{\pm}(v^{*}) , \phi_{0}^{\pm}(\mp\infty)=0

has a unique monotone increasing solution \phi_{0}^{\pm}(\xi)\in \mathcal{E}^{\pm} . More precisely, the
boundary value problem

\{

\dot{\Phi}+f(\Phi, v^{*})=0

\Phi(0)=\alpha^{*} . \Phi(\mp\infty)=h_{\pm}(v^{*})

has a unique solution that is bounded and uniformly continuous on R, and
continuously differentiable. By using this function \Phi , \phi_{0}^{\pm} are represented as

\phi_{0}^{\pm}(\xi)\equiv\Phi(\xi)-h_{\pm}(v^{*})

(see Lemma 6 of Ikeda [6]). Since \dot{\phi}_{0}^{+} and \dot{\phi}_{0}^{-} (moreover, their derivatives)
are continuous at \xi=0 , we omit the superscript of \dot{\phi}_{0}^{\pm} . Then, it is obvious
that p(\xi)=\dot{\phi}_{0}(\xi) satisfies

\dot{p}+\tilde{f}_{u}^{0\pm}p=0 ,

where \tilde{f}_{u}^{0\pm}\equiv f_{u}(h_{\pm}(v^{*})+\phi_{0}^{\pm}, v^{*}) .
In a similar way as in Ikeda [6], we can prove that the right hand side

of (3.7)_{k}(k\geq 1) belongs to \mathcal{E}^{\pm} . Then we have
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Lemma 3.2 For s\in\Gamma^{0} , the boundary value problem

\{

\partial_{\xi}^{2}p^{\pm}(s, \xi)+f_{u}(h_{\pm}(v^{*})+\phi_{0}^{\pm}(\xi), v^{*})p^{\pm}(s, \xi)=R^{\pm}(s, \xi) , \xi\in I^{\mp}

p^{\pm}(s, 0)=p_{0}^{\pm}(s) , p^{\pm}(s, \mp\infty)=0 ,

has a wmgwe solution p^{\pm}(s, \xi)\in \mathcal{E}^{\pm}for p_{0}^{\pm}(s)\in C^{\infty}(\Gamma^{0}) and R^{\pm}(s, \xi)\in \mathcal{E}^{\pm} .

Proof. See Lemma 9 of Ikeda [6]. \square

Noting the fact that \dot{\phi}_{0} is a fundamental solution of the equation for
\zeta_{k}^{\pm}(s, \xi) , we see that the solutions \zeta_{k}^{\pm}(s, \xi) and \eta_{k}^{\pm}(s, \xi) of (3.7)_{k} and (3.8)_{k}

have the following expressions:

\zeta_{k}^{\pm}(s, \xi)=\frac{\dot{\phi}_{0}(\xi)}{\dot{\phi}_{0}(0)}(\ominus_{k}(s)-w_{k}^{\pm}(s, 0))+\dot{\phi}_{0}(\xi)\int_{0}^{\xi}(\dot{\phi}_{0}(t))^{-2}

\cross\int_{\mp\infty}^{t} {the right hand side of the

equation for (\begin{array}{l}\pm k\end{array}\}\phi.0(z)dzdt ,

\eta_{k}^{\pm}(s, \xi)=\int_{\mp\infty}^{\xi}\int_{\mp\infty}^{y} {the right hand side of the

equation for \eta_{k}^{\pm} }dtdy (1 \leq k\leq m) .

By using the same argument as in Ikeda [6], we obtain the following
proposition.

Proposition 3.3 There are\in 0>0 and C>0 such that for any\in\in
(0, \in 0) , (3.3)_{\pm} have a solution (w_{\pm}^{m}(x, \in), z_{\pm}^{m}(x, \in)) of the form (3.4)_{\pm} and
satisfy

||w_{\pm}^{m}(x, \epsilon)-(W_{m}\pm(x, \in)+---\pm(mx, \in))||_{C_{\Xi 0}^{2+\alpha}(\overline{\Omega}^{*\pm})},\leq C\epsilon^{m+1-\alpha} .

||z_{\pm}^{m}(x, \in)-(Z_{m}^{\pm}(x, \in)+\in^{2}\Pi_{m}^{\pm}(x, \in))||_{C_{\in,0}^{2+\alpha}(\overline{\Omega}^{*\pm})}\leq C\epsilon^{m+1-\alpha}

for any \alpha\in(0,1) .

Let

w^{m}(x, \epsilon)=\{

w_{+}^{m}(x, \epsilon) x\in\Omega^{*+} .

w_{-}^{m}(x, \in) x\in\Omega^{*-}
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z^{m}(x, \epsilon)=\{

z_{+}^{m}(x, \epsilon) x\in\Omega^{*+} .
z_{-}^{m}(x, \epsilon i) x\in\Omega^{*-}

In order that (w^{m}(x, \in) , z^{m}(x, \in)) become solutions of (3.1), they must sat-
isfy the C^{1} -matching conditions in each order O(\in^{m}) . That is,

\dot{\zeta}_{0}^{+}(s, 0)=\dot{\zeta}_{0}^{-}(s, 0) , \frac{\partial z_{0}^{+}}{\partial\nu}(s, 0)=\frac{\partial z_{0}^{-}}{\partial\nu}(s, 0) , (3.9)_{0}

k\geq 1

\dot{\zeta}_{k}^{+}(s, 0)+\frac{\partial w_{k-1}^{+}}{\partial\nu}(s, 0)=\dot{\zeta}_{k}^{-}(s, 0)+\frac{\partial w_{k-1}^{-}}{\partial\nu}(s, 0) ,
(3.9)_{k}

\frac{\partial z_{k}^{+}}{\partial\nu}(s, 0)+\dot{\eta}_{k-1}^{+}(s, 0)=\frac{\partial z_{k}^{-}}{\partial\nu}(s, 0)+\dot{\eta}_{k-1}^{-}(s, 0) .

By using the above relations, we have

Theorem 3.4 There exist an\in 0>0 and an integer n_{0}>0 such that for
any\in\in(0, \in 0) and integer n\in[1, n_{0}] , the asymptotic form of the principal
parts of the eigenvalue \lambda^{\in} and the eigenfunction (w^{m(n)}(x, \in), z^{m(n)}(x, \in))

are, respectively, given by the following forms:
\lambda^{\in}\approx\epsilon^{2}\lambda_{2}^{(n)} .

w^{m(n)}(x, \epsilon)

\approx\{

\omega(\frac{Y(x)}{d})\frac{\phi_{0}(Y(x)/\in)}{\dot{\phi}_{0}(0)}\ominus_{0^{n}}(()S(x)) , x\in U_{d}(\Gamma^{0}) ,

0, x\in\Omega^{*}\backslash U_{d}(\Gamma^{0}) ,
(3.11)

z^{m(n)}(x, \epsilon)\approx-\epsilon^{2(n)}\frac{[g]}{D\dot{\phi}_{0}(0)}K_{N}^{*}(\delta_{\Gamma^{0}}\otimes\ominus_{0}) . (3.11)

Here, (\lambda_{2}^{(n)}, \Theta_{0}^{(n)}) are determined by the following eigenvalue problem on \Gamma^{0} :

L^{*} \ominus_{0}(n)+\frac{1}{D}c_{2}[g]J’(v^{*})\langle K_{N}^{*}(\delta_{\Gamma^{0}}\otimes\Theta_{0}^{(n)}) , \delta_{I^{\neg}}0\rangle=\lambda_{20}^{(n)(n)}\ominus

with

\int_{\Gamma^{0}}-O_{0}^{(n)}dS=0 ,
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where

L^{*} \equiv\triangle^{\Gamma^{0}}+\frac{1}{2}H_{1}(s)-c_{1}P_{3}(s)+\hat{\Lambda}(s) ,

K_{N}^{*}\equiv(-\triangle)^{-1} with the Neumann boundary conditions on \partial\Omega^{*} . c_{1}>0 ,
c_{2}>0 . The definition of H_{1}(s) and P_{3}(s) are given in Lemma 2.3, and
\hat{\Lambda}(s) is a smooth bounded function of s\in\Gamma^{0} .

In order to prove this theorem, we prepare the next lemma.

Lemma 3.5 Let \Theta_{0}\in C^{\infty}(\Gamma^{0}) . Then the followings hold;
(i) The conditions in (3.9)_{0} determine w_{0}^{\pm} and z_{0}^{\pm} (hence q_{0}(s) ), that

AS,

w_{0}^{\pm}\equiv 0 , z_{0}^{\pm}\equiv 0 (q_{0}(s)\equiv 0) .

Then, \zeta_{0}^{\pm} and \eta_{0}^{\pm} are given by

\zeta_{0}^{\pm}(s, \xi)=\frac{\dot{\phi}_{0}(\xi)}{\dot{\phi}_{0}(0)}O-_{0}(s) , \eta_{0}^{\pm}\equiv 0 . (3.12)

(i) The conditions in (3.9)_{1} determine \lambda_{1} , w_{1}^{\pm} . and z_{1}^{\pm} (hence q_{1}(s) ),
that is,

\lambda_{1}=0 , w_{1}^{\pm}\equiv 0 , z_{1}^{\pm}\equiv 0 (q_{1}(s)\equiv 0) .

(iii) z_{2}^{\pm} is determined by the conditions in (3.9)_{2} . That is,

z_{2}=- \frac{[g]}{D\dot{\phi}_{0}(0)}K_{N}^{*}(\delta_{\Gamma^{0}}\otimes\ominus_{0}) (3.13)

provided that \int_{\Gamma^{0}}\ominus_{0}ds=0 , where [g]\equiv g(h_{+}(v^{*}), v^{*})-g(h_{-}(v^{*}), v^{*}) , K_{N}^{*}\equiv

(-\triangle)^{-1} with the Neumann boundary conditions on \partial\Omega^{*} Then, q_{2} is given
by

q_{2}(s)=- \frac{[g]}{D\dot{\phi}_{0}(0)}\langle K_{N}^{*}(\delta_{\Gamma^{0}}\otimes O-_{0}), \delta_{\Gamma^{0}}\rangle . (3.14)

where \langle \delta_{\Gamma^{0}}\rangle denotes the trace operator on \Gamma^{0} . In/act_{;} /rom the property
of Neumann function, the trace of z_{2} on \Gamma^{0} is well-defined as a continuous
function (see Friedman [3]).

In the following of this paper, we omit the superscript\pm of\zeta_{0}^{\pm} since \zeta_{0}^{+}

and (0^{-} (moreover, their derivatives) are continuous at \xi=0 .
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Proof of Lemma 3.5
(i) Solving the second equation of (3.5)_{0} and (3.6)_{0} with C^{1} -matching

condition for z_{0}^{\pm} (see (3.9)_{0} ), we see that z_{0}^{\pm} must be equal to some constant
\hat{z}_{0} and w_{0}^{\pm} is given by \hat{w}_{0}^{\pm}=-f_{v}^{0\pm}\hat{z}_{0}/f_{u}^{0\pm} . Then, the equation of \zeta_{0}^{\pm} (see
(3.7)_{0}) is rewritten as

\{

\ddot{\zeta}_{0}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{0}^{\pm}=-\tilde{f}_{u}^{0\pm}\hat{w}_{0}^{\pm}-\tilde{f}_{v}^{0\pm}\hat{z}_{0} ,

\zeta_{0}^{\pm}(s, 0)=\ominus_{0}(s)-\hat{w}_{0}^{\pm} , \zeta_{0}^{\pm}(s, \mp\infty)=0 ,
\xi\in I^{\mp} . s\in\Gamma^{0} .

Then the derivative of \zeta_{0}^{\pm} with respect to \xi at (s, 0) is computed as follows:

\dot{\zeta}_{0}^{\pm}(s, 0)=\frac{\zeta_{0}^{\pm}(s,0)}{\dot{\phi}_{0}(0)}\dot{\phi}_{0}(0)+\frac{1}{\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}[-\tilde{f}_{u}^{0\pm}\hat{w}_{0}^{\pm}-\tilde{f}_{v}^{0\pm}\hat{z}_{0}]\dot{\phi}_{0}d\xi

= \frac{1}{\dot{\phi}_{0}(0)}[(\ominus_{0}(s)-\hat{w}_{0}^{\pm})\dot{\phi}_{0}(0)

- \hat{w}_{0}^{\pm}\int_{\mp\infty}^{0}\tilde{f}_{u}^{0\pm}\dot{\phi}_{0}d\xi-\hat{z}_{0}\int_{\mp\infty}^{0}\tilde{f}_{v}^{0\pm}\dot{\phi}_{0}d\xi]

= \frac{1}{\dot{\phi}_{0}(0)}[\Theta_{0}(s)\dot{\phi}_{0}(0)-\hat{z}_{0}\int_{h(v^{*})}^{\alpha^{*}}\pm f_{v}(u, v^{*})du] (3.15)

Here we used the fact that

\int_{\mp\infty}^{0}\tilde{f}_{u}^{0\pm}\dot{\phi}_{0}d\xi=-\ddot{\phi}_{0}(0) and \zeta_{0}^{\pm}(s, 0)=\ominus_{0}(s)-\hat{w}_{0}^{\pm} .

By using (3.15), the first relation of (3.9)_{0} is rewritten as

0=\dot{\zeta}_{0}^{+}(s, 0)-\dot{\zeta}_{0}^{-}(s, 0)

= \frac{\hat{z}_{0}}{\dot{\phi}_{0}(0)}\int_{h_{-}(v^{*})}^{h_{+}(v^{*})}f_{v}(u, v^{*}) du.

From which, we obtain \hat{z}_{0}=0 since J’(v^{*})= \int_{h_{-}(v^{*})}^{h_{\dagger}(v^{*})}f_{v}(u, v^{*})du\neq 0 (see
(A.2) ) . This yields w_{0}^{\pm}\equiv 0\equiv z_{0}^{\pm} and q_{0}(s)\equiv 0 . Then we see that \zeta_{0}^{\pm} is
represented as in (3.12). On the other hand, noting the second equation of
(3.7)_{0} and (3.8)_{0} , we easily see that \eta_{0}^{\pm}\equiv 0 .

(ii) By using the results of (i), (3.5)_{1} and C^{1} -matching condition for
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z_{1}^{\pm} (see (3.9)_{1} ) are rewritten as

\{

f_{u}^{0\pm}w_{1}^{\pm}+f_{v}^{0\pm}z_{1}^{\pm}=0 ,

DM_{0}z_{1}^{\pm}=0 ,
in \Omega^{*\pm} , (3.16)

\frac{\partial z_{1}^{+}}{\partial\nu}(s, 0)=\frac{\partial z_{1}^{-}}{\partial\nu}(s, 0) . (3.17)

From (3.16), (3.6)_{1} , and (3.17), we see that z_{1}^{\pm} must be equal to some
constant \hat{z}_{1} and w_{1}^{\pm} is given by \hat{w}_{1}^{\pm}=-f_{v}^{0\pm}\hat{z}_{1}/f_{u}^{0\pm} . Then, the C^{1} -matching
condition of \zeta_{1}^{\pm} becomes

\zeta_{1}^{+}(s, 0)=\zeta_{1}^{-}(s, 0) (3.18)

(see (3.9)_{1} ).
Here, we prove that (3.18) is equivalent to the next equation

\Theta_{0}\lambda_{1}\int_{-\infty}^{\infty}\dot{\phi}_{0}^{2}d\xi=-\hat{z}_{1}\dot{\phi}_{0}(0)J’(v^{*}) . (3.19)

If (3.19) is satisfied, we can conclude that \lambda_{1}=0 and \hat{z}_{1}=0 because O-_{0} is
arbitrary and \int_{-\infty}^{\infty}\dot{\phi}_{0}^{2}d\xi,\dot{\phi}_{0}(0) and J’(v^{*}) are non-zero. Hence w_{1}^{\pm}\equiv 0 .

First note that \zeta_{1}^{\pm} satisfies

\ddot{\zeta}_{1}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{1}^{\pm}=\frac{\ominus_{0}}{\dot{\phi}_{0}(0)}[\lambda_{1}\dot{\phi}_{0}+\hat{H}^{\pm}]-\tilde{f}_{u}^{0\pm}\hat{w}_{1}^{\pm}-\tilde{f}_{v}^{0\pm}\hat{z}_{1} ,

where

\hat{H}^{\pm}=-(N-1)H_{0}\ddot{\phi}_{0}-\tilde{f}_{u}^{1\pm}\dot{\phi}_{0} .

Then the derivative of \zeta_{1}^{\pm} with respect to \xi at (s, 0) is computed as follows:

\dot{\zeta}_{1}^{\pm}(s, 0)=\frac{\zeta_{1}^{\pm}(s,0)}{\dot{\phi}_{0}(0)}\dot{\phi}_{0}(0)+\frac{\Theta_{0}(s)}{(\dot{\phi}_{0}(0))^{2}}\int_{\mp\infty}^{0}[\lambda_{1}\dot{\phi}_{0}+\hat{H}^{\pm}]d\xi

- \frac{\hat{w}_{1}^{\pm}}{\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}\tilde{f}_{u}^{0\pm}\dot{\phi}_{0}d\xi-\frac{\hat{z}_{1}}{\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}\tilde{f}_{v}^{0\pm}\dot{\phi}_{0}d\xi

= \frac{\Theta_{1}(s)}{\dot{\phi}_{0}(0)}\dot{\phi}_{0}(0)+\frac{\ominus_{0}(s)}{(\dot{\phi}_{0}(0))^{2}}\int_{\mp\infty}^{0}[\lambda_{1}\dot{\phi}_{0}+\hat{H}^{\pm}]d\xi

- \frac{\hat{z}_{1}}{\dot{\phi}_{0}(0)}\int_{h(v^{*})}^{\alpha^{*}}\pm f_{v}(u, v^{*})du . (3.20)
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Here we used the fact that

\int_{\mp\infty}^{0}\tilde{f}_{u}^{0\pm}\dot{\phi}_{0}d\xi=-\dot{\phi}_{0}(0) and \zeta_{1}^{\pm}(s, 0)=\Theta_{1}(s)-\hat{w}_{1}^{\pm} .

By using (3.20), the first relation of (3.18) is rewritten as

0=\dot{\zeta}_{1}^{+}(s, 0)-\dot{\zeta}_{1}^{-}(s, 0)

= \frac{\Theta_{0}(s)}{(\dot{\phi}_{0}(0))^{2}}[\lambda_{1}\int_{-\infty}^{+\infty}(\dot{\phi}_{0}(t))^{2}dt

+ \int_{-\infty}^{0}\hat{H}^{+}\dot{\phi}_{0}(t)dt+\int_{0}^{+\infty}\hat{H}^{-}\dot{\phi}_{0}(t)dt]

- \frac{\hat{z}_{1}}{\dot{\phi}_{0}(0)}\int_{h(v^{*})}^{h_{-}(v^{*})}f_{v}(u, v^{*})du+\cdot (3.21)

In order to compute right hand side of (3.21), we note that \phi_{1}^{\pm} satisfies

\ddot{\phi}_{1}^{\pm}+\tilde{f}_{u}^{0\pm}\phi_{1}^{\pm}=-\tilde{M}_{1}\phi_{0}^{\pm}-\tilde{f}_{u}^{0\pm}\{u_{1}^{\pm}(s, 0)+u_{0\tau}^{\pm}(s, 0)\xi\}

-\tilde{f}_{v}^{0\pm}\{v_{1}^{\pm}(s, 0)+v_{0\tau}^{\pm}(s, 0)\xi\}

and then, p^{\pm}\equiv\dot{\phi}_{1}^{\pm} satisfies

\dot{p}^{\pm}+\tilde{f}_{u}^{0\pm}p^{\pm}=\hat{H}^{\pm} .

From which we obtain

\dot{p}^{\pm}(s, 0)=\frac{\ddot{\phi}_{0}(0)}{\dot{\phi}_{0}(0)}p^{\pm}(s, 0)+\frac{1}{\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}\hat{H}^{\pm}(s, \xi)\dot{\phi}_{0}(\xi)d\xi . (3.22)

Combining (3.22) with the fact that \dot{\phi}_{1}^{+}(s, 0)=\dot{\phi}_{1}^{-}(s, 0) and \ddot{\phi}_{1}^{+}(s, 0)=

\ddot{\phi}_{1}^{-}(s, 0) , we obtain the following relation:

\int_{-\infty}^{0}\hat{H}^{+}(s, \xi)\dot{\phi}_{0}(\xi)d\xi+\int_{0}^{\infty}\hat{H}^{-}(s, \xi)\dot{\phi}_{0}(\xi)d\xi=0 . (3.23)

Using (3.21) and (3.23), we have (3.19).
(iii) Using the result of (i) and (ii), we can rewrite the equations for
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z_{2}^{\pm} as follows:

\{

D\triangle z_{2}^{\pm}=0 in \Omega^{*\pm} ,

z_{2}^{+}=q_{2}=z_{2}^{-} , \frac{\partial z_{2}^{+}}{\partial\nu}-\frac{\partial z_{2}^{-}}{\partial_{l}},=-\{\dot{\eta}_{1}^{+}(s, 0)-\dot{\eta}_{1}^{-}(s, 0)\}

on \Gamma^{0} ,

\frac{\partial z_{2}^{-}}{\partial n}=0 on \partial\Omega^{*}

(3.24)

First we compute the C^{1} -matching condition for z_{2}^{\pm} Integrating the equa-
tion for \eta_{1}^{\pm} in (3.7)_{1} , we have

\dot{\eta}_{1}^{\pm}(s, 0)=-\frac{\Theta_{0}}{D\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}g_{u}(h_{\pm}(v^{*})+\phi_{0}^{\pm}(\xi), v^{*})\dot{\phi}_{0}(\xi)d\xi

=- \frac{\Theta_{0}}{D\dot{\phi}_{0}(0)}\int_{h(v^{*})}^{\alpha}\pm g_{u}(u, v^{*})du .

This yields

\dot{\eta}_{1}^{-}(s, 0)-\dot{\eta}_{1}^{+}(s, 0)=-\frac{[g]}{D\dot{\phi}_{0}(0)}\ominus_{0} .

Now we rewrite (3.24) in a weak form:

B^{*}(z_{2}, \phi)=-\frac{[g]}{D\dot{\phi}_{0}(0)}\langle\delta_{\Gamma^{0}}\otimes\Theta_{0}, \phi\rangle .

where

B^{*}(z_{2}, \phi)\equiv\int_{\Omega}\nabla z_{2} \nabla\phi .

For a given h\in H^{-1}(\Omega^{*}) , we consider the equation for z\in H^{1}(\Omega^{*}) :

B^{*}(z, \phi)=\langle h, \phi\rangle for any \phi\in H^{1}(\Omega^{*}) .

Then we can define the mapping K_{N}^{*} as

K_{N}^{*}(h)=z;H^{-1}(\Omega^{*})arrow H^{1}(\Omega^{*})

provided that \int_{\Omega^{*}}hdx=0 . Using this operator, we derive (3.13) provided
that

\int_{\Omega^{*}}\delta_{\Gamma^{0}}\otimes\Theta_{0}dx=\int_{\Gamma^{0}}\Theta_{0}dS ,
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where dS is surface element of \Gamma^{0} . This completes the proof of Lemma 3.5.
\square

Using Lemma 3.5, we can conclude that the principal part of (w^{\in}, z^{\in}) is
given by (3.10) and (3.11). The remaining problem is to determine \lambda_{2} and
\ominus_{0} . Concerning this, we have

Proposition 3.6 \ominus_{0} and \lambda_{2} are determined by the following eigenvalue
problem on \Gamma^{0} :

( \triangle^{\Gamma^{0}}+\frac{1}{2}H_{1}(s)-c_{1}P_{3}(s))\Theta_{0}+\hat{\Lambda}(s)\ominus_{0}

+ \frac{1}{D}c_{2}[g]J’(v^{*})\langle K_{N}^{*}(\delta_{\Gamma^{0}}\otimes\ominus_{0}), \delta_{\Gamma^{0}}\rangle=\lambda_{2}\ominus_{0} (3.25)

with

\int_{\Gamma^{0}}\ominus_{0}dS=0 ,

where

c_{1}= \int_{-\infty}^{\infty}(\ddot{\phi}_{0})^{2}d\xi/\int_{-\infty}^{\infty}(\dot{\phi}_{0})^{2}d\xi>0 , c_{2}=1/ \int_{-\infty}^{\infty}(\dot{\phi}_{0})^{2}d\xi>0 ,

\hat{\Lambda}(s)=[\int_{-\infty}^{0}\tilde{f}_{u}^{2+}(\dot{\phi}_{0})^{2}d\xi+\int_{0}^{\infty}\tilde{f}_{u}^{2-}(\dot{\phi}_{0})^{2}d\xi

- \int_{-\infty}^{0}R_{1}^{+}[\dot{\phi}_{0}\zeta_{1}](s, \xi)d\xi-\dagger+\int_{0}^{\infty}R_{1}^{-}[\dot{\phi}_{0}\zeta_{1}](s, \xi)d\xi]\dagger-

/ \int_{-\infty}^{\infty}(\dot{\phi}_{0})^{2}d\xi ,

R_{1}^{\pm}[\zeta^{\pm}]=-\tilde{M}_{1}\zeta^{\pm}-\tilde{f}_{u}^{1\pm}\zeta^{\pm} for \zeta^{\pm}\in \mathcal{E}^{\pm} , and the definitions of H_{1}(s) and
P_{3}(s) are given in Lemma 2.3.

Proof of Proposition 3.6 First we rewrite the equation of \zeta_{2}^{\pm} .

\dot{\zeta}_{2}^{\pm}+\tilde{f}_{u}^{0\pm}\zeta_{2}^{\pm}=\lambda_{2}\zeta_{0}-\tilde{M}_{2}(0-\tilde{f}_{u}^{2\pm}\zeta_{0}-\tilde{M}_{1}\zeta_{1}^{\pm}-\tilde{f}_{u}^{1\pm}\zeta_{1}^{\pm}

-\tilde{f}_{u}^{0\pm}w_{2}^{\pm}(s, 0)-\tilde{f}_{v}^{0\pm}q_{2}(s) , (3.26)

\zeta_{2}^{\pm}(s, 0)=\ominus_{2}(s)-w_{2}^{\pm}(s, 0) , \zeta_{2}^{\pm}(s, \mp\infty)=0 .



662 H. Suzuki

Then

\dot{\zeta}_{2}^{\pm}(s, 0)=\frac{\ddot{\phi}_{0}(0)}{\dot{\phi}_{0}(0)}\zeta_{2}^{\pm}(s, 0)+\frac{1}{\dot{\phi}_{0}(0)}\int_{\mp\infty}^{0}

{the right hand side of (3.26)}\mbox{\boldmath $\phi$}.0(\xi)d\xi

= \frac{\ddot{\phi}_{0}(0)}{\dot{\phi}_{0}(0)}\{\ominus_{2}(s)-w_{2}^{\pm}(s, 0)\}

+ \frac{1}{\dot{\phi}_{0}(0)}[\int_{\mp\infty}^{0}\{\lambda_{2}\zeta_{0}-\tilde{M}_{2}\zeta_{0}-\tilde{f}_{u}^{2\pm}\zeta_{0}

-\tilde{M}_{1}\zeta_{1}^{\pm}-\tilde{f}_{u}^{1\pm}(\begin{array}{l}\pm 1\end{array}\}\dot{\phi}_{0}(\xi)d\xi

-w_{2}^{\pm}(s, 0) \int_{h(v^{*})}^{\alpha}\pm f_{u}(u, v^{*})du

-q_{2}(s) \int_{h(v^{*})}^{\alpha}\pm f_{v}(u, v^{*})du]

= \frac{\dot{\phi}_{0}(0)}{\dot{\phi}_{0}(0)}\ominus_{2}(s)+\frac{1}{\dot{\phi}_{0}(0)}[\int_{\mp\infty}^{0}\{\lambda_{2}(_{0}-\tilde{M}_{2}\zeta_{0}-\tilde{f}_{u}^{2\pm}\zeta_{0}

- \tilde{M}_{1}\zeta_{1}^{\pm}-\tilde{f}_{u}^{1\pm}\zeta_{1}^{\pm}\}\dot{\phi}_{0}(\xi)d\xi-q_{2}(s)\int_{h(v^{*})}^{\alpha}\pm f_{v}(u, v^{*})du](

Using the above equations and the fact that w_{1}^{\pm}\equiv 0 , we can rewrite the
first relation of (3.9)_{2} as follows:

0=\dot{\zeta}_{2}^{+}(s, 0)-\dot{\zeta}_{2}^{-}(s, 0)

= \frac{1}{\dot{\phi}_{0}(0)}\int_{-\infty}^{\infty}\{\lambda_{2}\zeta_{0}-\tilde{M}_{2}\zeta_{0}\}\dot{\phi}_{0}(\xi)d\xi

- \frac{1}{\dot{\phi}_{0}(0)}[\int_{-\infty}^{0}\tilde{f}_{u}^{2+}\zeta_{0}\dot{\phi}_{0}(\xi)d\xi+\int_{0}^{\infty}\tilde{f}_{u}^{2-}\zeta_{0}\dot{\phi}_{0}(\xi)d\xi]

+ \frac{1}{\dot{\phi}_{0}(0)}[\int_{-\infty}^{0}(-\tilde{M}_{1}\zeta_{1}^{+}-\tilde{f}_{u}^{1+}\zeta_{1}^{+})\dot{\phi}_{0}(\xi)d\xi

+ \int_{0}^{\infty}(-\tilde{M}_{1}\zeta_{1}^{-}-\tilde{f}_{u}^{1-}\zeta_{1}^{-})\dot{\phi}_{0}(\xi)d\xi]

+ \frac{1}{\dot{\phi}_{0}(0)}J’(v^{*})q_{2}(s) . (3.27)

By using the definition of \tilde{M}_{2} (see (2.14)) and by integrating by parts, the
first term of the right hand side of (3.27) (which we call Part 1 simply and
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similarly Part k for k-th term) becomes

Part = \frac{1}{(\dot{\phi}_{0}(0))^{2}}[(\lambda_{2}-\triangle^{\Gamma^{0}}-\frac{1}{2}H_{1}(s))\Theta_{0}\int_{-\infty}^{\infty}(\dot{\phi}_{0})^{2}d\xi

+P_{3}(s) \ominus_{0}\int_{-\infty}^{\infty}(\dot{\phi}_{0})^{2}d\xi] .

Concerning Part 2, we have

Part 2=- \frac{1}{(\dot{\phi}_{0}(0))^{2}}[\int_{-\infty}^{0}\tilde{f}_{u}^{2+}(\dot{\phi}_{0})^{2}d\xi+\int_{0}^{\infty}\tilde{f}_{u}^{2-}(\dot{\phi}_{0})^{2}d\xi]\Theta_{0}(s) .

In order to compute Part 3, we note that \zeta_{1}^{\pm} is given by the following form:

\zeta_{1}^{\pm}(s, \xi)=\frac{1}{\dot{\phi}_{0}(0)}\Theta_{1}(s)\dot{\phi}_{0}(\xi)+\frac{1}{\dot{\phi}_{0}(0)}\Theta_{0}(s)\dot{\phi}_{0}(\xi)(_{1}(s, \xi)\dagger\pm (3.28)

where

\zeta_{1}(s, \xi)\dagger\pm=\int_{0}^{\xi}(\dot{\phi}_{0}(t))^{-2}\int_{\mp\infty}^{t}\{-(N-1)H_{0}(s)\ddot{\phi}_{0}(z)

-\tilde{f}_{u}^{1\pm}\dot{\phi}_{0}(z)\}\dot{\phi}_{0}(z)dzdt .

Substituting (3.28) into Part 3, we can compute Part 3 as follows:

Part 3= \frac{1}{(\dot{\phi}_{0}(0))^{2}}[\ominus_{1}(s)\{\int_{-\infty}^{0}\hat{H}^{+}(s, \xi)\dot{\phi}_{0}(\xi)d\xi

+ \int_{0}^{\infty}\hat{H}^{-}(s, z)\dot{\phi}_{0}(\xi)d\xi\}

+ O-_{0}(s)\{\int_{-\infty}^{0}R_{1}^{+}[\dot{\phi}_{0}\zeta_{1}](s, \xi)d\xi\dagger+

+ \int_{0}^{\infty}R_{1}^{-}[\dot{\phi}_{0}\zeta_{1}]-(s, \xi)d\xi\}\dagger]

= \frac{1}{(\dot{\phi}_{0}(0))^{2}}[\int_{-\infty}^{0}R_{1}^{+}[\dot{\phi}_{0}\zeta_{1}](s, \xi)d\xi\dagger+

+ \int_{0}^{\infty}R_{1}^{-}[\dot{\phi}_{0}\zeta_{1}]-(s, \xi)d\xi]\dagger\ominus_{0}(s) .

Here we use the property of \hat{H}^{\pm} (see (3.23)) to cancel\ominus_{1} . Combining (3.14)
with the above results, we can derive (3.25). This completes the proof of
Proposition 3.6. \square
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Proof of Theorem 3.4 This is a direct consequence of Lemma 3.5 and
Proposition 3.6. \square

Appendix

Derivation of (2.14).
For \tilde{u}=\tilde{u}(\tilde{s}, \xi),\tilde{M}^{\in} is defined by

\tilde{M}^{\in}\tilde{u}\equiv\triangle\tilde{u}(s,y)(s, \frac{\tau(s,y,\epsilon)}{\in})

\equiv\frac{1}{\sqrt{g}}\sum_{i=1}^{N-1}\frac{\partial}{\partial s^{i}} ( \sqrt{g}\sum_{j=1}^{N-1}g^{ij}\frac{\partial}{\partial s^{j}}\tilde{u} (s , \frac{\tau(s,y,\epsilon)}{\in} )) (1)

+ \frac{\partial^{2}}{\partial y^{2}}\tilde{u} (s , \frac{\tau(s,y,\in)}{\in} ) +(N-1)H(s, y) \frac{\partial}{\partial y}\tilde{u}(s, \frac{\tau(s,y,\epsilon)}{\in}) .

where y=\in\xi+\omega(\in\xi/d)\gamma(s, \in) . Then,

\frac{1}{\sqrt{g}}\sum_{i=1}^{N-1}\frac{\partial}{\partial s^{i}}(\sqrt{g}\sum_{j=1}^{N-1}g^{ij}\frac{\partial}{\partial s^{j}}\tilde{u}(s, \frac{\tau(s,y,\epsilon)}{\in}))

= \frac{1}{2g}\sum_{i=1}^{N-1}g_{s^{i}}(\sum_{j=1}^{N-1}g^{ij}\frac{\partial}{\partial s^{j}}\tilde{u})

+ \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}(g_{s^{i}}^{ij}\frac{\partial}{\partial s^{i}}\tilde{u}+g^{ij}\frac{\partial^{2}}{\partial s^{i}\partial s^{j}}\tilde{u}) , (2)

Moreover

the first term of the last row in (2)

= \frac{1}{2g}[\sum_{i=1}^{N-1}g_{s^{i}}\sum_{j=1}^{N-1}g^{ij}\tilde{u}_{\overline{s}^{j}}+\sum_{i=1}^{N-1}g_{s^{i}}\sum_{j=1}^{N-1}g^{ij}\frac{1}{\in}\tau_{s^{j}}\tilde{u}_{\xi}] (3)

and

the second term of the last row in (2)

= \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}[g_{s^{i}}^{ij}\tilde{u}_{\overline{s}^{j}}+g^{ij}\tilde{u}_{\overline{s}^{j}\tilde{s}^{i}}]

+ \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}[g_{s^{i}}^{ij}\frac{1}{\in}\tau_{s^{j}}\tilde{u}_{\xi}+g^{ij}(\frac{1}{\in}\tau_{s^{j}s^{i}}\tilde{u}_{\xi}+\frac{1}{\epsilon^{2}}\tau_{s^{j}}\tau_{s^{i}}\tilde{u}_{\xi\xi)]}



Asymptotic charactenzation of interfacial pattems 665

+ \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}g^{ij}(\frac{1}{\in}\tau_{s^{i}}\tilde{u}_{\tilde{s}^{j}\xi}+\frac{1}{\in}\tau_{s^{j}}\tilde{u}_{\tilde{s}^{i}\xi})- (4)

here we use the notation \tilde{u}_{\tilde{s}^{i}}=\frac{\partial}{\partial\overline{s}^{i}}\tilde{u} , and so on. We are interested in the
order O(1) -term of (2). After some computation, we have

\tau_{s^{i}}=-\in\partial_{s^{i}}\gamma_{1}+O(\in^{2}) , \tau_{s^{i}s^{j}}=-\in\partial_{s^{i}s^{j}}\gamma_{1}+O(\epsilon^{2})

(note that the relation \tau=\in\xi ). Then the dominant term of (2) is computed
as

\frac{1}{\sqrt{G}}[\frac{1}{2\sqrt{G}}\sum_{i=1}^{N-1}G_{\tilde{s}^{i}}(\sum_{j=1}^{N-1}G^{ij}\tilde{u}_{\tilde{s}^{j}})

+ \sqrt{G}\sum_{i=1}^{N-1}\sum_{j=1}^{N-1}(G_{\tilde{s}^{i}}^{ij}\tilde{u}_{\overline{s}^{j}}+G^{ij}\tilde{u}_{\tilde{s}^{j}\overline{s}^{i}})]

- \frac{1}{\sqrt{G}}\sum_{i=1}^{N-1}\frac{G_{\tilde{s}^{i}}}{2\sqrt{G}}(\sum_{j=1}^{N-1}G^{ij}\partial_{s^{j}}\gamma_{1}\tilde{u}_{\xi})

+ \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}[-G_{\tilde{s}^{i}}^{ij}\partial_{s^{j}}\gamma_{1}\tilde{u}_{\xi}+G^{ij}(-\partial_{s^{i}s^{j}}\gamma_{1}\tilde{u}_{\xi}+\partial_{s^{j}}\gamma_{1}\partial_{s^{i}}\gamma_{1}\tilde{u}_{\xi\xi})]

- \sum_{i=1}^{N-1}\sum_{j=1}^{N-1}G^{ij}(\partial_{s^{i}}\gamma_{1}\tilde{u}_{\tilde{s}^{j}\xi}+\partial_{s^{j}}\gamma_{1}\tilde{u}_{\tilde{s}^{i}\xi}) , (5)

here, we used the notation

G=G(s)\equiv g(s, 0) ,

i.e., these are the dominant term of

g(s, \in\xi+\omega(\frac{\in\xi}{d})\gamma(s, \in))

with respect to \in regarded as a function in s and \xi . Similarly G^{ij} and others
are defined. Then, the first row of (5) is equal to

\frac{1}{\sqrt{G}}\sum_{i=1}^{N-1}\frac{\partial}{\partial\tilde{s}^{i}}(\sqrt{G}\sum_{j=1}^{N-1}G^{ij}\frac{\partial}{\partial\tilde{s}^{j}}\tilde{u}) (6)

Noting that G^{ij} is the contravariant metric tensor for the manifold \Gamma_{0} of
dimension N-1 and G=\det(G^{ij}) , we see that (6) is Laplace-Beltrami’s
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operator defined on \Gamma_{0} . The last row of (5) is a linear combination of the
differential operator in s and \xi those coefficients are independent of \xi .

On the other hand, applying the implicit function theorem to (2.5), we
see that

\tau_{y}=1+O(\epsilon) , \tau_{yy}=O(\epsilon^{2}) .

Then the third row of (1) is expanded as

\frac{1}{\epsilon^{2}}\frac{\partial^{2}}{\partial\xi^{2}}\tilde{u}+-(N-\in 11)H_{0}\frac{\partial}{\partial\xi}\tilde{u}-H_{1}(s)(\xi+\gamma_{1})\frac{\partial}{\partial\xi}\tilde{u}+O(\in) , (7)

here we used the following expansion:

H(s, \in\xi+\omega(\frac{\in\xi}{d})\gamma(s, \in))=H_{0}(s)-\in H_{1}(s)(\xi+\gamma_{1})+O(\in^{2}) .

Using (5), (6) and (7), we obtain the expansions in (2.14).

Note added in Proof. The author has recently succeeded in smplifying the
representation of L^{*} in Theorem A as L^{*} \equiv\triangle^{\Gamma^{0}}+H_{1}(s)+c_{2}J’(v^{*})\frac{\partial v_{1}}{\partial_{l/}}|_{\Gamma^{0}} .
This result enables us to construct the stationary interfacial patterns and
to study the stability property of them. For the details, see the forthcoming
paper.
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