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Axisymmetric solutions and singular parabolic equations
in the theory of viscosity solutions
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Abstract. We extend the theory of viscosity solutions for singular parabolic equations
including, for example, axisymmetrized level set equation for mean curvature flow equa-
tion. We establish a comparison principle for viscosity solutions of singular degenerate
parabolic equations including such an equation. We discuss the relation between axisym-
metric viscosity solutions of original level set equation for mean curvature flow equation
and the viscosity solution of axisymmetrized one.
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1. Introduction

We are concerned with a degenerate parabolic equation of form:

u_{t}+F_{0}( \nabla_{x,r}u, \nabla_{x,r}^{2}u)-\frac{l/u_{r}}{r^{\beta}}=0 in Q=(0, T)\cross\Omega\cross(0, R) , (1.1)

-u_{r}=0 on S=(0, T)\cross\Omega\cross\{0\} , (1.2)

where \Omega is a domain in R^{m} , T , R and \nu are positive numbers and \beta is
a positive parameter. Here u_{t}=\partial u/\partial t , \nabla_{x}u and u_{r}=\partial u/\partial r denote the
time derivative of u , the gradient of u in space variables x and the space
derivative of u in r , respectively. We denote by \nabla_{x,r}u=(\nabla_{x}u, u_{r}) and \nabla_{x,r}^{2}u

the gradient of u and the Hessian of u in space variables (x, r) , respectively.
The function F_{0}=F_{0}(p, X) is not continuous on p=0. As explained later
in section 3, the equation (1.1) has many examples. One of them is of the
form:

u_{t}-| \nabla_{x,r}u|div_{x,r}(\frac{\nabla_{x,r}u}{|\nabla_{x,r}u|})-\frac{n-m-1}{r}u_{r}=0 (1.3)

which is introduced as axisymmetrized level set equation for mean curvature
flow equation, where for C^{1} function f_{i} : Qarrow R (i=1, . . , m+1) the
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divergence of f= (f_{1}, \ldots, f_{m+1}) is defined by div_{x,r}f=\partial f_{1}/\partial x_{1}+ +
\partial f_{m}/\partial x_{m}+\partial f_{m+1}/\partial r and n – m – 1>0 . Many authors study the level
set equation for mean curvature flow equation. Axisymmetric solutions are
expected to satisfy (1.3). Actually, the equation (1.3) with n=3 , m=1
is derived from the original level set equation and studied by Chen-Giga-
Hitaka-Honma [3] in view of numerical analysis. Axisymmetric solutions of
the original level set equation are studied by Altschuler-Angenent-Giga [1].

Our main goal is to extend the theory of viscosity solutions so that it is
directly applicable to (1.1) having singularity at r=0. In fact, we establish
a notion of viscosity solutions for (1.1) and (1.2) to get the comparison prin-
ciple. The equation (1.1) appears to have no meaning at r=0. However,
multiplying (1.1) by r^{\beta} and letting r tend to zero yield -u_{r}=0 . We are
tempting to think that (1.1) and (1.2) is a boundary value problem with
-u_{r}=0 in viscosity sense. However, it turns out that this observation is
not enough to obtain a suitable notion of viscosity solutions. At r=0 we
always require -u_{r}=0 in the viscosity sense.

As we pointed out, many examples of the equation (1.1) are derived by
restricting the equation

U_{t}+\overline{F}(DU, D^{2}U)=0 in (0, T) \cross\Omega’\cross\Omega’ (1.4)

on the space of axisymmetric functions, where \Omega’ , \Omega’ are domains in R^{m} ,
R^{n-m} . respectively. Here DU and D^{2}U denote the gradient of U and the
Hessian of U in the all space variables.

To check that our notion of viscosity solutions is appropriate, we prove
that an axisymmetric sub(super)solution of (1.4) is a sub(super)solution
of (1.1) and (1.2). Unfortunately, we are unable to prove the converse.
However, if the solution of (1.4) with axisymmetric data does exist, we
argue as follows. A solution of (1.1) and (1.2) with the same data must
be an axisymmetric solution of (1.4) (provided that (1.4) has a comparison
principle). We thus observe that a solution of (1.1) and (1.2) is actually an
axisymmetric solution of (1.4) in this situation (Remark 5.7).

The advantage of our theory is that we are able to handle \psi : Qarrow R

satisfying

\psi_{t}-|\nabla_{x,r}\psi|div_{x,r}(\frac{\nabla_{x,r}\psi}{|\nabla_{x,r}\psi|})-\frac{\nu\psi_{r}}{r}=0

even if \nu is not an integer. This leads a possibility that the level set method
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would be applicable for “quenching problem” v : (0, T) \cross Rarrow[0, \infty) sat-
isfying

v_{t}- \frac{v_{xx}}{1+v_{x}^{2}}+\frac{\nu}{v}=0 ,

where the level set of \psi=\psi(t, x, r) is given as r=v(t, x) . We shall discuss
this problem in our forthcoming paper [10].

A feature of the equation (1.1) is having singularity in space variables
r=0. Recently Siconolfi [12] and Ishii-Ramaswamy [7] study equations of
first order having a singularity in space variables. The interesting aspect
of their problems i_{{}^{t}S} that uniqueness of solutions does not hold in usual
viscosity (solutions) sense.

The paper is organized as follows. In section 2 we give a notion of
solutions for (1.1) and (1.2). In section 3 we give some examples of (1.1).
In section 4 we shall establish a comparison principle of the solutions for
(1.1) and (1.2) on a bounded domain. In section 5 we shall discuss the
relation between solutions of (1.1) and (1.2) and axisymmetric solutions of
(1.4) provided that (1.4) satisfies suitable conditions.

In our forthcoming paper we shall prove the existence of solutions of the
Cauchy problem of (1.1) and (1.2). This paper gives a first step to consider
the quenching problem in the level set method. We shall discuss the problem
of beyond quenching applying the level set method in our forthcoming paper.

This work is a part of doctoral dissertation.
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2. Definition of viscosity solutions

Let \Omega be a bounded domain in R^{m}- Let T, R and \nu be positive numbers
and let \beta be a positive parameter. We consider a degenerate parabolic
equation of the form:

u_{t}+F_{0}( \nabla_{x,r}u, \nabla_{x,r}^{2}u)-\frac{\nu u_{r}}{r^{\beta}}=0 in Q=(0, T)\cross\Omega\cross(0, R) , (2.1)
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-u_{r}=0 on S=(0, T)\cross\Omega\cross\{0\} . (2.2)

Here F_{0} is assumed to satisfy

F_{0} : (R^{m+1}\backslash \{0\})\cross S^{m+1}arrow R is continuous,

where S^{m+1} denotes the space of real symmetric (F_{0}1)

matrices with order m+1 ,

F_{0} is degenerate elliptic, i.e. ,
(F_{0}2)

F_{0}(p, X+Y)\leq F_{0}(p, X) for all Y\geq 0 , p\neq 0 .

-\infty<F_{0*}(0, O)=F_{0}^{*}(0, O)<+\infty , (F_{0}3)

where F_{0*} and F_{0}^{*} are the lower and upper semicontinuous relaxation
(envelope) of F_{0} on R^{m+1}\cross S^{m+1} . respectively, i.e. ,

F_{0*}(p, X)

= \lim_{\epsilon\downarrow 0}\inf\{F(q, Y);q\in R^{m+1}\backslash \{0\}, |p-q|<\epsilon, |X-Y|<\epsilon\}

and F_{0}^{*}=-(-F_{0})_{*} . Here |X| denotes the operator norm. Note that if F_{0}

satisfies (F_{0}2) then so do F_{0*} and F_{0}^{*} , respectively, even if p=0 .
The equation (2.1) appears to have no meaning at r=0. However, we

multiply both sides of (2.1) by r^{\beta} and let r tend to zero so that we obtain
(2.2). In the equation (2.2) the “minus” sign is important to consider these
problems in the viscosity (solutions) sense (see definition 2.1). We generalize
(2.1) to

u_{t}+F ( \nabla_{x,r}u , \nabla_{x,r}^{2}u , \frac{u_{r}}{r^{\beta}})=0 in Q=(0, T)\cross\Omega\cross(0, R) . (2.1’)

We set \Sigma=Q\cup S . We give a definition of viscosity solutions of (2.1’)

and (2.2) in \Sigma . Let F be a function from (R^{m+1}\backslash \{0\})\cross S^{m+1}\cross R to R.

Definition 2.1 Let u: \Sigmaarrow R\cup\{\pm\infty\} .
(i) A function u is a viscosity subsolution of (2.1’) and (2.2) in \Sigma , if

u^{*}<+\infty in \overline{Q} and for all \varphi\in C^{2}(\Sigma) and local maximum points
(\hat{t},\hat{x}, \hat{r}) of u^{*}-\varphi ,

\{

\varphi_{t}+F_{*}(\nabla_{x,r}\varphi , \nabla_{x,r}^{2}\varphi , \frac{\varphi_{r}}{r^{\beta}} ) \leqq 0 at (\hat{t},\hat{x},\hat{r}) if \hat{r}>0 ,

-\varphi_{r}
\leqq 0 at (\hat{t},\hat{x}, 0) .
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(ii) A function u is a viscosity supersolution of (2.1’) and (2.2) in \Sigma , if
u_{*}>-\infty in \overline{Q} and for all \varphi\in C^{2}(\Sigma) and local minimum points
(\hat{t},\hat{x},\hat{r}) of u_{*}-\varphi ,

\{

\varphi_{t}+F^{*}(\nabla_{x,r}\varphi , \nabla_{x,r}^{2}\varphi , \frac{\varphi_{r}}{r^{\beta}} ) \geqq 0 at (\hat{t},\hat{x},\hat{r}) if \hat{r}>0 ,

-\varphi_{r}
\geqq 0 at (\hat{t},\hat{x}, 0) .

(iii) If u is a viscosity subsolution and a viscosity supersolution of (2.1’)
and (2.2) in \Sigma , then we call u a viscosity solution of (2.1’) and (2.2)
in \Sigma , where F_{*} and F^{*} are the lower and upper semicontinuous relax-
ation(envelope) of F on R^{m+1}\cross S^{m+1}\cross R , respectively, i.e. ,

F_{*}(p, X, a)= \lim_{\epsilon\downarrow 0}\inf\{F(q, Y, b) ;

q\in R^{m+1}\backslash \{0\} , |p-q|<\epsilon , |X-Y|<\epsilon , |a-b|<\epsilon\}

and F^{*}=-(-F)_{*} .

As usual we give another definition of viscosity solutions which is equiv-
alent to Definition 2.1.

Definition 2.2 Let u : \Sigmaarrow R\cup\{\pm\infty\} .
(i) A function u is called a viscosity subsolution of (2.1’) and (2.2) in \Sigma ,

if u^{*}<+\infty in \overline{Q} and

\tau+F_{*} (p, X, \frac{\rho}{r^{\beta}})\leqq 0 for all

(\tau,p, X)\in \mathcal{P}_{\Sigma}^{2,+}u^{*}(t, x, r) , (t, x, r)\in Q

and -\rho\leqq 0 for all
(\tau,p, X)\in \mathcal{P}_{\Sigma}^{2,+}u^{*}(t, x, 0) , (t, x, O)\in S ,

where p=(p’, \rho)\in R^{m}\cross R .
(ii) A function u is called a viscosity supersolution of (2.1’) and (2.2) in

\Sigma , if u_{*}>-\infty in \overline{Q} and

\tau+F^{*} (p, X, \frac{\rho}{r^{\beta}})\geqq 0 for all

(\tau,p, X)\in P_{\Sigma}^{2,-}u_{*}(t, x, r) , (t, x, r)\in Q

and -\rho\geqq 0 for all
(\tau, p, X)\in P_{\Sigma}^{2,-}u_{*}(t, x, 0) , (t, x, O)\in S .

Here P_{\Sigma}^{2,+} denotes the parabolic super 2-jet in \Sigma , i.e. , P_{\Sigma}^{2,+}u(t, x, r) is
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the set of (\tau,p, X)\in R\cross R^{m+1}\cross S^{m+1} with p=(p’, \rho) such that

u(\underline{t}, y, s)\leqq u(t, x, r)+\tau(\underline{t}-t)+\langle (\begin{array}{l}p’\rho\end{array}) , (\begin{array}{l}y-xs-r\end{array}) \rangle

+ \frac{1}{2}\langle X (\begin{array}{l}y-xs-r\end{array}) , (\begin{array}{l}y-xs-r\end{array}) \rangle

+o(|\underline{t}-t|+|y-x|^{2}+|s-r|^{2})

as (\underline{t}, y, s)arrow(t, x, r) for all (\underline{t}, y, s)\in\Sigma

and P_{\Sigma}^{2,-}u=-P_{\Sigma}^{2,+}(-u) , where < , > denotes the Euclidean inner
product.

(iii) If u is a viscosity subsolution and a viscosity supresolution of (2.1’)

and (2.2) in \Sigma , then we call u a viscosity solution of (2.1’) and (2.2)
in \Sigma .

3. Examples of equation

We give some examples of equation (2.1). A typical example comes
from the level set equation for mean curvature flow equation :

U_{t}-|DU| div(\frac{DU}{|DU|})=0 in (0, ^{T})
\cross\overline{\Omega} , (3.1)

where \overline{\Omega} is a bounded domain in R^{n} and D= (\partial/\partial x_{1}, \ldots , \partial/\partial x_{n}) . We con-
sider an x’-axisymmetric solution u(t, x’, r)=U(t, x) , where x=(x’, x’)\in
R^{m}\cross R^{n-m} , |x’|=r and n>m+1 . Then we can transform (3.1) to

u_{t}-| \nabla_{x,r}u|div_{x,r}(\frac{\nabla_{x,r}u}{|\nabla_{x,r}u|})-\frac{n-m-1}{r}u_{r}=0

in (0, T) \cross\Omega’\cross(0, R) (3.2)

for some bounded domain \Omega’ in R^{m} and R>0 . Here \nabla_{x,r}=(\nabla_{x’}, \partial/\partial r)=

(\partial/\partial x_{1}, . , \partial/\partial x_{m}, \partial/\partial r) and for functions f_{i} : R^{m}\cross Rarrow R(i=1 , \ldots .

m+1) we define div_{x,r}f=\sum_{i=1}^{m}\partial f_{i}/\partial x_{i}+\partial f_{m+1}/\partial r with f=(f_{1, }\ldots, f_{m+1}) .

Of course even if n=m+1 , we can transform (3.1) to (3.2), but it is natural
to consider (3.2) under the condition n>m+1 . This equation (3.2) with
n=3, m=1 is used to calculate (numerically) motion of x_{1} -axisymmetric
surfaces by mean curvature in [3] by the level set method. Evolutions of
such surfaces are well studied analytically in [1].
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We generalize (3.2) to

u_{t}-| \nabla_{x,r}u|div_{x,r}(\frac{\nabla_{x,r}u}{|\nabla_{x,r}u|})-\frac{\nu}{r}u_{r}=0 , (3.3)

where \nu is a positive constant not necessarily integer. This equation has the
form (2.1) with F_{0} satisfying (F_{0}1)-(F_{0}3) . In this situation it is impossible
to transform to an original equation like (3.1). However, using our definition
of viscosity solutions, we can directly study the equation (3.3).

An interesting example comes from the quenching problem introduced
by Kawarada [9]. We consider a little bit its generalization. For a given
continuous function \phi : Rarrow[0, \infty) we consider

v_{t}- \phi(v_{x})v_{xx}+\frac{1}{v^{\beta}}=0 in (0, T) \cross(-L, L) , (3.4)

where \beta is a positive parameter and L is a positive constant. In [9] essen-
tially, the case \beta=1 and \phi=Constant>0 is considered. We only study
positive solutions of (3.4). We shall formally transform (3.4) to the equation
as a special form of (2.1).

For each time we regard the graph of solutions of (3.4) as a curve in
the plane. First we shall derive a curve evolution equation from (3.4). The
curve evolution equation should be described by an upward normal vector
and a curvature. For a given smooth curve the unit upward normal vector
\vec{n} and the curvature \kappa are of form:

\vec{n}= (- \frac{v_{x}}{(1+v_{x}^{2})^{1/2}} , \frac{1}{(1+v_{x}^{2})^{1/2}})=(n_{1}, n_{2}) ,

\kappa=\frac{v_{xx}}{(1+v_{x}^{2})^{3/2}} .

In general, an upward velocity of a curve is v_{t} , so we obtain the velocity V
of upward normal vector direction of form:

V= \frac{v_{t}}{(1+v_{x}^{2})^{1/2}} .

When v(t, x) satisfies the equation (3.4), a curve r=v(t, x) moves by

V= \frac{\kappa}{n_{2}^{2}}\phi(-\frac{n_{1}}{n_{2}})-\frac{n_{2}}{r^{\beta}} . (3.5)

We apply the level set method. Indeed, we introduce an auxiliary function
\psi which describes the curve as a zer0-level set; i.e. , \{(t, x, r);\psi(t, x, r)=0\}
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on the curve. Let us calculate the level set equation for (3.5). Assume that
\psi<0 above the curve and \psi>0 below the curve. Then we have

V= \frac{\psi_{t}}{|\nabla_{x,r}\psi|} , \vec{n}=-\frac{\nabla_{x,r}\psi}{|\nabla_{x,r}\psi|} , \kappa=div_{x,r}(\frac{\nabla_{x,r}\psi}{|\nabla_{x,r}\psi|})

and we obtain a level set equation of the form:

\psi_{t}-(\frac{|\nabla_{x,r}\psi|}{\psi_{r}})^{2}|\nabla_{x,r}\psi|div_{x,r}(\frac{\nabla_{x,r}\psi}{|\nabla_{x,r}\psi|})\phi(-\frac{\psi_{x}}{\psi_{r}})-\frac{\psi_{r}}{r^{\beta}}=0 .

(3.6)

We thus have transformed (3.4) to (3.6). To consider (3.6) in our viscosity
sense we impose the condition (2.2) for (3.6) as for (2.1).

In the equation (3.4) when v goes to zero, we call that v quenches.
When v quenches, we cannot consider the equation. But using our method
even if v quenches, we have the solution for the level set equation (3.6) with
(2.2). By an analysis of the solution of (3.6) with (2.2), it is helpful to study
the solution of (3.4), especially, the behavior of solutions beyond quenching.

4. Comparison theorem

Let \Omega be a bounded domain in R^{m} and let T and R be positive numbers.
Let \beta be a positive parameter. We consider a singular degenerate parabolic
equation of the form:

u_{t}+F ( \nabla_{x,r}u , \nabla_{x,r}^{2}u , \frac{u_{r}}{r^{\beta}})=0 in Q=(0, T)\cross\Omega\cross(0, R) , (4.1)

-u_{r}=0 on S=(0, T)\cross\Omega\cross\{0\} . (4.2)

We list assumptions of F=F(p, X, a) .

F : (R^{m+1}\backslash \{0\})\cross S^{m+1}\cross Rarrow R is continuous,

where S^{m+1} denotes the space of real symmetric (F1)

matrices with order m+1 .

(i) F(p, X+Y, a)\leqq F(p, X, a) for all Y\geqq O , p\neq 0 ;

we usually call that F is degenerate elliptic. (F2)

(ii) F(p, X, a+b)\leqq F(p, X, a) for all b\geqq 0 , p\neq 0 .
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By definition it is easy to show that if F fulfills (F2) so do F_{*} and F^{*} ,
respectively, even if p=0.

-\infty<F_{*}(0, O, a)=F^{*}(0, O, a)<+\infty
(F3)

for all constant a\in R .

These assumption is automatically satisfied if F fulfills

F(p, X, a)=F_{0}(p, X) –va, \nu is a positive constant (F4)

and F_{0} satisfies (F_{0}1) , (F_{0}2) and (F_{0}3) . Let D be a domain in the Euclidean
space. For Q=(0, T)\cross D , the set \partial_{p}Q=(\{0\}\cross D)\cup([0, T]\cross\partial D) is called
the parabolic boundary of Q . We are now in position to state our main
comparison theorem.

Theorem 4.1 Suppose that \Omega is a bounded domain in R^{m} and that F
satisfies (F1)-(F3) . Let u and v be viscosity sub- and super-solution of (4.1)
and (4.2), respectively. If u^{*}\leqq v_{*} on \partial_{p}Q\backslash S , then u^{*}\leqq v_{*} in Q\cup S .

Remark 4.2.
(i) We write (3.3) of the form (2.1’) . Then F satisfies (F1)-(F3) .
(ii) Let \phi be appeared in (3.4). Suppose that \lim_{|\sigma|arrow\infty}\phi(\sigma)(1+\sigma^{2}) exists.

If we write (3.6) of the form (2.1’) , then F satisfies all assumptions of
(F1)-(F3) .

(iii) The continuity condition (F3) might be removed if we modify the
definition of viscosity solutions as in [8]. However, we do not pursue
this direction in this paper.

We shall prove Theorem 4.1 by preparing several propositions. The ba-
sic strategy of the proof of Theorem 4.1 is contradiction. Roughly speaking
we assume u^{*}(t, x, r)-v_{*}(\underline{t}, y, s)>0 and (t, x, r) is close to (\underline{t}, y, s) . For a
such point we shall find a parabolic super 2-jet of

w(t, x, r, \underline{t}, y, s)=u^{*}(t, x, r)-v_{*}(\underline{t}, y, s)

at (t, x, r, \underline{t}, y, s) . We should find a nice parabolic super 2-jet of w to get a
contradiction. For this purpose we introduce a test function \Phi(t, x, r, \underline{t}, y, s)

and study the maximum of w-\Phi .
Let \epsilon , \mu , \delta and \gamma be positive constants. Here and hereafter fix \mu as an
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even integer satisfying \mu\geqq\max\{\beta+1,4\} . We shall use

\Phi(t_{ X},, _{\underline{t}}=\frac{|x-y|^{4}}{4\epsilon}+\frac{|r-s|^{\mu}}{\mu\epsilon}+\frac{(t-\underline{t})^{2}}{2\epsilon}

+ \delta(R-r)+\delta(R-s)+\frac{\gamma}{T-t}+\frac{\gamma}{T-\underline{t}}

as a test function.

Proposition 4.3 Suppose that w is upper semicontinuous (in short u.s.c )
in \overline{Q}\cross\overline{Q} , w<+\infty in \overline{Q}\cross\overline{Q} and that

\alpha=\sup\{w(t, x, r, t, x, r);(t, x, r)\in\overline{Q}, 0\leqq t<T\}>0 . (4.3)

Set \Psi(t, x, r, \underline{t}, y, s)=w(t, x, r, \underline{t}, y, s)-\Phi(t, x, r, \underline{t}, y, s) , Then there are posi-
tive constants \delta_{0} and \gamma_{0} such that

\frac{s}{Q}\frac{p}{Q} ^{\underline{t}}u\Psi(t, X, r\cross’>\frac{\alpha}{2}
(4.4)

holds for all 0<\delta<\delta_{0},0<\gamma<\gamma_{0} , \epsilon>0 .

Proof. Since w is bounded in \overline{Q}\cross\overline{Q} and (4.3) holds, we easily see that
there is a point (t_{0}, x_{0}, r_{0})\in\overline{Q}(t_{0}<T) , such that w(t_{0}, x_{0}, r_{0}, t_{0}, x_{0}, r_{0})>

3\alpha/4 . Choose \delta and \gamma are sufficiently small so that 2\delta(R-ro)+2\gamma/(T-t_{0})<

\alpha/4 . We now observe that \Psi(t_{0}, x_{0}, r_{0}, t_{0}, x_{0}, r_{0})>\alpha/2 . \square

Let (\hat{t},\hat{x}, \hat{r},\hat{\underline{t}},\hat{y},\hat{s})\in\overline{Q}\cross\overline{Q} with \hat{t},\hat{\underline{t}}<T be a maximum point of \Psi , i.e. ,

\frac{s}{Q}\cross\frac{p}{Q} ^{\underline{t}}u\Psi(t, x, r,=\Psi(\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})
.

Proposition 4.4 Let \delta_{0} and \gamma_{0} be as in Proposition 4.3. Suppose that w

is u.s.c in \overline{Q}\cross\overline{Q} and that \Psi attains its maximum at (\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s}) . Assume
that there is a modulus function m (i.e., m : [0, \infty) – [0, \infty) is continuous,
nondecreasing and m(0)=0) such that

w(t_{ x},, _{\underline{t}}\leqq m(|x-y|+|r-s|+|t-\underline{t}|) on \partial_{p}^{2}(Q\cross Q)\backslash W,

where \partial_{p}^{2}(Q\cross Q)=(\partial_{p}Q\cross\overline{Q})\cup(\overline{Q}\cross\partial_{p}Q) and W=(S\cross Q)\cup(Q\cross S) .
Then there is \epsilon_{0}>0 such that \Psi attains its maximum over \overline{Q}\cross\overline{Q} at
a point (\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})\in(0, T)\cross\Omega\cross[0, R)\cross(0, T)\cross\Omega\cross[0, R) for all
0<\epsilon<\epsilon_{0},0<\delta<\delta_{0} and 0<\gamma<\gamma_{0} .
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Proof. From Proposition 4.3 it follows \Psi(\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})>0 for 0<\delta<\delta_{0} ,
0<\gamma<\gamma 0 , \epsilon>0 . This yields

w( \hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})\geqq\frac{|\hat{x}-\hat{y}|^{4}}{4\epsilon}+\frac{|\hat{r}-\hat{s}|^{\mu}}{\mu\epsilon}+\frac{(\hat{t}-\hat{\underline{t}})^{2}}{2\epsilon}

+ \delta(R-\hat{r})+\delta(R-\hat{s})+\frac{\gamma}{T-\hat{t}}+\frac{\gamma}{T-\hat{\underline{t}}} ,

then we obtain

w( \hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})\geqq\frac{|\hat{x}-\hat{y}|^{4}}{4\epsilon} , \frac{|\hat{r}-\hat{s}|^{\mu}}{\mu\epsilon} , \frac{(\hat{t}-\hat{\underline{t}})^{2}}{2\epsilon} .

Since Q is bounded and w is u.s.c, there is a positive constant M such
that

w(t, x, r, \underline{t}, y, s)\leqq M in \overline{Q}\cross\overline{Q} .

We now observe that

|\hat{x}-\hat{y}| –0, |\hat{r}-\hat{s}|arrow 0 and |\hat{t}-\hat{\underline{t}}|arrow 0 as \epsilonarrow 0 ; (4.5)

these are uniform in 0<\delta<\delta_{0},0<\gamma<\gamma_{0} . Suppose that the conclusion of
proposition were false. By the properties of function \gamma/(T-t)+\gamma/(T-\underline{t})

we see \hat{t},\hat{\underline{t}}<T There would exist a sequence \{\epsilon_{j}\} with \epsilon_{j}arrow 0 , \{\delta_{j}\}\subset

(0, \delta_{0}) , \{\gamma_{j}\}\subset(0, \gamma_{0}) such that \partial_{p}^{2}(Q\cross Q)\backslash W contains a maximum point
(\hat{t}_{j},\hat{x}_{j},\hat{r}_{j}, \underline{\hat{t}}_{j} , \hat{y}_{j},\hat{s}_{j}) of \Psi for the value \epsilon=\epsilon_{j} , \delta=\delta_{j} , \gamma=\gamma_{j} . By (4.3) and
the assumption, we see

\frac{\alpha}{2}\leqq\Psi(\hat{t}_{j},\hat{x}_{j},\hat{r}_{j}, ^{\underline{\hat{t}}_{j}},\hat{y}_{j},\hat{s}_{j})\leqq\omega(\hat{t}_{j},\hat{x}_{j},\hat{r}_{j}, \underline{\hat{t}}_{j},\hat{y}_{j},\hat{s}_{j})

\leqq m(|\hat{x}_{j}-\hat{y}_{j}|+|\hat{r}_{j}-\hat{s}_{j}|+|\hat{t}_{j}-\underline{\hat{t}}_{j}|) .

Since (4.5) holds as \epsilon_{j} –0, we get a contradiction. \square

Proof of Theorem 4.1. We may assume that u and v are upper semicon-
tinuous and lower semicontinuous, respectively, so that

w(t, x, r, \underline{t}, y, s)=u(t, x, r)-v(\underline{t}, y, s)

is upper semicontinuous. We would like to get a contradiction by assuming
that

\alpha=\sup\{w(t, x, r, t, x, r);(t, x, r)\in\overline{Q}, 0\leq t<T\}>0 .
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Let (\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s}) be a maximum point of \Psi in \overline{Q}\cross\overline{Q} , i.e. ,

\frac{s}{Q}\cross\frac{p}{Q} ^{\underline{t}}u\Psi(t, X, r,=\Psi(\hat{t},\hat{x},\hat{r},\hat{\underline{t}},\hat{y},\hat{s})
.

Note that u\leqq v on \partial_{p}Q\backslash S implies the existence of modulus m satisfying

w(t, x, r, \underline{t}, y, s)\leqq m(|x-y|+|r-s|+|t-\underline{t}|) on \partial_{p}^{2}(Q\cross Q)\backslash W

since \partial_{p}Q\backslash S is compact. Thus, we see all conclusions of Propositions 4.3
and 4.4 would hold. Proposition 4.4 says that \Psi attains its maximum over
\overline{Q}\cross\overline{Q} at (\hat{t},\hat{x}, \hat{r},\hat{\underline{t}}, \hat{y},\hat{s})\in(0, T)\cross\Omega\cross[0, R)\cross(0, T)\cross\Omega\cross[0, R) for small
\epsilon , \delta and \gamma . We set \xi=(x, r) and \eta=(y, s) . Then we observe that

w(t, \xi, \underline{t}, \eta)\leqq w(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta})+\Phi(t, \xi,\underline{t}, \eta)-\Phi(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta}) ,

where \hat{\xi}=(\hat{x},\hat{r}) and \hat{\eta}=(\hat{y}, \hat{s}) . Expand \Phi at (\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta}) , then we obtain

( (_{\hat{\Phi}_{\underline{t},\eta}}^{\hat{\Phi}_{t,\xi}}) , A)\in J^{2,+}w(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta})

with

\hat{\Phi}_{t,\xi}=(\begin{array}{l}\Phi_{t}\hat{\Phi}_{\xi}\end{array}) . \hat{\Phi}_{\underline{t},\eta}=(\begin{array}{l}\Phi_{\underline{t}}\hat{\Phi}_{\eta}\end{array}) and A=\nabla^{2}\hat{\Phi}\in S^{2m+4} ,

where \hat{\Phi}_{t}=\Phi_{t}(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta}),\hat{\Phi}_{\xi}=\nabla_{\xi}\Phi(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta}),\hat{\Phi}_{\xi\xi}=\nabla_{\xi}^{2}\Phi(\hat{t},\hat{\xi},\hat{\underline{t}},\hat{\eta}) and so on.
Direct calculations yield

\hat{\Phi}_{t}=\gamma/(T-\hat{t})^{2},\hat{\Phi}_{\underline{t}}=\gamma/(T-\hat{\underline{t}})^{2} ,

\hat{\Phi}_{\xi}= (\begin{array}{l}\Phi_{x}\hat{\Phi}_{r}\end{array}) = \frac{1}{\epsilon} (\begin{array}{l}|\hat{x}-\hat{y}|^{2}(\hat{x}-\hat{y})(\hat{r}-\hat{s})^{\mu-1}-\in\delta\end{array}) ,

\hat{\Phi}_{\eta}=(_{\hat{\Phi}_{s}}^{\hat{\Phi}_{y}})=\frac{1}{\epsilon} (\begin{array}{l}-|\hat{x}-\hat{y}|^{2}(\hat{x}-\hat{y})-(\hat{r}-\hat{s})^{\mu-1}-\epsilon\delta\end{array}) .

\hat{\Phi}_{\xi\xi}=\frac{1}{\epsilon} (\begin{array}{ll}A’ OO (\mu-1)(\hat{r}-\hat{s})^{\mu-2}\end{array})\in S^{m+1}

with A’=|\hat{x}-\hat{y}|^{2}I_{m}+2(\hat{x}-\hat{y})\otimes(\hat{x}-\hat{y})\in S^{m} and \hat{\Phi}_{\xi\xi}=-\hat{\Phi}_{\xi\eta}=-\hat{\Phi}_{\eta\xi}=

\hat{\Phi}_{\eta\eta}\in S^{m+1} , where I_{m} is identity matrix with order mand\otimes denotes the

tensor product. Since \hat{r} is close to \hat{s} , we may assume |\hat{r}-\hat{s}|\leqq 1 and since
(\hat{x}-\hat{y})\otimes(\hat{x}-\hat{y})\leqq|\hat{x}-\hat{y}|^{2}I_{m} , then we observe

\hat{\Phi}_{\xi\xi}\leqq\frac{\mu-1}{\epsilon}|\hat{\xi}-\hat{\eta}|^{2}I_{m+1} .
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Here the assumption \mu\geqq 4 is invoked. By Crandall-Ishii’s Lemma (c.f. [4] ,
[5] ) we observe that for any positive constant \lambda there are Z_{1} , Z_{2}\in S^{m+2} ,
such that

( (\begin{array}{l}\Phi_{t}\hat{\Phi}_{\xi}\end{array}) , Z_{1})\in\overline{J^{2,+}}u(\hat{t},\hat{\xi}) , ( (\begin{array}{l}-\Phi_{\underline{t}}-\hat{\Phi}_{\eta}\end{array}), -Z_{2})\in\overline{J^{2,-}}v(\hat{\underline{t}},\hat{\eta})

and

-( \frac{1}{\lambda}+|A|)I_{2m+4}\leqq(\begin{array}{ll}Z_{1} OO Z_{2}\end{array}) \leqq A+\lambda A^{2} . (4.6)

Since Z_{1} , Z_{2}\in S^{m+2} , we see

Z_{1}=(_{*}^{*} X* ) . Z_{2}=(\begin{array}{ll}* ** Y\end{array}) for some X, Y\in S^{m+1}r

By [11, Corollary 3.6] we obtain

(\hat{\Phi}_{t},\hat{\Phi}_{\xi}, X)\in\overline{P^{2,+}}u(\hat{t},\hat{\xi}) , (-\hat{\Phi}_{\underline{t}}, -\hat{\Phi}_{\eta}, -Y)\in\overline{P^{2,-}}v(\hat{\underline{t}},\hat{\eta}) .

We see \hat{r}>0 . Indeed, since u is a subsolution of (4.1) and (4.2), u
should satisfy -\Phi_{r}(\hat{t},\hat{x}, 0,\hat{\underline{t}},\hat{y},\hat{s})\leqq 0 if \hat{r}=0 (see Definition 2.2). But
-\Phi_{r}(\hat{t},\hat{x}, 0,\hat{\underline{t}},\hat{y},\hat{s})=-(-\hat{s})^{\mu-1}/\epsilon+\delta>0 , which is against the definition of
subsolutions. In the same way we know \hat{s}>0 . Therefore, we obtain

0 \geqq\frac{\gamma}{(T-\hat{t})^{2}}+\frac{\gamma}{(T-\hat{\underline{t}})^{2}}+F_{*}(\hat{\Phi}_{\xi} , X , \frac{\hat{\Phi}_{r}}{\hat{r}^{\beta}} ) -F^{*}(-\hat{\Phi}_{\eta}, -Y, - \frac{\hat{\Phi}_{s}}{\hat{s}^{\beta}}) .

Since \hat{\Phi}_{r}/\hat{r}^{\beta}\leqq(\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{r}^{\beta},\hat{\Phi}_{s}/\hat{s}^{\beta}\leqq-(\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{s}^{\beta} and (F2) (ii) holds,
we see

0 \geqq\frac{2\gamma}{T^{2}}+F_{*}(\hat{\Phi}_{\xi} , X, \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{r}^{\beta}} ) -F^{*}(-\hat{\Phi}_{\eta}, -Y, \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{s}^{\beta}}) .

Moreover, since \mu is even, we have (\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{r}^{\beta}\leqq(\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{s}^{\beta} . Using
this and (F2) (ii), we get two key inequalities ;

0 \geqq\frac{2\gamma}{T^{2}}+F_{*}(\hat{\Phi}_{\xi} , X , \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{r}^{\beta}} ) -F^{*}(-\hat{\Phi}_{\eta}, -Y, \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{r}^{\beta}}) ,

(4.7)

0 \geqq\frac{2\gamma}{T^{2}}+F_{*}(\hat{\Phi}_{\xi} , X, \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{s}^{\beta}} ) -F^{*}(-\hat{\Phi}_{\eta}, -Y, \frac{(\hat{r}-\hat{s})^{\mu-1}}{\epsilon\hat{s}^{\beta}}) .

(4.8)
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Since \overline{Q} is compact and the matrix inequality (4.6) holds, we may assume
that (\hat{t},\hat{x}, \hat{r}, \underline{\hat{t}},\hat{y},\hat{s})arrow(t_{0}, x_{0}, r_{0},\underline{t}_{0}, y_{0}, s_{0}) and Xarrow X_{0} , Y – Y_{0} as \deltaarrow 0

for some t_{0} , \underline{t}_{0}\in[0, T] , x_{0} , y_{0}\in\overline{\Omega} , r_{0} , s_{0}\in[0, R] and X_{0} , Y_{0}\in S^{m+1} by
taking a subsequence. Although lim \hat{\Phi}_{\xi}=- lim \hat{\Phi}_{\eta} exist, (\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{r}^{\beta}

\deltaarrow 0 \deltaarrow 0

and (\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{s}^{\beta} may go infinity as \delta –0. We have to divide cases
depending whether or not (\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{r}^{\beta} and (\hat{r}-\hat{s})^{\mu-1}/\epsilon\hat{s}^{\beta} go infinity.
Moreover, our argument depends whether or not \hat{\Phi}_{\xi} goes to zero as \deltaarrow 0

since F=F(p, X, a) is discontinuous on p=0. We divide cases as follows:

Case I : \hat{r}arrow 0 and \hat{s}arrow 0 as \deltaarrow 0 .
Case la: There are sequences \{\hat{r}_{j}\} and \{\hat{s}_{j}\} such that \hat{s}_{j}/\hat{r}_{j} – +\infty as

jarrow\infty .
(i) |x_{0}-y_{0}|=0 and r_{0}-s_{0}=0 .
(ii) |x_{0}-y_{0}|\neq 0 or r_{0}-s_{0}\neq 0 .
Case la: There are sequences \{\hat{r}_{j}\} and \{\hat{s}_{j}\} such that \hat{s}_{j}/\hat{r}_{j}arrow 0 as

jarrow\infty .
(i) |x_{0}-y_{0}|=0 and r_{0}-s_{0}=0 .
(ii) |x_{0}-y0|\neq 0 or r_{0}-s_{0}\neq 0 .
Case Ic: There are sequences \{\hat{r}_{j}\} and \{\hat{s}_{j}\} such that \hat{s}_{j}/\hat{r}_{j} – c as

jarrow\infty for some positive constant c .
(i) |x_{0}-y_{0}|=0 and r_{0}-s_{0}=0 .
(ii) |x_{0}-y_{0}|\neq 0 or r_{0}-s_{0}\neq 0 .

Case II : \hat{r}arrow r_{0}\neq 0 or \hat{s}arrow s_{0}\neq 0 as \deltaarrow 0 .
(i) |x_{0}-y0|=0 and r_{0}-s_{0}=0 .
(ii) |x_{0}-y_{0}|\neq 0 or r_{0}-s_{0}\neq 0 .

We shall discuss the inequality (4.7) or (4.8).
Case Ia. We set \hat{s}_{j}/\hat{r}_{j}=\nu_{j} . Since \mu\geqq\beta+1 , then we observe

\lim_{jarrow\infty}\frac{(\hat{r}_{j}-\hat{s}_{j})^{\mu-1}}{\epsilon\hat{s}_{j}^{\beta}}=\lim_{jarrow\infty}\frac{\hat{s}_{j}^{\mu-1}(1/\nu_{j}-1)^{\mu-1}}{\epsilon\hat{s}_{j}^{\beta}}

= \lim_{jarrow\infty}\frac{1}{\epsilon}\hat{s}_{j}^{\mu-1-\beta}(1/\nu_{j}-1)^{\mu-1}=c_{1}

for some bounded constant c_{1} . We study (4.8). Letting \delta\downarrow 0 we obtain

0 \geqq\frac{2\gamma}{T^{2}}+F_{*}(\frac{1}{\epsilon}(|x_{0}-y0|^{2}(x_{0}-yo), (r0-so)^{\mu-1}), X_{0} , c_{1})
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-F^{*}( \frac{1}{\epsilon}(|x_{0}-y_{0}|^{2}(x_{0}-yo), (r_{0}-s_{0})^{\mu-1}), -Y_{0} , c_{1} ).
Case Ia(i) : |x_{0}-y0|=0 and r_{0}-s_{0}=0 .

By the matrix inequality (4.6) we obtain X_{0} , Y_{0}\leqq O . Indeed, multi-
plying (4.6) by (0, \underline{p}, 0, \underline{p})\in R\cross R^{m+1}\cross R\cross R^{m+1} from the left and by
{}^{t}(0,\underline{p}, 0, \underline{p}) from the right, we derive from the right inequality of (4.6) that
X_{0} , Y_{0}\leqq O since x_{0}=y_{0} and r_{0}=s_{0} . Since (F2) (i) and (F3) hold, we
observe

0 \geqq\frac{2\gamma}{T^{2}}+F_{*} ((0, 0) , X_{0} , c_{1})-F^{*}((0,0), -Y_{0} , c_{1})

\geqq\frac{2\gamma}{T^{2}}+F_{*} ((0, 0) , O , c_{1})-F^{*}((0,0), O , c_{1})

2\gamma

=\overline{T^{2}}
.

Thus we get a contradiction.
Case Ia(ii) : |x_{0}-y_{0}|\neq 0 or r_{0}-s_{0}\neq 0 .

We only prove in the case |x_{0}-y_{0}|=0 and r_{0}-s_{0}\neq 0 since other
cases can be proved similarly. By the matrix inequality (4.6) we obtain
X_{0}+Y_{0}\leqq O as in Case Ia(i) . Since (F2) (i) and (F3) hold, we see

0 \geqq\frac{2\gamma}{T^{2}}+F((0, \frac{1}{\epsilon}(r_{0}-s_{0})^{\mu-1}) , X_{0} , c_{1})

-F((0, \frac{1}{\epsilon}(r_{0}-s_{0})^{\mu-1}), -Y_{0} , c_{1})

\geqq\frac{2\gamma}{T^{2}}+F((0, \frac{1}{\epsilon}(r_{0}-s_{0})^{\mu-1}) , X_{0} , c_{1})

-F((0, \frac{1}{\epsilon}(r_{0}-s_{0})^{\mu-1}) , X_{0} , c_{1})

\geq\underline{2\gamma}

-

T^{2}
.

We get a contradiction again.
Case Ib . We set \hat{s}_{j}/\hat{r}_{j}=l/_{j} . Since \mu\geqq\beta+1 , then we observe

\lim_{jarrow\infty}\frac{(\hat{r}_{j}-\hat{s}_{j})^{\mu-1}}{\epsilon\hat{r}_{j}^{\beta}}=\lim_{jarrow\infty}\frac{\hat{r}_{j}^{\mu-1}(1-\nu_{j})^{\mu-1}}{\epsilon\hat{r}_{j}^{\beta}}

= \lim_{jarrow\infty}\frac{1}{\epsilon}\hat{r}_{j}^{\mu-1-\beta}(1-\nu_{j})^{\mu-1}=c_{2}
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for some bounded constant c_{2} . We study (4.7). We can get a contradiction
as in Case la.
Case Ic. We set \hat{s}_{j}/\hat{r}_{j}=\nu_{j} . Since \mu\geqq\beta+1 , then we observe

\lim_{jarrow\infty}\frac{(\hat{r}_{j}-\hat{s}_{j})^{\mu-1}}{\epsilon\hat{r}_{j}^{\beta}}=\lim_{jarrow\infty}\frac{\hat{r}_{j}^{\mu-1}(1-\nu_{j})^{\mu-1}}{\epsilon\hat{r}_{j}^{\beta}}

= \lim_{jarrow\infty}\frac{1}{\hat{c}}\hat{r}_{j}^{\mu-1-\beta}(1-\nu_{j})^{\mu-1}=c_{3}

for some bounded constant c_{3} . We study (4.7). Similarly we obtain a
contradiction as in Case la.
Case I. Here we only prove in the case \hat{r}arrow r_{0}\neq 0 as \deltaarrow 0 . The other
case is verified in the same way. We study (4.7). Letting \deltaarrow 0 we observe
that

0 \geqq\frac{2\gamma}{T^{2}}+F_{*}(\frac{1}{\epsilon}(|x_{0}-y0|^{2}(x_{0}-y_{0}), (r_{0}-s_{0})^{\mu-1}), X_{0} , \frac{(r_{0}-s_{0})^{\mu-1}}{\epsilon r_{0}^{\beta}})

-F^{*}( \frac{1}{\epsilon}(|x_{0}-y_{0}|^{2}(x_{0}-yo), (r_{0}-s_{0})^{\mu-1}), -Y_{0} , \frac{(r_{0}-s_{0})^{\mu-1}}{\epsilon r_{0}^{\beta}}).
Case I (i): |x_{0}-y_{0}|=0 and r_{0}-s_{0}=0 .

By the matrix inequality (4.6) we obtain X_{0} , Y_{0}\leqq O . Since (F2) (i)
and (F3) hold we observe that

0 \geqq\frac{2\gamma}{T^{2}}+F_{*} ((0, 0) , X_{0},0)-F^{*}((0,0), -Y_{0},0)

\geqq\frac{2\gamma}{T^{2}}+F_{*} ((0, 0) , O , O)-F^{*}((0,0), O , 0)

2\gamma

=\overline{T^{2}}
.

Thus we get a contradiction.
Case I (ii) is proved as in Case Ia(ii) .

The proof of Theorem 4.1 is now completed. \square

We remark a comparison theorem can be extended when \Omega is not neces-
sarily bounded at least for (2.1) and (2.2) provided that F_{0} satisfies (F_{0}1)-

(F_{0}3) . Although the basic idea of the proof is similarly, it needs some extra
work as in [8]. We do not treat unbounded \Omega in this paper.
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5. Consistency

In section 3 we gave the level set equation for mean curvature flow
equation (3.1) and the x’-axisymmetrized equation (3.2). We shall discuss
the relation between a solution of (3.1) and a solution of (3.2). We consider
the relation in general form. We generalized (3.1) of the form:

U_{t}+\overline{F}(DU, D^{2}U)=0 in (0, T) \cross\overline{\Omega} , (5.1)

where \overline{\Omega} is a bounded domain in R^{n} , D= (\partial/\partial x_{1}, \ldots , \partial/\partial x_{n}) and D^{2}U

denotes the Hessian of U in S^{n} . Here we assume
\overline{F} : (R^{n}\backslash \{0\})\cross S^{n}arrow R is continuous, (\overline{F}1)

\overline{F} is degenerate elliptic, i.e. ,
(\overline{F}2)

\overline{F}(p, X+Y)\leqq\overline{F}(p, X) for all Y\geqq O , p\neq 0 ,

-\infty<\overline{F}_{*}(0, O)=\overline{F}^{*}(0, O)<+\infty . (\overline{F}3)

Note that by definition we see that if \overline{F} fulfills (\overline{F}2) , so do \overline{F}_{*} and \overline{F}^{*}

.

respectively, even if p=0.
We generalize (3.2) of the form:

u_{t}+F ( \nabla_{x,r}u , \nabla_{x,r}^{2}u , \frac{u_{r}}{r})=0 in Q=(0, T)\cross\Omega’\cross(0, R) , (5.2)

-u_{r}=0 on S=(0, T)\cross\Omega’\cross\{0\} , (5.3)

where \Omega’ is a bounded domain in R^{m} , \nabla_{x,r}= (\partial/\partial x_{1}, \ldots, \partial/\partial x_{m}, \partial/\partial r) and
\nabla_{x,r}^{2}u denotes the Hessian of u in S^{m+1} . We assume that

U is an x’-axisymmetric function, i.e. ,

there is a function u:Q=(0, T)\cross\Omega’\cross(0, R)arrow R

such that U(t, x)=u(t, x’, r) , (5.4)

where x=(x’, x’)\in R^{m}\cross R^{n-m} and |x’|=r . We define a set of matrices
ASO(n, m) as follows:

ASO(n, m)=\{\Theta\in M_{n};\ominus=(\begin{array}{ll}I_{m} OO \Theta,\prime\end{array}) , \Theta’\in SO(n-m)\} ,

where M_{n} denotes the set of n\cross n matrices and SO(n – m) denotes the
group of (n-m)\cross(n-m) rotation matrices. Through out this section we
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assume that

\overline{F} is rotationally invariant in variables x’ , i.e. ,
\overline{F}(\Theta p, \Theta X^{t}\ominus)=\overline{F}(p, X) for all p\in R^{n}\backslash \{0\} ,

X\in S^{n} and O-\in ASO(n, m) . (5.5)

Proposition 5.1 Let U\in C^{2}((0, T)\cross\overline{\Omega}) . Assume that (5.4) and (5.5)
hold. Suppose that DU\neq 0 . Then

\overline{F}(DU, D^{2}U)=\overline{F}( (\begin{array}{l}\nabla_{x,r}u0\end{array}) , (\begin{array}{ll}\nabla_{x,r}^{2}u OO \frac{u_{r}}{r}I_{n-(m+1)}\end{array}) ) .

This is easy to prove so we omit the proof.

Remark 5.2. Note that if \overline{F} fulfills (5.5), so do \overline{F}_{*} and \overline{F}^{*} , respectively,
even if p=0. So Proposition 5.1 holds for \overline{F}_{*} and \overline{F}^{*} , respectively, without
assuming DU\neq 0 .

We define

F(p, X, a)=\overline{F}( (\begin{array}{l}p0\end{array}) , (\begin{array}{ll}X OO aI_{n-(m+1)}\end{array}) ) (5.6)

for all p\in R^{m+1}\backslash \{0\} , X\in S^{m+1} and a\in R .

Remark 5.3. By definition we see that (5.6) holds for F_{*} and \overline{F}_{*} even if
p=0. Also, (5.6) holds for F^{*} and \overline{F}^{*} for all p\in R^{m+1} .

Lemma 5.4 If \overline{F} satisfies (\overline{F}1) and (\overline{F}2) , Then F satisfies (F1) and
(F2). Moreover, if (\overline{F}3) and (F4) hold Then F satisfies (F3).

Proof. It is easy to see that F satisfies (F1). We shall prove that (F2)
holds for F Let p\in R^{m+1}\backslash \{0\} , X, Y\in S^{m+1} and a\in R . For X\geqq Y we
shall show

F(p, X, a)\leqq F(p, Y, a) .

By the definition (5.6) and the degenerate elliptic condition (\overline{F}2) we observe
that

F(p, X, a)=\overline{F}( (\begin{array}{l}p0\end{array}) , ( X
O

aI_{n-(m+1)}O))
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\leqq\overline{F}( (\begin{array}{l}p0\end{array}) . (\begin{array}{ll}Y OO aI_{n-(m+1)}\end{array}) )

=F(p, Y, a) .

For a\geqq b we can similarly prove F(p, X, a)\leqq F(p, X, b) .
It remains to show that F satisfies (F3). By (\overline{F}3) and Remark 5.3 we

easily see -\infty<F_{*}(0, O, O)=F^{*}(0, O, 0)<+\infty . Moreover, from (F4)
we get -\infty<F_{0*}(0, O)=F_{0}^{*}(0, O)<+\infty . Finally, we obtain -\infty<

F_{*}(0, O, a)=F_{0*}(0, O) –\nu a=F_{0}^{*}(0, O) –\nu a=F^{*}(0, O, a)<+\infty for all
a\in R , where \nu is a positive constant appeared in (F4). \square

Next we want to discuss the relation between a solution of (5.1) and a
solution of (5.2) and (5.3).

Theorem 5.5 Let U be a viscosity subsolution of (5.1). Suppose that
(5.4) and (5.5) hold and that \overline{F} satisfies (\overline{F}1) and (\overline{F}2) . Assume that

\varlimsup_{aarrow+\infty}\overline{F}_{*}( (\begin{array}{l}p’0\end{array}) . (\begin{array}{ll}X OO -aI_{n-m}\end{array}))=+\infty , (\overline{F}4)

where (p’, 0)\in R^{m}\cross R_{j}^{n-m}X\in S_{J}^{m}\backslash a>0 and n - m - 1>0 . Then u is
a viscosity subsolution of (5.2) and (5.3).

Proof Here we write u^{*}=u and U^{*}=U . Let \varphi\in C^{2}(\Sigma) and (\hat{t},\hat{x}’,\hat{r})\in

\Sigma satisfy

\max_{\Sigma}(u-\varphi)=(u-\varphi)(\hat{t},\hat{x}’,\hat{r}) ,

where \Sigma=Q\cup S .
Case (i) \hat{r}>0 . We set \phi(t, x)=\varphi(t, x’, r) with x=(x’, x’) and |x’|=r .
Then \phi\in C^{2}((0, T)\cross\Omega’\cross(\Omega’\backslash \{0\})) satisfies

max (U-\phi)=(U-\phi)(\hat{t},\hat{x})
(0,T)\cross\overline{\Omega} , |x’|\leq R

with \hat{x}=(\hat{x}’,\hat{x}’) and |\hat{x}’|=(\hat{x}_{m+1}^{2}+\cdots+\hat{x}_{n}^{2})^{1/2}=\hat{r} , where \overline{\Omega}=\Omega’\cross\Omega’\in

R^{m}\cross R^{n-m} . Note that \phi is C^{2} aroun(j (\hat{t},\hat{x}) since \hat{r}\neq 0 . Since U is a
viscosity subsolution of (5.1), we know

\phi_{t}+\overline{F}_{*}(D\phi, D^{2}\phi)\leqq 0 at (\hat{t},\hat{x}) .

By the definition of \overline{F}_{*} the rotational invariance (5.5) holds for \overline{F}_{*} even if
p=0 (Remark 5.2). Also (5.6) holds for \overline{F}_{*} and F_{*} (Remark 5.3). By
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Proposition 5.1 we observe that

\overline{F}_{*}(D\phi, D^{2}\phi)=\overline{F}_{*}( (\begin{array}{l}\nabla_{x,r}\varphi 0\end{array}) . (\begin{array}{ll}\nabla_{x,r}^{2}\varphi 00 \frac{\varphi_{r}}{r}I_{n-(m+1)}\end{array}) )

=F_{*}(\nabla_{x,r}\varphi, \nabla_{x,r}^{2}\varphi , \frac{\varphi_{r}}{r})

Therefore, we get

\varphi_{t}+F_{*} ( \nabla_{x,r}\varphi , \nabla_{x,r}^{2}\varphi , \frac{\varphi_{r}}{r})\leqq 0 at (\hat{t},\hat{x}’,\hat{r}) .

Case (ii) \hat{r}=0 . We shall show

-\varphi_{r}\leqq 0 at (\hat{t},\hat{x}’, 0) .

To show this we argue by contradiction. We suppose that u is not a viscosity
subsolution of (5.2) and (5.3). Then there would exist

( \tau , (\begin{array}{l}p’-\zeta\end{array}) , ( **))\in P^{2,+}u(\hat{t},\hat{x}’, 0) (5.7)

such that ( >0 , where \tau , \zeta\in R , p’\in R^{m} and X\in S^{m} . We shall construct
an element of parabolic super 2-jet of U(\hat{t},\hat{x}’, 0) . From (5.7) we observe that

U(t, x’, x’)-U(\hat{t},\hat{x}’, 0)

=u(t, x’, r)-u(\hat{t},\hat{x}’, 0)

\leqq\tau(t-\hat{t})+\langle (\begin{array}{l}p’-(\end{array}) . (\begin{array}{l}x’-\hat{x}’r\end{array}) \rangle

+ \frac{1}{2}\langle ( ** ) (\begin{array}{l}x’-\hat{x}’r\end{array}) , (\begin{array}{l}x’-\hat{x}’r\end{array}) \rangle

+o(|x’-\hat{x}’|^{2}+r^{2}+|t-\hat{t}|)

=\tau(t-\hat{t})+<p’ , x’-\hat{x}’>-\zeta|x’|+o(|x’|)

+ \frac{1}{2}\langle X(x’-\hat{x}’), (x’-\hat{x}’)\rangle+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|)

as (t, x’, x’) – (\hat{t},\hat{x}’, 0) .

For all \epsilon>0 we can choose \delta_{1}>0 such that if |x’|<\delta_{1} then o(|x’|)<\epsilon|x’| .
Therefore, we get

U(t, x’, x’)-U(t,\hat{x}’, 0)
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\leqq\tau(t-\hat{t})+<p’ , x’-\hat{x}’>-(\zeta-\epsilon)|x’|

+ \frac{1}{2}\langle X(x’-\hat{x}’), x’-\hat{x}’\rangle+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|) .

Hence, we take \epsilon=\zeta/2 to get

U(t, x’, x’)-U(t,\hat{x}’, 0)

\leqq\tau(t, -\hat{t})+<p’ , x’- \hat{x}’>-\frac{\zeta}{2}|x’|

+ \frac{1}{2}\langle X(x’-\hat{x}’), (x’-\hat{x}’)\rangle+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|)

as (t, x’, x’) – (\hat{t},\hat{x}’, 0) .

Moreover, for all a>0 we can choose \delta_{2}>0 such that if |x’|<\delta_{2} then
\frac{(}{2}|x’|\geqq a|x’|^{2} . Therefore, if |x’|< \min\{\delta_{1}, \delta_{2}\} , we observe that

U(t, x’, x’)-U(t,\hat{x}’, 0)

\leqq\tau(t-\hat{t})+<p’ , x’-\hat{x}’>-a|x’|^{2}

+ \frac{1}{2}\langle X(x’-\hat{x}’), (x’-\hat{x}’)\rangle+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|)

=\tau(t-\hat{t})+<p’ , x’-\hat{x}’>

+ \frac{1}{2}\langle X(x’-\hat{x}’), (x’-\hat{x}’)\rangle+\frac{1}{2} \langle-2aI_{n-m}x’, x’\rangle

+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|)

=\tau(t-\hat{t})+\langle (\begin{array}{l}p’0\end{array}) , (\begin{array}{l}x’-\hat{x}’x’’\end{array}) \rangle

+ \frac{1}{2}\langle (\begin{array}{ll}X OO -2aI_{n-m}\end{array})(\begin{array}{l}x’-\hat{x}’x’’\end{array}) . (\begin{array}{l}x’-\hat{x}’x’’\end{array}) \rangle

+o(|x’-\hat{x}’|^{2}+|x’|^{2}+|t-\hat{t}|) .

Thus we obtained an element of parabolic super 2-jet of U(\hat{t},\hat{x}’, 0) ;

( \tau , (\begin{array}{l}p’0\end{array}) , (\begin{array}{ll}X OO -2aI_{n-m}\end{array}))\in P^{2,+}U(\hat{t},\hat{x}’, 0) .

Since (\overline{F}4) holds, there is a sequence a_{j} -,
\infty such that

\tau+\overline{F}_{*}
((\begin{array}{l}p’0\end{array})

: (\begin{array}{ll}X OO -2a_{j}I_{n-m}\end{array})) arrow+\infty as jarrow+\infty .
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This shows that U is not a viscosity subsolution of (5.1), which contradicts
the assumption. \square

Similar assertion holds for the supersolution case replaced by a condi-
tion

\varliminf_{aarrow+\infty}\overline{F}^{*}( (\begin{array}{l}p’0\end{array}) , (\begin{array}{ll}X OO aI_{n-m}\end{array}))=-\infty
(\overline{F}5)

instead of (\overline{F}4) .

Remark 5.6. The conditions (\overline{F}4) and (\overline{F}5) say that \overline{F} has some “ strict”
parabolicity. In fact, all first order equations are excluded by (\overline{F}4) , (\overline{F}5) .
We shall observe that the conditions (\overline{F}4) and (\overline{F}5) are not too restrictive.
Indeed, there are many useful examples. Here we only check the condition
(\overline{F}4) because (\overline{F}5) can be checked in the same way.
(i) The level set equation (3.1) for mean curvature flow is given by taking

\overline{F}(p, Y)=-trace (I_{n}- \frac{p\otimes p}{|p|^{2}})Y (5.8)

in (5.1). Note that this \overline{F} satisfies (5.5), (\overline{F}1)-(\overline{F}3) . We know that

\overline{F}_{*}(0, Y)=-\sum_{i=2}^{n}\lambda_{i}(Y) , \overline{F}^{*}(0, Y)=-\sum_{i=1}^{n-1}\lambda_{i}(Y) , (5.9)

where \lambda_{i}(Y) is eigenvalue of Y and \lambda_{1}(Y)\leqq\lambda_{2}(Y)\leqq\cdot\cdot\leqq\lambda_{n}(Y) . We
shall give the proof of (5.9) for completeness. By definition we obtain

\overline{F}_{*}(0, Y)=|q|=1\inf
\{-trace(I_{n}-q\otimes q)Y\}

We may assume that Y is a diagonal matrix. Since Y\in S^{n} , there is
an orthogonal matrix P such that PY^{t}P is a diagonal matrix. Then
we see

|q|=1 \inf\{-trace (P(I_{n}-q\otimes q)Y^{t}P)\}

=|Pq|=1 \inf\{-trace ((I_{n}-Pq\otimes Pq)PY^{t}P)\}

since |Pq|=|q|=1 . Thus we may assume that Y is a diagonal matrix.
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Take q as a unit eigenvector of the eigenvalue \lambda_{1}(Y) , then we get

||=1 \inf_{q}
\{-trace(I_{n}-q\otimes q)Y\}\leqq-\sum_{i=2}^{n}\lambda_{i}(Y) .

On the other hand, the opposite inequality is easy since \lambda_{1}(Y)\leqq\lambda_{i}(Y)

for all i(2\leqq i\leqq n) . Similarly we can prove the latter equality of (5.9).
We shall check this \overline{F} satisfies (\overline{F}4) . We recall the condition n>m+1
which is natural to consider axisymmetric functions.

Case 1: p’=0 . By the former equality of (5.9) we get

\overline{F}_{*}(0, (\begin{array}{ll}X OO -aI_{n-m}\end{array}))=-(-a(n-m-1)+\sum_{i=1}^{m}\lambda_{i}(X)) .

for sufficiently large a>0 .

Case 2: p’\neq 0;i.e. , p_{i}\neq 0 for some i(1\leq i\leq m) . A direct
calculation yields

\overline{F}( (\begin{array}{l}p’0\end{array}) , (\begin{array}{ll}X OO -aI_{n-m}\end{array}) )

=-trace (I_{n}- \frac{(p’,0)\otimes(p’,0)}{|p|^{2}},) (\begin{array}{ll}X OO -aI_{n-m}\end{array})

=-trace (I_{m}- \frac{p’\otimes p’}{|p|^{2}},)X- trace(-aI_{n-m})

= (Constant independent of a) +a(n-m) .

Thus in both cases \overline{F} satisfies (\overline{F}4) .
(ii) More generally we discuss an anisotropic curvature flow equation in-

troduced by Angenent-Gurtin [2]. Its level set equation is given by
taking

\overline{F}(p, Y)=-trace A(\overline{p})Y

in (5.1), where A(\overline{p}) is a given matrix in S^{n} . A(\overline{p}\underline{)}(=\underline{A}(p/|p|)) is
continuous on R^{n}\backslash \{0\}-\cdot Although this \overline{F} satisfies (F1)-(F3) , we do
not know that F fulfills (5.5). For a derivation of the anisotropic
curvature flow equation we refer to the nice book [6] by Gurtin. By
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definition we see

\overline{F}_{*}(0, Y)=|\inf_{q|=1}(-traceA(q)Y) , \overline{F}^{*}(0, Y)=|^{\sup_{q|=1}(-traceA(q)Y)} .

Since A(\overline{p})\in S^{n} we can write

A(\overline{p})=(\begin{array}{ll}A_{1}(\overline{p}) A_{2}(\overline{p}){}^{t}A_{2}(\overline{p}) A_{3}(\overline{p})\end{array}) ,

where A_{1}(\overline{p})\in S^{m} , A_{2}(\overline{p}) is an m\cross(n-m) matrix and A3 (\overline{p})\in S^{n-m} .

Here we assume trace A3 (\overline{p})>0 . We remark for \overline{F} of (5.8). This
\overline{F} is given by A_{1}(\overline{p})=I_{m}-p’\otimes p’/|p|^{2} , A_{2}(\overline{p})=-p^{\prime t}p’/|p|^{2} and

A3 (\overline{p})=I_{n-m}-p’\otimes p’/|p|^{2} with p=(p’,p’)\in R^{m}\cross R^{n-m}- Then
trace A3 (\overline{p})\geqq n-m-1>0 .

Case 1: p’=0 . By the definition of \overline{F}_{*} we observe

\overline{F}_{*}(0, (\begin{array}{ll}X OO -aI_{n-m}\end{array}) )

=||=1 \inf_{q}(- trace A(q) (\begin{array}{ll}X OO -aI_{n-m}\end{array}) )

\geqq-\inf_{q||=1} trace A_{1}(q)X+a \inf_{q||=1} trace A3 (q).

Note that \inf\{traceA_{1}(q);|q|=1\}<+\infty since A(q) is continuous on S^{n-1}

and that if trace A3 (q)>0(q\in S^{n-1}) then \inf\{traceA_{3}(q);|q|=1\}>0 ,
where S^{n-1} denotes the unit sphere in R^{n}-

Case 2: p’\neq 0 . A direct calculation yields

\overline{F} ( (\begin{array}{l}p’0\end{array}) , (\begin{array}{ll}X OO -aI_{n-m}\end{array}) ) =-trace A(\overline{p}) (\begin{array}{ll}X OO -aI_{n-m}\end{array})

=-trace A_{1}(\overline{p})X+atrace A3 (\overline{p}) .

In both cases \overline{F} satisfies (\overline{F}4) .

Remark 5.7. Unfortunately, we are unable to prove the converse of TheO-
rem 5.5. However, if the solution of the initial-boundary value problem for
(5.1) with x’-axisymmetric data does exist then the solution of (5.2) and
(5.3) with the same data must be the x’-axisymmetric solution of (5.1) pr0-

vided that (5.1) has a comparison principle. Let u be a viscosity solution
of (5.2) and (5.3) with data g . Suppose that (5.1) has a solution with the
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same data g . Here we denote by \overline{U}(t, x’, x’) the solution. From comparison
principle for (5.1) we see \overline{U} is x’-axisymmetric. Indeed, the rotationally in-
variant condition (5.5) holds for \overline{F} . x’-axisymmetrized solution of \overline{U} should
consist \overline{U} using comparison theorem to these solutions. Therefore, we can
represent \overline{U}(t, x’, x’)=\tilde{u}(t, x’, r) with some x’-axisymmetric function \tilde{u} .
Applying Theorem 5.5 we show \tilde{u} is a solution of (5.2) and (5.3) with data
g . Since we have the comparison theorem for (5.2) and (5.3) we obtain
u=\tilde{u} . Thus we show u(t, x’, r)=\overline{U}(t, x’, x’) . We thus observe that a
solution of (5.2) and (5.3) is actually an axisymmetric solution of (5.1) in
this situation.
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