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Indefinite equi-centroaffinely homogeneous surfaces
with vanishing Pick-Invariant in R*

Huili L. Liu*
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Abstract. A nondegenerate equi-centroaffine surface in R* is called homogeneous if for
any two points p and g on the surface there exists an equi-centroaffine transformation
in R? which takes the surface to itself and takes p to g. In this paper we classify the
indefinite equi-centroaffinely homogeneous surfaces with vanishing Pick-Invariant in R?
up to centroaffine transformations.

Key words: equi-centroaffine metric, homogeneous surface, Pick-Invariant, centroaffine
normalization.

0. Introduction

Affine homogeneous submanifolds (hypersurfaces) in R**! form an in-
teresting class of submanifolds (hypersurfaces) in affine differential geom-
etry. They are orbits of subgroups of the affine transformation group in
R

H. Guggenheimer , K. Nomizu and T. Sasaki classified the equi-
affinely homogenecus surfaces in R3. H.L. Liu and C.P. Wang [7] classified
the centroaffinely homogeneous surfaces in R3. Recently, C.P. Wang
gave a classification of the flat equiaffinely homogeneous surfaces for the
equiaffine metric (or so called Burstin-Mayer metric) in R*. In high codi-
mensional, the class of the homogeneous submanifolds is very large and it is
difficult to determine all of them. Therefore, we classify them under certain
conditions. In this paper, we give all of the indefinite equi-centroaffinely
homogeneous surfaces with vanishing Pick-Invariant in R*. For the definite
surfaces, the situation is much easier, see [4].

In the equiaffine geometry of hypersurfaces in R™*!, the condition of
vanishing Pick-Invariant locally characterizes locally strongly convex hy-
perquadrics. The definitions of the equi-centroaffine metric and the equi-
centroaffine normalizations in this paper are motivated from the definitions
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of the equiaffine metric and the affine normal. For the high codimensional,
it is difficult to determine all of the (hyper)surfaces with vanishing Pick-
Invariant, even if for the definite (hyper)surfaces. In this paper, we give
15 equi-centroaffinely homogeneous surfaces in R* with vanishing Pick-
Invariant. Many of them contains one or two parameter(s).

The metric we use here is centroaffine metric. It is different with the
Burstin-Mayer equiaffine metric. The Laplacian of the Burstin-Mayer met-
ric acting on the position vector field of the surface gives a vector field
tangent to the surface. But the Laplacian of the centroaffine metric acting
on the position vector field of the surface gives a vector field transversal to
the surface. Therefore, we use it and the position vector field of the surface
as the centroaffine normalizations. With the Burstin-Mayer equiaffine met-
ric, we can not get such normalization. So, the equi-centroaffine surfaces
given here and the equiaffine surfaces given in (or [13]) are different.

1. Equi-centroaffine surfaces in R*

Let z : M — R* be an oriented immersed surface such that z(p) ¢
dz(T,M) for all p € M and z(M) is not contained in a hyperplane of R?.
We consider the oriented basis of TM. For any local basis ¢ = {E1, Eo} of
TM with dual basis {61,602} we define

G° = [El(l’),EQ(fL’),ZB,dQ.'E]

2
= Y [Ei(z), Bs(2), 2, Ei E;(2))6; © 6, (L.1)

t,7=1

where [ ] is the standard determinant in R*. G° is a symmetric 2-form.
We assume that G is nondegenerate. If 7 is another local basis of TM, we
have

|det GT| 73 GT = |det G°|"% G°, (1.2)
where | | denotes the absolute value of the real number. Therefore
G = |det G775 G° (1.3)

is independent of the choice of the basis ¢ and thus a globally defined
symmetric 2-form. From we know that G is an invariant under equi-
centroaffine transformations. G is called the equi-centroaffine metric of
z: M — R*. Let A denote the Laplacian of G. {z, Az} is called the equi-



Indefinite equi-centroaffinely homogeneous surfaces with J = 0 227

centroaffine normalization of z : M — R*. We call = a nondegenerate equi-
centroaffine surface if G? is nondegenerate. x is called definite or indefinite if
G is definite or indefinite, respectively. In this paper we consider indefinite
surfaces in R?.

For the equi-centroaffine surface z, let V = {FZ} and V = {IA’Z} be the
induced connection and the Levi-Civita connection of the equi-centroaffine
metric G. We define the Fubini-Pick form C by

Ch.=TK -TK, ijk=12 (1.4)

We know that ij is symmetric for ¢ and j. The Pick-Invariant is defined
by

1,
J= imcgkc{;. (1.5)

Let  : M — R* be an equi-centroaffine surface with the indefinite equi-
centroaffine metric G. We choose the asymptotic local basis 0 = {E}, E,}
of T M such that

G = 2e”(dudv) = e“(du ® dv + dv ® du). (1.6)

Then {E1(z), Ex(z), x, Az} (or {zy, Ty, T, Tyy}) forms a local moving frame
for R* on M, where A is the Laplacian of G. By (1.6) we have
[T, Ty, T, Ty] = [Ty, To, T, Tyy] = 0. Without loss of generality, we may
assume that [z, y, T, Ty, > 0. Then

G° = [Ei(z), Ea(z),z,d%z] = [24, 20, T, d%2]

= [ZTuy Ty, T, Ty (du ® dv + dv @ du). (1.7)
From [1.3), (1.6) and we obtain
[T, To, T, T ] = €22, (1.8)

We assume that
Ty = P18y + €~V pTy + Pz
{ oy = € ATy + oz, + 0.
The relation yields p; = w, and ps = w,. Hence

(1.9)

Tyy = WyTy + e_w(:pwv + 'L/)'/L'
Tyy = €Y ATy + Wy, + O,
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Proposition 1.1 Let ®, ¥, A and © be the forms on M defined by

[xu, Lyu, T, wuv]

® = pdu’ = e¥ du®, (1.10)
[Ty Toy Ty Tuo]
U = o = [Zw 0T Tunl g 2 (1.11)
[Tus T, T, Tuw]
A=Xdv® =e? Zvv, 20, Tuo) dv? (1.12)

[$U7$v7$a$uv] ’

. [xua Ly Lyv, :Euv]

O = fdv? = dv?. (1.13)
[xm Ty, T, muv]

Then {®,¥, A, 0} are globally defined on M and equi-centroaffine invari-

ants.

Proposition 1.2 (i) If two indefinite equi-centroaffine surfaces x,T :
M — R* are centroaffinely equivalent, then there exists a constant a such
that

G=aG, ®=ad, U=V, A=aA, ©=0. (1.14)

(ii) Conversely, if z,% : M — R* are indefinite equi-centroaffine sur-
faces such that there exists a constant « so that (1.14) holds, then z and Z
are centroaffinely equivalent.

In the following, we derive the integrability conditions for the equi-
centroaffine surface z : M — R?. From (1.9) we have

Tyy = WuTy + e~ VQT, + Pz
Loy = € Y ATy + WyTy + O
Tyou = (Wuy + €72 A0) 2y + (670, + ¥)
+ (el + Yy )T + WyTyy
Tuvy = (€7 + )Ty + (Wyp + €724 AQ) Ty
{ + (e AY + 04)T + WyTyy-

(1.15)

Hence Tyyuy = Tyvou yields

(wuv + G_Qw)“P)U + e_zw)“Pv
= (e YAy + )y + Oy + wy(wyy + e_Qw)\go),
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(e™"py + ¥)y + 1y + Wy (Wuy + €2 Ap)
= e Ay + (Wup + €7 AP)u,
e 0, + (670 4 y)y + wy(e” AP + 6,)
= e Py + (7MY + Oy ) + wy (e b + 1hy),

that is,

(e P Wyy + €3 Np)y + € Apy — e (e Ay )y — 2670, =0, (1.16)
(e Y wyy + €3 Ap)y + €73 pAy — e V(e Vpy )y — 279y =0, (1.17)

(e—2w@0+e—wwv)v _+_e—2w990U
= (72 \ep 4 €70 )y + e TP, (1.18)

Let k be the Gauss curvature of z, then from (1.6) we have
K= —e “Wyy. (1.19)

2. Equi-centroaffinely homogeneous surfaces with J =0 in R?

An equi-centroaffine surface in R* is called equi-centroaffinely homo-
geneous, if for any two points p and ¢ on the surface there exists an equi-
centroaffine transformation in R* which takes the surface to itself and takes
p to q. Therefore, an equi-centroaffinely homogeneous surface is an orbit of
an equi-centroaffine group which acts on a fixed point in R*. In this section,
we prove the following theorem.

Theorem 2.1 Let z : M — R* be a nondegenerate indefinite equi-centro-
affinely homogeneous surface with vanishing Pick-Invariant in R*. Assume
that (M) is not contained in a hyperplane of R*. Then x is centroaffinely
equivalent to one (or a part) of the following surfaces in R*:

(1)

{ T1Xx9x3x4 = 1

x‘f‘:zrg = LE%C&;,
where o # 0 1s constant;

1
Ty = §m3(log xz1 —logxe), x1 >0, z2>0

(i)

wlxgxg =1;
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(iii)
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$1.’L‘2(.’L‘§ + CL‘Z) =1

L4
r1 = roexp| —arctan —
(81 I3

where a # 0 s constant,

(iv) {
{

T1Tg4 = T2T3

.CC2334=1;

x? 4+ 23) (3 + 73) =1
1 2 3 4) —

T4
arctan — = o arctan —
1»’3

where a # 0 1s constant;

{
w |
w |
|
(x) {

o |

T4
r1 = T9arctan —
I3

z3(23 + 21) = 1;

I

T1T4 — T3 210g i)

Iolyg = 1;

T1T4 — ToX3z = arcsin ry
ri+2i=1,

T1T4 = 2273

:1:% + :L'?1 =1;

i+ zi+zd+a2i=1

L1T4 = T2T3;

(ef +a3) (a5 +2f) = 1

log(z? + 73) = aarcsin(zar3 + T174),

where o is constant;

(xii) {

r3xy =1

L1T3 — T2xLg = ﬂ)
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where a and B are constants;
r3 = x4logry, x4>0
(xiii)
L1Ty — Tox3 = (&,
where a s constant;

I1xyg — 23 = X

(xiv) T

x2 + 22 = exp [2ﬂ arctan —a—i} )

where a and 3 are constants;
334(.272:1)3 - :D11‘4) = an%
(xv) 3 3
T4(3z124 — T223)° = 83,
where o 1s constant.

Remark 2.1. The generating groups of the surfaces (i)—(xi) in
2.1 are abelian groups; the generating groups of the surfaces (xii)—(xv) in
[Theorem 2.1l are no abelian groups. See the following examples.

Ezample 2.1. The surface defined by
T = (eu+v eU™V eTu—au e—u—{—av) u.v €ER

for any o € R, a > 0, is a homogeneous equi-centroaffine surface in R?. Its
generating group is

et 0 0 0
0 e 0 0
0 0 ewa o ||wUERE
0 0 0 e utaw

which acts on the point *(1,1,1,1), and
1
G = (8a)” 216adudwv.

The surface is equi-centroaffinely equivalent to the surface (i) in
2.1.

Ezample 2.2. The surface defined by

6u+v u—v _—u

z = ( eV e ve™), wu,v € R,
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is a homogeneous equi-centroaffine surface in R*. Its generating group is

et 0 0 0

0 et v 0
0 0 e o ||[“VERp
0 0 ve ¥ e7U

which acts on the point (1,1, 1,0), and
1
G = (4)” 28dudwv.

The surface is equi-centroaffinely equivalent to the surface in [I’heorem
2.1.

Example 2.3. The surface defined by

eu+v U—v

z = e Y e “cos(av), e ¥sin(av)), u,v € R,

for any « € R, a > 0, is a homogeneous equi-centroaffine surface in R*. Its
generating group is

etv 0 0 0
( EO 8u>v> ot (cos(gyg) Oysin(av)> wveR,

0 0 sin(av)  cos(av)

which acts on the point (1,1, 1,0), and
1
G = (4a)” 28adudv.

The surface is equi-centroaffinely equivalent to the surface (iii) in
2.1.

Ezample 2.4. The surface defined by
z = (ue’,e’,ue"",e’"), wu,veER,

is a homogeneous equi-centroaffine surface in R*. Its generating group is

e’ wue’ 0 0

0 e 0

0 0 eV wev ||™Y €Ry,
0 0 0 e v
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which acts on the point ¥(0,1,0,1), and
G = (2) 24dudw.

The surface is equi-centroaffinely equivalent to the surface (iv) in
2.1.

Ezample 2.5. The surface defined by
x = (" cos(aw), " sin(aw),e " cosv,e ¥sinv), wu,v € R,

for any o € R, a > 0, is a homogeneous equi-centroaffine surface in R4, Its
generating group is

o ( cos(av) —sin(aw) > ( 0 0 )
sin(av)  cos(av) 0 0/ wveR
0 0) o—u [ COSY —smv) ’ ’
0 O

which acts on the point *(1,0,1,0), and

sinv  cosv

G = —(2a)”%4adudv.

The surface is equi-centroaffinely equivalent to the surface (v) in [Theorem
2.1.

Ezample 2.6. The surface defined by
T = (ve',e", e “cosv,e “sinv), wu,v € R,
is a homogeneous equi-centroaffine surface in R*. Its generating group is
( e wve¥ ) ( 0 0)
0 e 0 O
0 O o—u [ COSV —sinv wvERY,
0 0 sinv  cosv
which acts on the point *(0,1,1,0), and
G = (2)"24dudv.

The surface is equi-centroaffinely equivalent to the surface in
2.1.

Exzample 2.7. The surface defined by

r=((u+v)e’, e’ (u—v)e ™ e™”), u,veR,
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is a homogeneous equi-centroaffine surface in R?. Its generating group is

e’ (u+wv)e 0 0
0 e’ 0 0
R
0 0 eV (u—v)e™” Y € ’
0 0 0 e’

which acts on the point *(0,1,0, 1), and
G = (2)"24dudv.

The surface is equi-centroaffinely equivalent to the surface (vii) in Theorem
2.1.

Ezxample 2.8. The surface defined by
r = (ucosv + vsinv,usinv — vcosv,cosv,sinv), u,v € R,
is a homogeneous equi-centroaffine surface in R*. Its generating group is
(cosv —sinv) ( u v) (cosv —sinv)
sinv  cosv —v U sinv  cosv uwveRY,

0 0 cosv —sinwv

0 O sinv  cosv
which acts on the point (0,0, 1,0), and

1\~ 2
G=— (-) dudv.
9

The surface is equi-centroaffinely equivalent to the surface (viii) in
2.1.

Ezxample 2.9. The surface defined by
x = (ucosv,cosv,usinv,sinv), u € R,v e 0,27,

is a homogeneous equi-centroaffine surface in R*. Its generating group is

cosv<1 u) —sinv(1 u)
01 01 u € R,v € [0, 2n]

. 1 u 1 u
smvo1 cosv01

Y
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which acts on the point *(0, 1,0, 0), and

G = (1>— dudv.
2

N=

The surface is equi-centroaffinely equivalent to the surface in
2.1.

Ezample 2.10. The surface defined by
x = (cos u cos v, cosu sin v, sin u cos v, sin u sin v), u,v € [0,2n],

is a homogeneous equi-centroaffine surface in R*. Its generating group is

cosv —sinv . cosv —sinwv
cosu | . —sinu | .
sinv  cosw sinv  cosv
. . u,v € [0,27] 5,
. cosv —sinw cosv —sinv
sinu | | cosu | .
sinv  coswv sinv  coswv

which acts on the point *(1,0,0,0), and
1
1\ 2
G=-— (—) dudv.
2

The surface is equi-centroaffinely equivalent to the surface (x) in [Theorem
2.1.

Ezample 2.11. The surface defined by

r = (e cos(u +v),e* sin(u + v),e”* cos(—u + v),
e “sin(—u+v)), wu,v€R,
for any o € R, is a homogeneous equi-centroaffine surface in R*. Its gener-

ating group is

() o))

(6 o)
( ) n
—aw [ COS(—u+wv) —sin(—u+ov ’
e <sin(—u—{—v)) cos(—u++v))>
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u,v € R, which acts on the point ¥(1,0,1,0), and

G = —[2(a® + 1)]"24(a? + 1)dudv.

The surface is equi-centroaffinely equivalent to the surface [xi) in [Theoreml
2.1.

Ezample 2.12. The surface defined by

-k

a::(vu—!-auk,vu—k—kﬁu'l,u ,u), u,v€R, u>0,

for any «, 8, k € R, k # 0,—1, is a homogeneous equi-centroaftine surface
in R*. Its generating group is

uk 0 0 VU

0 -1 —k

0 UO v;_k 0 u,v € R,u>0},,
0 0 0 U

which acts on the point (o, 3,1,1), and

1
1 _1
G = [1(1 + k)‘%r‘““} Y 1o(1 + k)22 dudo
— 2(k — 1)(k + 1)(ka + B)u"""2du?).
The surface is equi-centroaffinely equivalent to the surface (xii) in Theoreml
2.1.

Ezample 2.13. The surface defined by

-1

z = (vulogu+ a(l + logu)u ,vu+ au”t ulogu, u),

u,v € R, u> 0,

for any o € R, is a homogeneous equi-centroaffine surface in R*. Its gener-

ating group is
1 logu
¢ (o 1 )

1 logu
-1
¢ (0 1 )
(O 0) u(l logu)
0 O 0 1

which acts on the point *(a, @, 0, 1), and

u,v € Rybu >0,

N

G = [—(u‘l)}_ u?dudw.
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The surface is equi-centroaffinely equivalent to the surface (xiii) in
2.1.

Exzample 2.14. The surface defined by

k —kU(

“sinwu,e
k

z = (e7*(acosu + Bsinu) + ve Bcosu — asinu)

k

+ ve*¥ cosu, e sinu, e “Ycosu), wu,v€R,

for any «, B, k € R, is a homogeneous equi-centroaffine surface in R*. Its
generating group is

o—ku cosu sinu ek cosu sinu
—sinu cosu —sinu cosu

0 0 k[ COSU  sinu uw,vER,
€ .
0 0 —sinu Ccosu

which acts on the point *(«, 3,0,1), and

P

G = Be%“] [e*dudv + 4ke?** (ka — B)du?].

The surface is equi-centroaffinely equivalent to the surface (xiv) in [Theorem
2.1.

Ezample 2.15. The surface defined by

w

2 3 3

_1 3 _1 3 3 3
= (vu"2 +avuz,u2 + 3av u2,vu2,u?), u,v € R, u>0,

for any a € R, is a homogeneous equi-centroaffine surface in R*. Its gener-
ating group is

_3 _1 9 1 3 3
u 2 vu 2 3avcuz  avu?
_1 1 3
0 u~ 2 6avuz  3aviu?z
1 3 u,v € Rybu>0,,
0 0 U2 VU2
3
0 0 0 u2

which acts on the point (0, 1,0, 1), and

]

G = (4)7(—4)dudv.

The surface is equi-centroaffinely equivalent to the surface (xv) in
2.1.

For the proof of the [Theorem 2.1, we need the following Lemmal
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Lemma Letz : M — R* be a nondegenerate indefinite equi-centroaffinely
homogeneous surface with vanishing Pick-Invariant. Then x is flat.

Proof. Let z: M — R* be a nondegenerate indefinite equi-centroaffinely
homogeneous surface with vanishing Pick-Invariant. Since x is equi-centro-
affinely homogeneous, 1) # 0 means that ¥ (p) # 0 for all points p € M.
¥? + 62 = 0 implies that z lies in a hyperplane of R*, so we may assume
that ¥? + 62 # 0. From the homogeneity of x, we know that any equi-
centroaffinely invariant function on the surface is constant. Therefore, the
Gauss curvature k of x is constant.
By a direct computation we have

0111 = 0112 = 0122 - 0222 =0,
CH=eYp, Cry=e"A\

Then the Pick-Invariant of z is given by
J = e 3.

Hence J = 0 if and only if Ap = 0. Setting (u,v) — (v,u), we may assume
that A = 0. We consider the following cases, respectively.

(1) Let A=¢ =0. By (1.16) and (1.17) we have 6, = 0 and ¢, = 0.
When 0 # 0, 673(0, — 2w,0)? = constant and 6, = 0 yield w,, = 0; when
P # 0, 3 (hy — 2wytp)? = constant and 1), = 0 yield wy, = 0. Therefore
kK =—e Ywy, =0.

(2) Let A =0, » #0. By (1.16) we have 6, = 0. If § # 0, §73(0, —
2wv9)2 = constant and 8, = 0 yield wy, = 0. When 6 = 0, we have 1 # 0.
By we get (e Wy )y = 0. P~ (e¥1,)? = constant and (e ¥1y,), = 0
yield 1, = 0. ¥ # 0, v, = 0 and Y ~3(1, —2w,)? = constant yield wy, = 0.
Therefore kK = —e % w,, = 0. x is flat. ]

This completes the proof of the Lemmal.

The proof of MTheorem 2.1 Let x : M — R* be an equi-centroaffinely ho-
mogeneous surface with vanishing Pick-Invariant in R*. From Lemmal, = is
flat. By the flatness of the surface, we can choose a local basis such that

w = 0. Since 12 + #? = 0 implies that x lies in a hyperplane of R*, Setting
(u,v) — (v,u), we may choose that ¥ # 0. Therefore we have

Py

2
= constant; — = constant. (2.1)
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Let € = £1, ey > 0. Then we can put
Yy, = b(ey)2, Yy = a(ey)z. (2.2)
From we have

Yo = SH(eB)Beuts = St

Njw
(Sl

Yo = saled) e =
that is

Therefore, we obtain

(A) If ¢, =1, = 0, 9 is constant; e 2“1 = constant yields 6 is constant;
©?1~3 = constant yields that ¢ is constant; e ®¥y3)\2 = constant
yields that A is constant.

(B) If ¢, =0, 1, # 0, from we get

Y(u) = e:—Zu_z, u # 0. (2.4)
(C) If ¢, #0, ¥, =0, from we get
Y(v) = 6%2’1}2, v # 0. (2.5)

We assume
Y3 =ec®; NP =ed?’;, O =e, (2.6)

where ¢, d and e are constants. Since J = e 3%y = 0, we have c¢d = 0.
Thus (1.16), (1.17) and become

— Ay — 260, =0

— oy — 2y =0 (2.7)

POy + Yo + 2000y = Aipy + Oy, + 29 Ay
From [2.2), (2.6) and (2.7) we get

4be — 3b%d = 0

4a +3a’c =0 (2.8)

4ace + ea? + 4bd — eb%e = 0.
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Therefore, for the case (B), we have: (I) a =c=d =e =0, b # 0; (II)
a=d=e=0,b0#0,c#0; (Ill) a=c=0,b#0,d#0,e #0, e =1,
3b> = 16, e + v/3d = 0. For the case (C), we have: b = d = 0, a # 0,
c#0,e#0,3ac = —4, 16e = 3ea®. We solve the equations (1.15) in the
separated cases.

Case (A): Yy = Py =0.
In this case, ¢, ¥, A and 6 are constants satisfying A\¢ = 0. Then (1.16),
(1.17) and are identically satisfied. From (1.15) we have

(

Ty = PTy + YT
Tyy = ALy + O (2.9)
Tyvu = APTy + YTy + oz .

\ Tuvw = 0Ty + Az, + A,

Since the case A = 0 is equivalent to the case ¢ = 0 by setting (u,v) — (v, u),
so we may assume that ¢ = 0. Setting (u,v) — (—u, v), we may also assume
that A > 0. From (2.9) we have

{ Tyy = YT

Tyy = AT, + 0.

(i) Ifv >0, setting (v/vu,v) — (u,v), we may assume that ¢ = 1. From
Tyy = T We get

z = f(v)e" + g(v)e ™.
By z,, = Az, + 0z we obtain

o) =(A+0)f(v), g¢"(v)=(8-N)g(v).
(1) If @ > 0, setting (u, vVOv) — (u,v), we may assume that § = 1. Then

f'w) =0+ Nf@), ¢"(v)=01-Ng).
(a) When X € [0,1), we have

f(v) — cle\/H—/\v + 026—\/14—)\11, V1-v + 046—\/1—)\'0

g(v) = cze :
where ¢; € R*, i =1,2,3,4 and [c1, ¢g,c3,c4] # 0. Then
) t(eu+\/1+)\v, eu—\/l-l—)\'v’e—u+\/1—)\v7 e—u—\/l——)\v).

(2.10)

T = (017 C2,C3,C4
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The surface is centroaffinely equivalent to Example 2.1.

(b) When A =1, we have
flv) = creV? 4 026_‘/5”, g(v) = c3v + ¢4,
where ¢; € R*, i = 1,2,3,4 and [c1, 2, ¢3,¢4] # 0. Then
) t(e“+‘/§”,e““/§v,ve_“,e_”). (2.11)

T = (617027639 C4

The surface is centroaffinely equivalent to Example 2.2 .
(c) When X € (1,400), we have

f(v) = c1eVIF 4 e VIFN,
g(v) = czcos(vVA — 1v) 4 cqsin(v/A — 1v),
where ¢; € R, i =1,2,3,4 and [cy, ¢, ¢3,c4] # 0. Then
) t(eu+\/1_+_)\v’eu—\/1+—>\v’
e “cos(VA — 1), e “sin(vA — 1v)).  (2.12)

The surface is centroaffinely equivalent to Example 2.3.
(2) If 6 =0, then

') =Af(v), g"(v)=—-Xg(v).
(a) When A =0, we have

T = (Cla C2,C3,C4

flv)=cv+c, g(v)=c3v+ec,
where ¢; € R*, i =1,2,3,4 and [c1, 2, ¢3,c4] # 0. Then
T = (c1,co,c3,c4) F(veY, e, ve™ e7Y). (2.13)

The surface is centroaffinely equivalent to Example 2.4.
(b) When A € (0,+00), we have

f(v) = creV™ + CQe_‘/’_\”, g(v) = c3cos(VAv) + ¢qsin(vVAv),
where ¢; € R, i = 1,2,3,4 and [cy, c2, 3, c4] # 0. Then

z = (c1,cCo,C3,C4) t(e“+ﬁ”,e“—ﬁ”,6_“ cos(V ), e ¥ sin(vVAv)).
(2.14)

The surface is centroaffinely equivalent to Example 2.3.
(3) If 6 < 0O, setting (u,/—60v) — (u,v), we may assume that § = —1.
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Then

f'lv)=(A=1fw), ¢"(v)=-(A+1)g(v).
(a) When A € [0,1), we have

f(v) = e1cos(v/1 = ) + casin(v/1 — v),

g(v) = cgcos(V1+ Av) + ¢gsin(vV1 + M),

where ¢; € R*, i = 1,2,3,4 and [c1, ¢z, c3,c4] # 0. Then by a centroaffine
transformation

r = '(e*cos(v1— )\v) e"sin(v'1 — Av),
“Ycos(V1+ Av),e ¥sin(v1+ ).  (2.15)

The surface is centroaffinely equivalent to Example 2.5.
(b) When A =1, we have

f(v) =civ+ca, g(v) = c3cos(V2v) + c4sin(v/2v),
where ¢; € R, i =1,2,3,4 and [c1, cp,c3,¢4] # 0. Then
z = (c1,c2,c3,c4) F(veY, e¥, e cos(V2v), e sin(vV20)). (2.16)

The surface is centroaflinely equivalent to Example 2.6.
(c) When A € (1,400), we have

f) = eI 4 e VAT,
g(v) = c3 cos(\/)\i-l-lv) + ¢y sin(vV/A + 1v),
where ¢; € R, i =1,2,3,4 and [c;, ¢2,c3,¢4] # 0. Then
z = (c1,c2,c3,C4) t(e“"'m”,e“_m”,
e ¥ cos(VA + 1v), e ¥sin(vA + 1v)).  (2.17)

The surface is centroaffinely equivalent to Example 2.3.
If Y =0, o = 0 yields

z = f(v)u+g(v).
By z,, = Az, + 0z, we obtain

f'(v) =0f(v), g"(v) = Af(v)+0g(v).

\_/
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In this case, § # 0. Setting (u, v/|0|v) — (u,v), we may assume that § = +1.
(1) When 6 =1, we have

A -
f(v) =cre’ +c2e™”, g(v) =c3ze’ +c4e™’ + 1 —24)6 + c27fve v

where ¢; € R*, i =1,2,3,4 and [c1, ¢z, c3,¢4] # 0. Then
A

x = (c1,co,c3,cq) *(ue’ + §vev,ue_” — §ve_”,e”,e_”). (2.18)

When A = 0 the surface is centroaffinely equivalent to Example 2.4 and

when A > 0 the surface is centroaffinely equivalent to Example 2.7.
(2) When 8 = —1, we have

f(v) = ci1cosv + cysinw,

g(v) = c3cosv + cysinv + c15v sinv + 027’UCOS v,

where ¢; € R*, i = 1,2,3,4 and [cy, ¢z, ¢3,¢4] # 0. Then
A

z = (c1,c2,c3,¢4) t(ucosv + —2—vsinv,usinv

A

— 51} COS v, COS v,sinv). (2-19)

When A = 0 the surface is centroaffinely equivalent to Example 2.9 and
when A > 0 the surface is centroaffinely equivalent to Example 2.8.

(iii) If ¢ < 0, setting (v/—t¢u,v) — (u,v), we may assume that 1) = —1.
From z,, = —x, we get

z = f(v)cosu + g(v) sinu.
By Zyy = ATy + 0z, We obtain

() = Ag(v) +6f(v), g¢"(v) = =Af(v)+6g(v).
(1) If A =0, we have

f(v) =0f(v), ¢"(v)=0g(v).

(a) When 6 > 0, setting (u, V8v) — (u,v), we may assume that 6 = 1.
Hence

f(v) =c1e’ + c2e™®, g(v) = cze’ + cge™,
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where ¢; € R*) i =1,2,3,4 and [c1, ¢, ¢3,¢4] # 0. Then
T = (c1,c2,c3,c4) '(€” cosu, e cosu, e’ sinu, e~V sinu). (2.20)

The surface is centroaffinely equivalent to Example 2.5.
(b) When 8 = 0, we have

f(v) =cv+ez, g(v) = cav+cy,
where ¢; € R4, i = 1,2,3,4 and [cy, ¢, 3, 4] # 0. Then
z = (c1, o, 3, cq) *(vcosu, cosu, vsinu, sinu). (2.21)

The surface is centroaffinely equivalent to Example 2.9.
(c) When 6 < 0, setting (u,v/—6v) — (u,v), we may assume that
6 = —1. Hence

f(v) =cicosv +cysinv, g(v) = czcosv + ¢y sinv,
where ¢; € R?,i=1,2,3,4 and [c1, c2,¢3,c4] # 0. Then

z = (e1,c9,c3,¢4) “(cosucosv,cos usin v, sinu cos v, sin usinv).
(2.22)

The surface is centroaffinely equivalent to Example 2.10.
(2) If A >0, let o2 — 32 = 0 and 2a8 = ), we have

f(v) = c1* cos(Bv) + ce’ sin(Bv)
+ cze” Y cos(Bv) + cqe”* sin(fv),
g(v) = —c1e®sin(Bv) + c2e*’ cos(Bv)
+ cze” Y sin(fBv) — cge”* cos(Bv),
where ¢; € R%, i = 1,2,3,4 and [cy, c2,c3,c4] # 0. Then by a centroaffine
transformation
r = (e cos(u + fv), e* sin(u + Bv),

e “cos(—u+ fv),e” *sin(—u+ fv)). (2.23)
The surface is centroaffinely equivalent to Example 2.11.

Case (B): Yy # 0, ¢, =0.

(I) In this case, we have ¢ = A =0 = 0, Y(u) = el;izu_Q. Thus (1.15)
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becomes

ZTyy = 0 yields

z = f(u)v+ g(u).

From z,, = el;%u’%c we get
4 5

() = ez ()
4 9

(1) If e=1, we have

flu)=cu 2 +couT 2
16 16
Lty /1438 1-/1+3%

where ¢; € R*, i =1,2,3,4 and [c1, ¢, ¢3,¢4] # 0. Then

245

(2.24)

/1518 - /ixI8 14 /ix18 4. /116
1+ 1+32— +52' + 1+g2- +z—2—
2 ,vus 2z ,u 2 LuT oz ).

T = (61762363704) t(vu

The surface is centroaffinely equivalent to Example 2.12.
(2) Ife=—1, we have

£(w) = — 2 ()
4 _
"(u) = Tt 2g(w)
(i) When b2 > 42,
1+y/1-13 1-y/1-18
flu)=cu™ 2 +cou 2
1+ 1-%3— 1— 1—;—25

(2.25)
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where ¢; € R*, i =1,2,3,4 and [c1, 2, c3,cq] # 0. Then
1+, /1—% 1- 1—;—3 1+,/1—%g 1- 1—%&
2 , VU 2 2 , U 2 ).

(2.26)

T —= (Cl,CQ,C3,C4) t(vu

The surface is centroaffinely equivalent to Example 2.12.
(i) When b = 42,

f(u) = er/alogu+ e/
g9(u) = csy/ulogu + ca/u,
where ¢; € R*, i =1,2,3,4 and [c1, 2, c3,cq] # 0. Then
T = (Cl7 €2, C3, C4) t(’U\/’IIlOg’U,, ’U\/E,L_, \/ﬁlog U, \/’l_‘l‘) (227)

The surface is centroaffinely equivalent to Example 2.13.
(iii) When b? < 42,

(
1/16—1 ¥
f(u) = e1y/ucos log u + c24/usin logu

j 21 j{l@—l
g(u) = c3/ucos @ log u + c44/usin b; logu,

\

where ¢; € R4, i = 1,2,3,4 and [cy, co,c3,cq4] # 0. Then by a centroaffine
transformation

3 — 1 1
b .
T = t('u ucos——z—logu,v\/ﬂsm——logu,

I
—

# -1

Vu cos bT log u, v/u sin

M‘T"I&;}Mo‘
I
ol

log u) . (2.28)

The surface is centroaffinely equivalent to Example 2.14.
3
(IT) In this case, we have A = 8 = 0, (u) = egu?2, p(u) = ZFfu™3. We
write 2 —3— also by ¢. Thus (1.15) becomes
3 4 o

Tyy = CU "Ty +€5U “T

b2

Tyy = 0.
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ZTyy = 0 yields

z = f(u)v + g(u).

From z,, = cu™3z, + efgu_zx, we get

£(w) = ex3uf (1)
g"(u) = cu3 f(u) + e%u"2g(u).
(1) Ife=1, we have
( 1+,/1+.% 1-/1+13

flu)=cu™" 2 +cu 2

) g(u) =csu™ 2 +ecqu 2
1-,/1+18 L+ f1+%-§-
+ciau 2 +cfu” " 2,

\

where ¢; € R*, 1 =1,2,3,4, [c1, ¢y, c3,c4] # 0,

C
o = y
1— 1 16 1— 1 16
Vv +p+1 -4
2 2 b2
C

14, /1428 /14, /1428
b b + 1 _ 4
2 2 b2
Then by a centroaffine transformation
16 _ 16 _ 16
. 1+jfl+b7 1 1/1+§7 1 */1+FZ
r = (vu 2 + au 2 , VU 2 q
1+1/1+%g 1+,/1+%26- 1—‘/1+i-g-
2 U 2 )
9

+0u”" 2z u

(2.29)

The surface is centroaffinely equivalent to Example 2.12.
(2) Ife= -1, we have

£(w) = —u f(w)
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(i) When b? > 42,

( 16 16
1+ l—b—2 1— l—b—2
flu) =cu™ 2 + cou™ 2
— 18 Y
< 1+ 1 B—g 1 1 EQ-
g(u) =c3u™ 2 +cquT 2
16 16
_1— -5 _1+ 1-25
\ + ciau 2 + cofBu 2z,

where ¢; € R, i =1,2,3,4, [c1,c2,c3,c4] # 0,

c
a = ,
1-,/1-18 1—,/1-18
b2 b2 4
3 c
14+,/1-18 1+,/1-18
b b 4
Then by a centroaffine transformation
/1_18 _ /i_Is _ /i 1s
; 14 1 32— _1 1 2 1 1 ;f
r = (U’U, 2 + au 2 , VU 2
1+‘/1—%g- 1+ 1—%% 1— 1—%%
+Bu" 2z ,u-_ 2z ,u_ 2 ) (2.30)

The surface is centroaffinely equivalent to Example 2.12.

When b% = 42,
f(u) = c1v/ulogu + cav/u

1 1
g(u) = csv/ulogu + cav/u + clc\—/a(2 + logu) + 02071_;,

where ¢; € R, i =1,2,3,4 and [c1, ¢, c3,¢4] # 0. Then

2+ logu

r = (cy,c2,c3,C4) t(v\/ﬂlogu—t-c—\/_—,v\/ﬂ
u

+ c%, Vulogu, \/ﬂ) (2.31)

The surface is centroaffinely equivalent to Example 2.13.
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(iii) When b? < 42

( 16 _ 16
1/ /81
f(u) = c1y/ucos logu + co/usin b2 logu
16 1 16_1
b2
g(u) = c3y/ucos *——logu + c4y/usin Y—5— logu
ﬁ a1 51
+c1 -\}——(ﬁcos——Z—logu—asm 5 logu)
16 1 lg—l
\ +e (a cos +——logu + (sin *—— log u)

4 bic /16 b?
where ¢; € R, i = 1,2,3,4, [e1,¢3,¢3,c4) #0, a = 3/;2 — 1, B = 5.

Then by a centroaffine transformation

\/1179’—11 +ﬂcos
——logu
2 8 NG
/16

18—

16 16 1
\/ b2
. o cos log u+ ﬁ sin +—— log u
u sin g logu +

16
16 _ 4 ,/ 1
VU cos —b22— log u, log u)

-1 81
. b
logu — asin +——log u

M‘HS

Vusin +——— (2.32)
The surface is centroaffinely equivalent to Example 2.14. \

(III) In this case, we have ¢ = 0, ¥(u) = 3u™2, A(u) = (3)2du?, O(u) =
3eu e +1/3d = 0. Thus (1.15) becomes

4 4
Ty = <§) dudz, + geu%,
that is

3 9

8 3

(2.33)
Ty = :|:§eu

T, + geu2m.
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Ty = %u_% yields

—

z = f(v)u? + g(v)u 3.

From z,, = (%) 2dudz, + eu2a: and f(v) Z 0 we get

=g (e- %) 9(v)
g"(v) =0.

Therefore

1 1
flv) = ¢ (gkv?’) + co <§kv2) +c3v + ¢y
9(v) = c1v + ¢,

where ¢; € R4, i =1,2,3,4, [c1,c2,¢c3,¢4] 0, k = %(e — Td) Then

1 1
x = (c1,c2,¢3,¢4) t(vu_% + gkv3u%,u_% + Ek'v2u%,vu%,u%). (2.34)

The surface is centroaffinely equivalent to Example 2.15.

Case (C): 1, =0, ¢, # 0.
In this case, we have A = 0, ¥(v) = €%0?, p(v) = 9;—6113 O(v) = e2gv2
3ac = —4, 16e = 3ea®. Thus (1.15) becomes

ade 3 a? 9
Tyy = ?v Ty —}-er y
de _,
xz — 3
- eazv T
that is
8€ 3 4 ,
Toyu = ——g—ev Ty + 3ev T
3, (2.35)
xvv = Zv— x

Setting (u,v) — (v,u), the equation (2.35) becomes the equation (2.33).
This completes the proof of ['heorem 2.1 .
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