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Sublinear operators with rough kernel on generalized
Morrey spaces

Shanzhen LU, Dachun YANG and Zusheng ZHOU
(Received November 11, 1996)

Abstract. In this paper, we establish the boundedness of rough operators and their
commutators with BMO functions in generalized Morrey spaces.
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The classical Morrey spaces were introduced in @ by Morrey to study
the local behaviour of solutions to second order elliptic partial differential
equations. Since then, these spaces play an important role in studying the
regularity of solutions to partial differential equations; see [2, 3]. In [5],
Mizuhara introduced the following generalized Morrey spaces and discussed
the boundedness of Calderén-Zygmund operators on these spaces.

Let ¢ be a positively growth function on (0,00) and satisfy that for all
r > 0,

¢(2r) < Dg(r), (1)
where D > 1 is a constant independent of 7.

Definition ([5]) Let 1 < p < co. We denote by LP® = LP?(R") the
space of locally integrable function f for which,

| If@)pde < Cro(r) 2
Br(zo)

for all o € R™ and every r > 0, where B,(z¢) = {z € R" : |z — zo| < 7};
and we denote the smallest constant C satisfying (2) by || f|| 1.4

Obviously, when ¢(r) = r*, 0 < A < n, LP? is just the classical Morrey

spaces in [6].
The purpose of this paper is to establish the boundedness on the gen-
eralized Morrey spaces for a large class of sublinear operators with rough
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kernel and their commutators with BMO functions. For convenience, we
write p' = p/(p — 1) for p € (1, 00).
Let us first establish a key lemma on rough maximal operator defined
by
1
Mo f(z) = sup — 2(y) [ (z —y)ldy,

r>0 T ly|<r

where () is homogeneous of degree zero on R™\{0}.
In what follows, for any zo € R™, r > 0, and any complex-valued
measurable function f(y) on R", we write

FW) = FXByn(z0)(¥) + Z FXBis, (@o)\Byg, (z0) (¥ Z fr(y (3)

k=1

Lemma Let p € (1,00), 1 < D(¢) < 2" and v = log 2"/log D. If
Qe Li(X,_1) and ¢ > p' or ¢ > min{p, 7'}, then for any k > 0,

Ma()@Pds < € (2) 1718, .60,
Br(z0)

where 6 € (1/v,1) for the case ¢ > p' or q > p; 0 € (1/7,1/¢) for the case
q >7'; and C is a constant independent of k and f.

Proof. By the properties of A, weights (see [4]), we have

(MXBT(J:O))G € A,y for q>7p;

-1/(p—1)
))9:| € Ap’/q' for q > D;

I:(MXBT(mO

and

/

q
[(MXB,(xO))O] € Ap for ¢ >+
Then, by we see that
[ IMa(f)@Pde < [ Mol @) (Mxp, ) (@)
BT(.T()) R~
<O [ U@ (Mxp, ) (@)

< o [ | () Pda

Bokt1,.(zo0)
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< c(2) 1518000

This finishes the proof of the lemma. ]

Now, for the boundedness of sublinear operators on these spaces, we
have the following general theorem.

Theorem 1 Let p € (1,00), 1 < D(¢) < 2" and v = log 2"/log D. If a
sublinear operator T is bounded on LP(R™) and for any f € L'(R™) with
compact support and x & Cysupp f,

2z — y)|

TI@I<C |

£ (y)|dy, (4)

where Co > 1, C > 0 are absolute constants, 2 is homogeneous of degree
zero and Q € LI(X,—1) for some q¢ > p' or some ¢ > min{p,~'}, then T is
also bounded on LP*(R™).

Proof. Without loss of generality, we may assume Cy = 1. For any
zg € R" and r > 0, we write f as in (3). For fy, by the LP(R")-boundedness
of T and (1)—(2), we have

(e oras) < o (f 1nwrar)

< C||flleedP(2r) < Cllfllpsd'/P(r).

For k > 0, we choose 6 as in the lemma. Then

l/’ T fi(z)|Pdee
Br(x0)

Qx P
<cf (] ‘—(—n)—'tf(yﬂdy) dx
Br(20) \J Byrs1,(20)\Byk (o) [T — |

1 p
<c (—— / Oz — )i y>|dy) da
Br(z0) (ri) B,ky1,.(z0) ‘ ) (

<c/ |\ Ma(fi) (x)|Pde.



222 S. Lu, D. Yang and Z. Zhou

Since D < 2™ we have

(f L [Ts)p) ”

) g(/B() lek<m)|pd$>1/p
< 0[1 + g(%)k/z’] £l 1osd /P (r) < C|I |l 1red" P (r).

This finishes the proof of Theorem 1. []

We remark that (4) is first proposed by Soria and Weiss in . Ob-
viously, (4) is satisfied by many operators in harmonic analysis, such as
the Calderén-Zygmund operators, Carleson’s maximal operator, Hardy-
Littlewood maximal operator, C. Fefferman’s singular multiplier operators,
R. Fefferman’s singular integral operators, Ricci-Stein’s oscillatory singular
integral and the Bochner-Riesz means at the critical index and so on. In
particular, contains Theorem 2.2 (i) and Theorem 3.2 (i) in
as special cases.

Recently, the linear commutators are revealed to be very useful in study-
ing the regularity of solutions to nondivergence elliptic equations with V MO
coefficients; see [1, 2, 3]. For the boundedness of these commutators on Mor-
rey spaces, we have

Theorem 2 Let p € (1,00), a € BMO(R"), 1 < D(¢) < 2" and v =
log 2" /log D. If a linear operator T' satisfies (4) with Q € LI(%,_1) for
some q > p' or some q > min{p,y'} and [a,T] is bounded from LP(R™) x
BMO(R™) to LP(R™), then [a,T] is also bounded from LP»*(R™)x BMO(R")
to LP?(RM).

Proof. Without loss of generality, we may assume Cy = 1. For any
zo € R™ and r > 0, we write f as in (3). By the LP(R"™)-boundedness of
[a, T], we obtain

1/p
([ lani@Pd) " < Clalifolses
Br(xo)

< CVYP(r)|| £l oo lall-
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For k > 0 and z € B,(x(), we write

@, T fi(z)]|
C
. (2kr)" /sz+1r(:co) o) = el =) fw)ldy
C
+ (2’“7‘)” /sz+1r(ﬂco) |lar — agr+1,.||Q2z — y) fr(y)|dy

C
by o) a0 ) )l
ok+1,(Z0

=L+ 1L+ I,
where as (6 > 0) is defined by

1
~ |Bs(zo)| /Bs(zo)

as a(y)dy.

By the fact that for any » > 0 and k € N

lagrs1, — ar| < C(n)(k +1)llalls  (see [9]),
we obtain

I < C(n)(k + 1)[|all«Ma(fk)(2)-
Then for 6; € (1/~,1) as in Lemmal, we have

[, B < COtPlall [ [Ma(fe)(@)Pda
r\Z0

r(mo

D k
< Clk+ 17 all (g ) 19150800
where we have used the [Lemmal.

For I3, if we choose 1 < u < min{p, ¢} such that v < gp/(q + p) for the
case q > p’ (then q/u > (p/u)’) and q/u > +' for the case ¢ > ', then

1 , 1/
I SC’[———/ a(y) —a 1rudy]
’ (2Fr)m sz+1r($0)‘ W) = agersy|

X [(_2';17 /B N DIl v

< Cllall«(Migpu (| fil*) (),
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where we have used the John-Nirenberg on BMO functions (see [9]).
Therefore, by the lemma, we obtain

Jo e < Cl0E [, o)
BT(CEO) BT(:BO)

D k
< Cllal? (5mzz ) 19150000),

where 6, € (1/7,1).

For I, let s € (0,1) and u € (1,00) such that sqg > 1 and 1/(pu’) +
1/(sq) = 1. Set A = pu’, B = squ and E = squ’ with v € (1,00). Then
1/A+1/B+ 1/E = 1. From Holder’s inequality, it follows that

Cla(z) —aT|/ 1/u/ 1/
I < fe@)7™ QU —y)[”
e e e )

X |fi(y) V19 — y)| Y dy

. /()
< Clo(e) o)l ez [, )P
T) B,k+1,.(zo)
P A R R P
X x —y)*| fi(y)[?7  dy
_(ri)n B,k+1,.(zo0
[ 1 / o 9 ]1/(qu’)
XN ok z —y)|*dy
-(QkT)n Boky1,.(zo0)
Cla(z) - a|

u') ok 1/4/ sav/u 1/(sav
< (sz)n/(pu,) ¢1/(p )(2 +1r)HfHLP’¢(M|Q|Sq(’fkl qu/ )(LC)) /(sq )

By Holder’s inequality again, we have

/ Ifd:v
Br(z0)
C / . , ,
< 7/ (gk+l p/U/ _ g, [P
< g @A [ Jate) — o

x (Migya (| f*7/%) ()P 0 der

C i okt p/ud / ,
r— R
>~ (2](:7.)71/11,' ¢ ( 7°)||fHLp,¢|: Br(20) |(L(Z‘) a l a}:l

squ/u u/(squ 1/u
([ gl ) @) ]
B (z0)

C

/ k /
< S llalZst @ )71

1/v/
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squ/u u/(squ 1/u
([ gl @)y o d]
Br(:Eo)

Now we choose s, u and v such that (i) 1 < pu/(sqv); (ii) v > v and
1/q < s < pu/(qu + pu) for the case ¢ > p’ (hence 1/s > (pu/squ)’); u = v
for the case ¢ > p (hence 1/s > pu/(squ)); and u = v, s < 1/4’ for the case
q > 7' (hence 1/s > +'). Since Q € L'/*(Z,_1), from Lemma), it follows
that

| Tdw < Cllalzgt (e gl
Br(:L'()

Lp¢

D k U squ/u sqU u
* <2n9> £/, s ()
D k
< Clall? (5 ) 171560,

where 63 € (1/7,1). Let 8y = min{6;,62,603}. Then 6y € (1/7,1). Summing
up the above estimates, we obtain

(/B’"(%) le T]f(m)\pd:c)l/p

: Z(f B, (z0) o Tl )ldeJ)l/p

s 1/p
< Cllallulfllred7(r) + z( / LS I?{’d:z;)
k=1 (zo

< Cllal. ||f||Lp¢¢1/P< )
k/p
+03 (o)t DMl e 20)

< Cllai\*||f\|m¢¢1/p("")-
This finishes the proof of [Theorem 2. []

Remark. When ¢(r) = r*, XA € (1,n), we re-obtain Theorems 2.1-2.2 in
2] again.

It is well known that the Riesz potentials I, are bounded from LP(R")
to LI(R™), where 1/¢ = 1/p — a/n and « is the index of I,. Nakai [7] has
obtained the boundedness of I, on the more generalized Morrey spaces. We
partially generalize the results in to the case of sublinear operators on
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the generalized Morrey spaces in [5] as follows.

Theorem 3 Let 0 <a<n,l<p<n/a,1/g=1/p—a/n, 1< D(d) <
2" and v = log 2" P /log D. Assume sublinear T satisfies that for all
f € LY(R™) with compact support and = & Cysupp f,

for<c [, )

where Cy > 1 is a constant, §) is homogeneous of degree zero and Q €
LP(2,-1) for some B> n/(n—a) and 8 > p/ or § > min{p,ny'/(n—a)}. If
T 1is bounded from LP(R™) to L4(R"), then T is also bounded from LP*(R™)
to L99"" (R™).

Proof.  We first point out that if we replace q and ~ in [Lemmal, respec-
tively, by 3 and ~ in this theorem then the conclusion of Lemmal still holds.
Without loss of generality, we may also assume Cy = 1. For any 7o € R"
and r > 0, we write f as in (3).
For fy, since T' is bounded from LP(R") to LY(R"™), we have

| Th@)ds < Clfolmn
Br (o)

< cr{/g%4m®|f(xﬂpdw}q”’

< CP )l 3s
For k > 0, let w = q/p and 1/(pu’) + 1/(63) = 1. Then we have 0 < 6 < 1.
For y € Byk+1,(20)\Bak,(z0), it is easy to verify that

C
MXB, (z0)(y) < ok (6)

with C independent of k, r and z¢. For any = € B,(z¢) and y € (Ba,(x0)),
we easily verify that (1/|z—y|)"~ is comparable to (M x g, (z) (y)/rm)t=e/,
Now let 6 = (n — ap)/n. Then by Hélder’s inequality and (6), we have

C
%a/' [z —y)|
T B2k+1r($0)\B2kr($0)

X | fe(W)| (M, (o) ()~ " dy

C
=1 )P
T sz+1r($0)\BQkT($0)

T fr(z)] <

IA
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1/(pu’)

6
X (M, (20)(¥)) dy]

X / (2 — y)|*”
sz+1r($0)\szT($0)

—Q - ul _ U / 1/(9/3,”/)
X (MXBr(mO)(y))(l /n—6/(pu’')—1/(66u))65u dy]

<[ 2o = )"
Byk+1,(20)\Byk,.(z0)

X | fe(@)1®P M X5, (z0) (y)dy

a—n D K/ (o) u u n u’
i ) R L et

] 1/(68u)

x (2k)~n(l-a/n=8/(pu')~1/(65w))
% Tn/(eﬂu)(Ml |9ﬁ|fk|9ﬁ(x))l/(06u)

k/(pu") ’
<oy (o) SPIFI
x (Migjos| fil*? ()17,

By [Lemmal, we obtain

D kQ/(pu,) o o'
—) 67/ @) (1) | £11 9/

q <
/Br(-’lio) lek‘(x)‘ dr < C(2n5
D 68u)
< (e IAPISEE oo

D \ ka/(pv)
<Clym) SO,

where € € (1/7,1) such that ne — ap > log, D. Theorefore,

(/B (o) |Tf(x)|qu> N

<Z(/ L IThe )\qd:c)l/q

X / D \F/ ()
<Cllned ) +C Y (35)  Ifllned”?()
k=1

< Cllf || Losd™P(r).
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Then the proof is finished. ]
For the commutators, we also have

Theorem 4 Let0<a<n,l1<p<n/a,l/g=1/p—a/n, 1< D(¢) <
2P~ =log 2" *P/log D and a € BMO(R™). Assume that linear opera-
tor T satisfies (5) for some 8 > n/(n—a) and 8 > p’ or B > min{p,nvy'/(n—
a)}. If la,T) is bounded from LP(R™) x BMO(R") to LI(R"), then [a,T]
is also bounded from LP?(R™) x BMO(R") to Lq’d’q/p(R").

Proof.  The proof of this theorem is similar to that of and
Theorem 3, and we only give a sketch for Cy = 1.

For zo € R™ and r > 0, write f as (3). If K = 0, by the boundedness
of [a,T] from LP(R"™) to LI(R"™), we can obtain the desired inequality. To

estimate T f;, for k > 0, we first point out that in the proof of
we have proved

1
ey 2z — y)fu(v)]
Br(zg) r sz+1r(10)\B2kr(m0)

1-a/n q 1/q
X (MXB, (z0)(¥)) dy] dm}

D\ K/ )
sc(ﬁ) P f o (7)

where a, p, g, u and é are as in the proof of [Theorem 3. Now we set

n={[ " lor —ala)

< . Mwndy]qu}l/q,

20)\Byk, (w0) T — Y[

IQ = {/ {/ }ar - a2k+1rl
r(20) " Byk+1,.(%0)\Byk,.(0)

» le(y)\dy]qdm}”q,

|z —y|*e

and

s={[ a(y) — e,
Br(z0) *J Byk+1,.(20)\Byk . (o)
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. [z —y)|

|z —y|n—e

|f (y)ldy] qd:v}l/q-

For I, if B8 > p/, by Holder’s inequality and (6), we have

I < Cfro‘_”{/ la(z) — ar|q/ llﬂ(m —Y) fe(y)]
Br(z0) Bok+1,.(z0)\Byk,.(x0)

1—ajn ; |9 1/q
X (MXB,(z0)(¥)) dy dw}

<o f [ jate) - ale[ 2z - y)P
By (zo0) B,k+1,.(z0)\Byk,.(z0)

]Q/P'

X (M, (a0 (y)) '/ "70/PIP gy

q/p 1/q
X / | fe(y) P (M XBT(xo)(y))(de] d:v}
Byk+1,.(x0)\ By . (x0)

k
< Cron(2kp)n/V (9-kyn(-e/n—6/p) (5%) /p

X ||fHLp,¢¢1/p(r) (/ a(z) - arlqu>1/q

B (z0)
D \Fk/p
<C (ﬁ) lall<ll ]l Lo’ /P(r).

If 3 > min{p,nvy'/(n — a)}, we let € € (0,1) to be determined late. Let
u = q/(pe), s = pu/q, and 6 = B(Tll/(m' Then s > 1, ¢gs = pu, 1/(pv’) +
1/(68) = 1 and pu/(63) > 1. For the case 8 > max{n/(n—a),p} we choose
e>1—q((n—a)/n—1/8) and v > 1 such that v € (pu/B3,pu/(08)); and
for the case 8 > nvy'/(n — a) we choose € > 1 — q((n — a) —v'/B) and
v € (1,pu/(68)). Then we have 1/6 > pu/(683v) > 1 for the case 8 > p; and
1/6 > +' for the case B > ny'/(n — a). Therefore, by Holder’s inequality,
and (6), we have

n<or [ ) - al
Br((to)

| Fe(@)IP(MXB, () (y))édy]Q/(pu )

<[,
Bok+1,.(z0)\Byk,.(z0)

y / Q(z —y)|%
Bykt1,.(x0)\Byk,.(z0)



230 S. Lu, D. Yang and Z. Zhou

N— v v _q7
% (MXBT(:EO)(y))(l—a/n—5/(Pu) 1/(86v))06 dy] 68

X / |Q($—y)|05|
Bk +1,.(%0)\Byk,.(%0)

v/u a/(68v) | /1
< M a0y "

IA

o'/ %) (1)

gyt (217
2716

X Hf”ﬂ:fd,(2’“)‘”(1—0‘/"-5/(pu’)—1/(9;3))

/(@)
x(/ |ar—a(:c)|qsd:v)
Br(zo)

AL M1l @)
B (zo)

o D \ ¥/ (pv) D \ka/(pw)
<@y () Hal () Wled o)

D \ */(pv) D k/(pu)
<(y)  (gacs) Mimelals)

D\ K/ )
<) Nalllflmsd?(r)

0s/(00) Yy 1/(as)
|

where €; € (1/7,1) for the case § > p and ¢; € (1/v,1 — 0) for the case
B >ny'/(n—a).
For Iy, from (7) and the properties of BMO functions, it follows that

1
< —
I2 o C|ar a2k+1r’{/Br(I0) {’rn_a

12z — y) fr(y)]

<J.
B,k+1,.(x0)\Byk,.(z0)

1
q

1-a/n 1
X (MXB,(z0)(¥)) dy| dz

D \ M)
<o+ 1) (5)  lalllflined o),

where u = q/p.
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For I3, let 1 < s < min{p, g}. By Holder’s inequality and (7), we have

Iz < cr“‘"{/ [/ |a(y) — agea,|¥dy
Br(z0) */ Byk+1,.(0)\Byk,.(zo)

2z = y)I°|fe()l?

]q/S'

[,
B,k+1,.(0)\Byk,.(z0)

s(l—a a/s Y
X (MXB, (a0) (1)) )dy] dw}

S CHCLII*(ri)n/slra_n+(n—sa)/s (2_k)(3—1)n/s

1 s s
AL | 12z — )I*1fu(v)]
Br(zo) LT Bok+1,.(%0)\Byk,.(%0)

1-sa/n s/a1/s
X (MXB, () (¥)) dy] dw}

D k/pu’
SCMhGE> 171l e M7(r),

where 6 = (n — ap)/n and u = ¢/p.
Summing up the above estimates, we finish the proof of [Theorem 4.
[]
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