A remark on the action of PGL(2,q) and PSL(2,q)on the projective line

(Dedicated to Professor Takeshi Kondo on his sixtieth birthday)

Shiro IWASAKI and Thomas MEIXNER

(Received December 25, 1995)

Abstract. Let q be a prime power, K = GF(q) the finite field with q elements, $\Omega = K \cup \{\infty\}$ the project line over K. Let $\bigstar = PGL(2,q)$ and $\maltese = PSL(2,q)$ be the linear fractional group on Ω and the special linear fractional group on Ω , respectively. Let U be any non-trivial subgroup of the (cyclic) multiplicative group $K \setminus \{0\}$ and set $E = U \cup \{\infty\}$. The main purpose of this note is to determine the structures of \bigstar_E and \maltese_E , the setwise stabilizer of E in \bigstar and \maltese , respectively. Then, as an application, by taking various q and U, we obtain various 3-designs (Ω, E^{\bigstar}) and 3 (resp. 2)-designs (Ω, E^{\maltese}) in case $q \equiv -1$, (resp. $q \equiv 1$) (mod 4), which contain new designs.

Key words: PGL(2,q), PSL(2,q), stabilizer, Frobenius group, design.

1. Introduction and notation

Throughout this note, we fix the following notation.

p:	any prime number
q:	a power of p
K := GF(q)	finite field with q elements
$\Omega:=K\cup\{\infty\}$	projective line over K
$F := K \setminus \{0\}$	multiplicative group of K
大 $^{1)}:=PGL(2,q)=$	$\{x \mapsto (ax+b)/(cx+d) \mid a,b,c,d \in K,$
	$ad-bc \in F\}$
$ \mathcal{N}^{2)} := PSL(2,q) = $	$\{x \mapsto (ax+b)/(cx+d) \mid a,b,c,d \in K,$
	$ad - bc \in F^2$
m:	a divisor of $q-1$ with $m>1$
U:	a subgroup of order m of the (cyclic)
	$\operatorname{group} F$
$E := U \cup \{\infty\}$	

1991 Mathematics Subject Classification: 20E07, 05B05.

^{1) &#}x27;大' (dai) means 'large'.

^{2) &#}x27;小' (shou) means 'small'.

 $oldsymbol{ au}_E$: setwise stabilizer of E in $oldsymbol{ au}$ $oldsymbol{ au}_E$: setwise stabilizer of E in $oldsymbol{ au}$ $oldsymbol{ au}(q,E):=(\Omega,E^{oldsymbol{ au}})$ block design on the point set Ω , whose blocks are the images of E under the group $oldsymbol{ au}$ block design on the point set Ω , whose blocks are the images of E under the group $oldsymbol{ au}$

The main purpose of this short note is to determine the structures of \bigstar_E and \maltese_E . This is a generalization of [3, Proposition 3.1] and [4, Theorem]. As an application, by taking various q and U, we obtain various 3-designs $\widetilde{\boldsymbol{D}}(q,E)$ and 3 (resp. 2)-designs $\boldsymbol{D}(q,E)$ in case $q \equiv -1$ (resp. $q \equiv 1$) (mod 4). Some of these designs fill in several blanks in the table of Chee, Colbourn, Kreher [1].

2. Theorems and their proofs

Theorem A Set $H := \bigstar_E$. Then the following holds:

- (i) If m = 2, whence $U = \{1, -1\}$, then $H \cong \Sigma_3$, the symmetric group of degree 3, and H is generated by the transformations $x \mapsto -x$ and $x \mapsto (x-3)/(x+1)$.
- (ii) If m = 3, whence $U = \{1, \beta, \beta^2\}$ for some nontrivial cubic root of unity β , then $H \cong A_4$, the alternating group of degree 4, and H is generated by the transformations $x \mapsto \beta x$, and $x \mapsto (x+2)/(x-1)$.
- (iii) If U is the multiplicative group of some subfield M of K, then H is conjugate in \bigstar to the group of all affine transformations $x \mapsto ax + b$, $a \in U$, $b \in M$, and H is a Frobenius group of order m(m+1).
- (iv) In all other cases, $H = \{x \mapsto ux \mid u \in U\}$ is cyclic of order m.

Proof. First, we show that the stabilizer H_{∞} of ∞ in H also stabilizes the point 0, and equals the group $C := \{x \mapsto ux \mid u \in U\}$. Clearly, C stabilizes 0 and is contained in H_{∞} . Conversely, let $\sigma : x \mapsto ax + b \ (a \in F, b \in K)$ be any element of H_{∞} and take an element $u \in U \setminus \{1\}$. Then

$$aU+b=U^{\sigma}=U=uU=u(aU+b)=aU+ub,$$

and so aU = aU + c, where c = b(u - 1). Therefore, adding the number c to the elements of aU only permutes these elements. Hence, the set aU is

a union of left cosets of the subgroup $\langle c \rangle$ of the additive group (K, +). But the field K has characteristic p, so the subgroup $\langle c \rangle$ has order 1 or p. As the order of aU equals the order of U, and m = |U| is a divisor of q - 1, the order of aU can not be divisible by p, hence $\langle c \rangle$ has order 1 and c = 0. This forces b = 0, as u was chosen to be different from 1. Consequently, $a \in U$ and $\sigma \in C$. Thus, we have $H_{\infty} = C$, which acts regularly on U, is isomorphic to U, and hence cyclic of order m.

Assume H is not transitive on E, then the point ∞ must be fixed by H and $H = H_{\infty}$, and so H = C by the above. Then we are in case (iv).

Assume that H is transitive on E. Then, as $C = H_{\infty}$ acts regularly on U, the group H acts sharply 2-transitively on the m+1 points of E and so is a Frobenius group of order m(m+1) (see [2] V.8.2). Hence H has a normal subgroup N, which is regular on E, and $C = H_{\infty}$ acts transitively on the non-identity elements of N. This implies that N is an elementary abelian r-group for some prime r, and m+1 is some power of the prime r (see [2] II.2.3). As H is transitive on nonidentity elements of N, there is no proper nontrivial subgroup of N normal in H. This implies that N is contained in Λ . Assume r is different from 2 and p. Then N is cyclic by Dickson's list of subgroups of $\Lambda = PSL(2,q)$ (see [2] II.8.27). Hence |N| = r = m+1. Moreover, the normalizer of N in Λ is dihedral (see [2] II.8.3–8.5) and N is a maximal cyclic subgroup of H. As $H \cap \Lambda$ has order m(m+1) or m(m+1)/2 and is contained in the normalizer of N in Λ , we see that $m/2 \le 2$ and $m \le 4$. Therefore, r = 3 or r = 5.

Assume r=5. Then there is a Frobenius group of order 20 contained in $\mathbf{x} = PGL(2,q) \subset PSL(2,q^2)$, which contradicts [2] II.8.27. Hence r=3, and m=2. Clearly, there is only one subgroup U of order 2 in F, hence we are in case (i). Conversely, for p odd, the transformations $x \mapsto -x$ and $x \mapsto (x-3)/(x+1)$ generate a subgroup H of \mathbf{x} isomorphic to Σ_3 acting 2-transitively on $E=\{\infty\}\cup\{1,-1\}$.

Assume r=2, different from p, whence N is an elementary abelian 2-group and from Dickson's list it follows that N has order 4 and m=3. Now we are in case (ii). Conversely, if 3 divides q-1, take some nontrivial cubic root of unity β , then the transformations $x \mapsto \beta x$ and $x \mapsto (x+2)/(x-1)$ generate a subgroup H of \bigstar isomorphic to A_4 acting 2-transitively on $E = \{\infty\} \cup \{1, \beta, \beta^2\}$.

Assume r = p. The sharply 2-transitive group H on E now has a normal Sylow p-subgroup N. It is easily seen that the group N must have

a unique fixed point α on Ω , left invariant by the whole of H, in particular by $C = H_{\infty}$, and so α must be one of the two fixed points of C, which are ∞ and 0. As N acts regularly on $E = U \cup {\infty}$, the unique fixed point of N must be 0. Hence H fixes the point 0.

Consider the element $t: x \mapsto 1/x$ of \bigstar . It interchanges the points 0 and ∞ and leaves invariant the set U. It is easily verified that the transformation t normalizes C and maps E onto the set $M:=E^t=\{0\}\cup U$. And H^t acts sharply 2-transitively on E^t , fixing the point ∞ . Hence H^t acts on Ω through transformations $x \mapsto ax + b$, $a \in F$, $b \in K$. It is easily seen that elements of order p in this group act as transformations $x \mapsto x + b$.

We claim that M is a subfield of K with multiplicative group U, and the group H^t consists of all transformations $x \mapsto ax + b$, $b \in M$, $a \in U$. Clearly, as $0 \in E^t$, and since N^t is an elementary abelian p-group, the Frobenius kernel N^t of H^t consists of the transformations $x \mapsto x + b$, $b \in M$. As N^t is a group, M is an additive subgroup of K. Clearly, $M \setminus \{0\} = U$ is a (multiplicative) subgroup of F, and so M is a subfield of K. Still, $C = C^t$ acts on the projective line by transformations $x \mapsto ax$, $a \in U$, and so the group H^t consists of all the transformations $x \mapsto ax + b$, $a \in U$, $b \in M$, and we are in case (iii).

Conversely, if M is some subfield of K, and $U = M \setminus \{0\}$, then consider the group A of all transformations $x \mapsto ax + b$, $a \in U$, $b \in M$. It acts sharply 2-transitively on the subset M of Ω . The subgroup A^t of \bigstar for the transformation $t: x \mapsto 1/x$, acts 2-transitively on $E = \{\infty\} \cup U$.

Remark. If U is a subgroup of F^2 , then C is contained in \mathcal{N} , and the statements of the theorem hold for \mathcal{N} instead of \mathcal{L} . In particular, the stabilizer of E in \mathcal{L} is contained in \mathcal{N} . If U does not consist of squares only, the stabilizer of E in \mathcal{L} contains properly the stabilizer of E in \mathcal{L} . Moreover we note that if 3 divides q-1, then -3 is a square in K, whence the involution $x \mapsto (x+2)/(x-1)$ in (ii) of Theorem A is contained in \mathcal{L} . In fact, since $x^2 + x + 1 = (x - \beta)(x - \beta^2)$ for a nontrivial cubic root of unity β , by setting x = 1, we have $3 = (1 - \beta)(1 - \beta^2) = (1 - \beta) \cdot \beta^2$ $(\beta - 1) = -\beta^2(\beta - 1)^2$.

From this remark, we easily derive the following theorem.

Theorem B Set $H := \mathcal{Y}_E$. Then the following holds:

(i) If m = 2, whence $U = \{1, -1\}$ and q is odd, then $H \cong \Sigma_3$, and

H is generated by $x \mapsto -x$, $x \mapsto (x-3)/(x+1)$, if -1 is a square in F, whereas $H \cong A_3$, and H is generated by the transformation $x \mapsto (x-3)/(x+1)$, if -1 is not a square in F.

- (ii) If m = 3, whence $U = \{1, \beta, \beta^2\}$ for some nontrivial cubic root of unity β , then $H \cong A_4$, and H is generated by the transformations $x \mapsto \beta x$, and $x \mapsto (x+2)/(x-1)$.
- (iii) If U is the multiplicative group of some subfield M of K, then H is conjugate in \bigstar to the group of all affine transformations $x \mapsto ax + b$, $a \in U \cap F^2$, $b \in M$, hence H is a Frobenius group of order m(m+1) or m(m+1)/2.
- (iv) Otherwise, $H = \{x \mapsto ux \mid u \in U \cap F^2\}$ is cyclic of order m or m/2.

3. Application of Theorems

We recall a well-known general fact that, for a t-homogeneous group H on a finite set Γ with $|\Gamma| = v$ and a subset A of Γ with $|A| = k \geq t$, the pair (Γ, A^H) is a t- (v, k, λ) design, where A^H is the set of images of A under the group H, $\lambda = |H| \binom{k}{t} / |H_A| \binom{v}{t}$ and H_A is the setwise stabilizer of A in H. Since \bigstar is 3-homogeneous on Ω of order (q+1)q(q-1) and Λ is 3 (resp. 2)-homogeneous on Ω of order (q+1)q(q-1)/2 in case $q \equiv -1$ (resp. $q \equiv 1$) (mod 4), we have at once

Lemma The following holds.

- (1) $\widetilde{\boldsymbol{D}}(q,E)$ is a 3- $(q+1,|E|,|E|(|E|-1)(|E|-2)/|\boldsymbol{\chi}_E|)$ design.
- (2) (i) If $q \equiv -1 \pmod{4}$, then $\mathbf{D}(q, E)$ is a $3 \cdot (q + 1, |E|, |E|(|E| 1)(|E| 2)/2|\mathcal{N}_E|)$ design.
 - (ii) If $q \equiv 1 \pmod{4}$, then D(q, E) is a 2-(q + 1, |E|, |E|(|E| 1)(q 1)/2| design.

It is clear, that for any choice of E, the designs $\widetilde{\boldsymbol{D}}(q,E)$ and $\boldsymbol{D}(q,E)$ coincide, if $\boldsymbol{+} = \boldsymbol{+}$, i.e. if p = 2, or if p > 2 and $|\boldsymbol{+}_E| = 2|\boldsymbol{+}_E|$. In case p > 2 and $\boldsymbol{+}_E = \boldsymbol{+}_E$, the design $\widetilde{\boldsymbol{D}}(q,E)$ has twice as many blocks as the design $\boldsymbol{D}(q,E)$.

Assume p > 2. Then the situation is clearly well understood in case (i), i.e. for m = 2, where the blocks of $\widetilde{\boldsymbol{D}}(q,E)$ are just all 3-subsets of Ω . In cases (iii) and (iv), the situation depends on the question, whether 2m divides q-1 or not. Remarkably, in case (ii), always $\widetilde{\boldsymbol{D}}(q,E)$ and $\boldsymbol{D}(q,E)$ are different.

By combining the lemma with Theorems A and B, and taking various q and U, we obtain various 3-and 2-designs. In a particular, [3, Theorem 3.2] (resp. [4, Theorem]) dealt with the case $q \equiv -1 \pmod{4}$ and $U = F^2$ (resp. q is a prime and $q-1=2^em$, m odd, $e \geq 2$, and $U=F^{2^i}$, $1 \leq i \leq e$).

Here, we give only examples which fill in blanks in the table of [1] (the new ones are marked with *, whereas desigs given already in [3, 4] are marked with */).

q	q-1	U	$oldsymbol{D}(q,E)$: 2- or 3- $(q+1,k,\lambda)$	$oxed{\widetilde{oldsymbol{D}}(q,E): 3 ext{-}(q+1,k,\lambda)}$
		F^2	2 - $(26, 13, 12 \cdot 13)$	3-(26, 13, 11·13)*
		F^3	2 - $(26, 9, 72 \cdot 3)$	3-(26, 9, 21·3)*
5^2	$2^3 \cdot 3$	F^4	$2 - (26, 7, 42 \cdot 2)^*$	3-(26, 7, 35)
		F^6	2 - $(26, 5, 4 \cdot 3)$	3-(26, 5, 3)*
		F^8	2 - $(26, 4, 6 \cdot 2)$	3-(26,4,2)
3^3	$2 \cdot 13$	F^2	$3-(28,14,6\cdot14)*'$	$3-(28,14,6\cdot28)^*$
		F^2	2 - $(30, 15, 14 \cdot 15)$	3-(30, 15, 13·15)*'
29	$2^2 \cdot 7$	F^4	2-(30, 8, 28·4)*'	3-(30, 8, 6 · 8)*'
		F^7	2 - $(30, 5, 4 \cdot 35)$	3-(30, 5, 3·5)*

References

- [1] Chee Y.M., Colbourn C.J. and Kreher D.L., Simple t-designs with $v \leq 30$. Ars Combin. 29 (1990), 193–258.
- [2] Huppert B., Endliche Gruppen I. Springer, 1967.
- [3] Iwasaki S., An elementary and unified approach to the Mathieu-Witt systems. J. Math. Soc. Japan 40 (1988), 393–414.
- [4] Iwasaki S., Infinite families of 2-and 3-designs with parameters $v=p+1, k=(p-1)/2^i+1$, where p odd prime, $2^e \top (p-1), e \geq 2, 1 \leq i \leq e$. (to appear in J. Combin. Designs)

Shiro Iwasaki
Department of Mathematics
Hitotsubashi University
Kunitachi, Tokyo 186, Japan
E-mail: iwasaki@math.hit-u.ac.jp

Thomas Meixner
Mathematisches Institut der
Justus-Liebig-Universität Gießen
Arndtstraße 2, 35392 Gießen, Deutschland
E-mail: Thomas.Meixner@math.uni-giessen.de