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Some solvability criteria for finite groups

Angel CAROCCA! and Helder MATOS
(Received December 4, 1995; Revised March 19, 1996)

Abstract. We prove a variant of Kegel-Wielandt’s theorem. We use this to give some
solvability criteria for factorizable finite groups.
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Let G be a finite group and G = HK, where H and K are subgroups
of G. There are a number of results which deduce the solvability of G from
suitable conditions on H and K. In particular, two of these results are:

Huppert - It [4], If H is supersolvable and K is cyclic of odd order,
then G = HK 1is solvable.

Kegel - Wielandt ([5], p. 674, Satz 4.3), If H and K are nilpotent,
then G = HK is solvable.

In the first part of this communication, using classification theorems of
simple groups we prove the following:

Theorem A Let G be a finite group, H < G such that |G : H| = p®
with p an odd prime number. If H is 2-nilpotent, then G is solvable.

In the second part, we consider the following definition: A subgroup H
of a group G is said to be semi-normal in G if there exists a subgroup K of
G such that G = HK and H permutes with every subgroup of K.

The solvability of the normal closure of a solvable semi-normal subgroup
cannot be concluded in general: In the alternating group G = Ajs the
subgroups H of index 5 are solvable and semi-normal in G, but the normal
closure H® = G is not solvable.

This makes the following theorem interesting:

Theorem B Let G be a finite group and H < G a semi-normal sub-
group.
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(a) If H is 2-nilpotent, then the normal closure HC of H in G is solvable.
(b) If the order |H| of H is odd, then |HC| is odd.

1. Preliminary Results
We prepare the proof of the theorems.

Lemma 1.1 (Fisman [3]) Let G = HK be a group with H and K proper
solvable subgroups such that (|H|,|K|) = 1. Then the composition factors of
G belong to one of the following types:

) Cyclic of prime order

) PSL(2,2"), n > 2,

(c) PSL(2,q) with ¢ = —1 mod (4),

) PSL(3,3),

) M.

Lemma 1.2 (Finkel and Lundgren [2]) Let G = HK be a group with H
and K subgroups such that (|H|,|K|) = 1. Let R < H with |H : R| = 2
and R = Ry X Ry where Ry is the Sylow-2-subgroup and Ry s the Hall-
2/ -subgroup of R. Assume further that, H/R is abelian or dihedral. If K 1is
nilpotent of odd order, then G is solvable.

2. Semi-normal subgroups

A subgroup H of a group G is said to be semi-normal in G if there
exists a subgroup K of G such that G = HK and H permutes with every
subgroup of K. In this case, we say that K is an s-supplemnt of H in G.
Clearly, every normal subgroup of G is semi-normal. Also every subgroup

of prime index is semi-normal (see [1], [7], [8]).

Lemma 2.1 Let H be a semi-normal subgroup of a group G.

(a) IfH <L <G, then H is semi-normal in L.

(b) If N 4 G, then HN/N is semi-normal in G/N.

(c) Let K be an s-supplement of H in G and L < K. Then H permutes
with every conjugate of L in G.

Proof.  For (a) and (b) see (SU, [7]).
(c) Let g€ G.Put g=khwith ke K and h € H. Since L* is a subgroup
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of K we have that
LYH = L*H = (L*H)" = (HL*)" = HL* = H 9.

[]

Lemma 2.2 Let G be a finite group, H and K subgroups of G. If H

permutes with every conjugate of K in G, then HX N KH is subnormal in
G.

For a proof see ([6], p.221, Th. 7.2.5).

3. Proof of the theorems

Proof of Theorem A Suppose the theorem is false and let G be a coun-
terexample of smallest order. We assume that H is of minimal order. Since
H is solvable, we may assume (|H|,p) = 1. Hence G = HK, K € Syly(G)
and HN K = 1.

First we prove that G is simple. Suppose N <1 G. We have that HN/N =
H/H NN is 2-nilpotent and |G/N : HN/N| = |G : HN]| divides p®.

If N # 1, then by the minimality of |G|, we have that G/N is solvable.
Since [N : H N N| divides p?, the minimality of |G| tells that N is solvable.
So G is solvable, a contradiction. Hence G is simple. (]

By lemma 1.1, G is isomorphic to one of the groups;

PSL(2,2") n>2, PSL(2,q) with ¢= -1 mod (4),
PSL(3, 3) or M11~

Since M1; has not a 2-nilpotent subgroup of prime power index, we have
that G is not isomorphic to M;;.

If G = PSL(3,3), then by ([4], p.189, Satz 7.4 Fall 1), we have that
|H| = 2%3% and K € Syl13(G). But, in this case H is not 2-nilpotent,
because otherwise H = N¢/(P), with P € Syl3(G), a contradiction.

Since PSL(2,2") has abelian Sylow-2-subgroups, lemma 1.2 tells that
G is not isomorphic to PSL(2, 2").

Since PSL(2, g) with ¢ = —1 mod (4) has dihedral Sylow-2-subgroups,
lemma 1.2 tells that G is not isomorphic to PSL(2, q).

Proof of Theorem B Suppose the theorem is false and let G be a coun-
terexample of smallest order.
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Since H is semi-normal in G, there exists a subgroup K of G such that
G = HK and H permutes with every subgroup of K. We assume that K is
chosen of minimal order. L]

The following items are valid in G :

(i) G has a unique minimal normal subgroup N and N is not solvable (in
(b), N has even order).

Suppose N; and N, are minimal normal subgroups of G, with N1 # Nj.
By (b), the quotient H N;/N; is semi-normal in G/N; (i = 1,2).
Since HN;/N; is 2-nilpotent (in (b), HN;/N; has odd order), by the mini-
mality of |G|, we have that H®N;/N; is solvable (in (b), HC N;/N; has odd
order). Hence HG = HG/(Ny N NN HE) is solvable (in (b), HY has odd
order), a contradiction.

So G has a unique minimal normal subgroup N. Since N < H G and
HES /N is solvable (in (b), HY/N has odd order), we have that N is not
solvable (in (b), N has even order).

(ii) H centralizes every proper subgroup of K.

Let L be a proper subgroup of K. By (a), H is semi-normal
in HL = LH. Since K is of minimal order, we have that HL is a proper
subgroup of G and H#L = H is solvable (in (b), HL has odd order), since
the theorem holds in HL.

By (c), H permutes with every conjugate of L in G. By
Lemma 2.2, the intersection HXNL¥ is subnormal in G. Since H L is solvable
(in (b), HL has odd order), by (i) we have H* N L7 = 1, since every
subnormal solvable ( in (b), subnormal odd order) subgroup is contained in

a solvable (in (b), odd order) normal subgroup.Therefore, the commutator
group [H,L] < [HY,LH] < HLnL¥ =1.

(iii) K 14s a cyclic p-group, for some prime number p and the mazximal
subgroup K, of K is normal in G.

If K has two different maximal subgroups, then by (ii), H centralizes
K and H is normal in G, a contradiction.

So K is a cyclic p-group, for some prime number p and K; 9 G.

(iv)  The contradiction
Item (i) shows that |K| = p = |G : H|. By Theorem A, we have that G
is solvable. In the hypothesis (b), by (i) we have that p=2s0 H 9 G.
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