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Extension of submanifolds of C" preserving the number
of negative Levi eigenvalues
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Abstract. Given a totally real C2-submanifold S of a complex manifold X, it is obvious
that there exists a hypersurface M, in a neighborhood of any point of S, which contains
S and which is the boundary of a strictly pseudoconvex domain. We prove here that if
S is generic, then there exists a hypersurface M through S which has the same number
of negative (or positive) Levi eigenvalues as S at a prescribed conormal. (Resp. at all
common conormals when we assume in addition that the rank of the Levi-form Lg is
constant.) As an application we show how to lift complex submanifolds from S to T§X ,
the conormal bundle to S in X, when Lg is semidefinite of constant rank (cf. Bedford-
Fornaess [1] for the case of codim S = 1). We point out that our method is not adequate
to describe the behavior of the Levi form of M on points outside S. In particular it is still
an open problem whether any submanifold S whose Levi form is positive semi-definite,
is contained in a pseudoconvex hypersurface M.
Some of the results discussed here are also exposed in [9].
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Statement and Proof of the Main Result

Let X be a complex manifold of dimension n, S a real C?-submanifold
of X with codimxS =, 7 : T*X — X the cotangent bundle to X, 7 :
T:¢X — S the conormal bundle to S in X. For a point p = (2,() € T§X
T%X \ {0}), choose a real C*-function r with r|s = 0 and dr(z) = p, and

define the Levi form of S at p by

Ls(p) = 85T(Z)IT§S,

where TCS = T'SNy/—1TS. Denote by sg’_’o (p) the numbers of respectively
positive, negative, and null eigenvalues of Lg(p).

Assume that S is generic in the sense that
(T5X): N V-1(T5X). = {0}.

Fix p, € T§X.
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Theorem 1 We may find a hypersurface M (in an open neighborhood of

2, & 7(po)) such that

M>S
po € Ty X (3)
sy (Po) = 55(po)-

(Similarly there exists M which satisfies (3) with s~ replaced by st.)

Proof.  We take complex coordinates z in a neighborhood B of z, in X, and
identify in these coordinates X ~ T,XVz € B. We take the canonically
associated complex symplectic coordinates (2,{) in T*X. The action of
the canonical 1-form w = w® + \/=1w! is then defined by means of the
Hermitian product of X and that of w® through the Euclidean product
of X® the real underlying manifold to X. This provides an identification
of T¢X to TSt, the Euclidean orthogonal to T'S. We shall also denote
by 0 = o® + y/=10' (= dw) the canonical 2-form on T*X. We define the

1
complex modulus = (31, ¢?)? where we choose the determination of
1=1 %z

the square root which is positive for real ¢. In particular ||¢| makes sense
when Y, (? ¢ R™. This is the case of any ¢ € (T¢X),, when z is close to
zo. (In fact, by (2) the coordinates can be chosen so that any ¢ € (T4X),,
is real.) We write any 7 € (X \ S) N B as:

mz—ldﬁ 4)

for an unique (2;¢) € T4X with z € B’ and |¢| small. In fact it is easy
to check that the normals issued from different points of a C%-manifold S
cannot have non-trivial intersection in a neighborhood of S. And this is still
true if we replace normal directions Ig_l by |—|g—” By (4), X \ S and T¢X are
thus identified in neighborhoods of z, and (z,; 0) respectively. This provides
an orthogonal projection h and a distance function §, defined locally by:

h:X\S—Sh(r)=2, §:X\S—R"§)=|7-z||(=]¢]).

We have also to notice that X \ S is foliated by the hypersurfaces of fized
distance to S:

S; = {r e B;6(r) =t}
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D P — <. 2 § = Y(B'
= {r=s g0 e tix e @)

with B and B’ neighborhoods of 7, and z, in X and S respectively.
We fix ¢t and write also S instead of S;. We introduce a complex sym-
plectic diffeomorphism x = x; of T*X defined, for S ¢2¢ R, by:

X i (2:¢) — (z—t”—gﬂ;c>-

We remark that mx:(T5X) = S and that x(T$X) has to be R-Lagrangian
(i.e. Lagrangian for o®) because x preserves Lagrangianity. It follows:

xt(TgX) = TgX. (5)
This implies in particular that
Th(T)S - TTS, VT € S, (6)

under the identification, in coordinates, X ~ T:X =~ TjX. S being a
hypersurface, we identify the conormals g € TgX in a neighborhood of g,

to the base-points 7 = 7(q) € S. []
To carry on our proof we need to state now some Lemmas.

Lemma 2 There exists R = Ry C S with dim R = dim S and such that
(i) TER D KerLg(m)
(i) Tr, R =®(T3,S),

where ®; s a linear transformation of C™ with ®; —Id = O(t).

Proof. ~ We denote by (r; = 0,...,7 = 0) (I = codimS) a system of
independent equations for S. We set p, = (20;(,), observe that we can

assume (, € R”, |¢,| = 1 due to (2), and choose an equation r = 0 for S
which satisfies r(z,) = (,. We write Ag(po) e Tp,T3X, and observe that

we have the parametric description:

As(po) = {(u, tharj(zo) + 90r(zo)u + 857“(20)&) ;U € TS)S, (t;) € Rl}.
J
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It follows

As(Po) N V—=1Ags(po) = {(u, Z t;0r;i(z0) + 00r(20)u + 85r(zo)ﬂ>
= (\/—_lw, \/——IZ 5;07;(2)
+ 80r(20)V~Tw — 9r(z)V/=1w)

for u, we TgS, (t5), (sj) € Rl}.

This implies © = v/—1w and moreover
_ 1 .
00r(zo)a = ~3 (Z(tj - \/—1sj)8rj(zo)) (i.e. u € Ker Lg(p,)).

j
In particular }°,t;0r;(z,) = —2Red0r(z,)u. Also notice that
—2RedOr (2,) + 00 (2,)T = —Br(z,)t = —0r(z,)u.
It follows
As(po) N V—=1As(po)
= {(u,v);u € Ker Lg(p,), v = —2Reddr(z,)a

+ 0071 (20)u + 80r(2,)%)}
= {(u,v);u € Ker Lg(p,), v = 80r(z,)u — 58r(zo)u}. (7)

In particular

As(Po) N V—=1Ag(po) :’% Ker Lg(p,),

is one-to-one. Clearly similar injectivity for n’ and similar parametric de-

scription as (7) also holds for Az(go) N v=1X5(g0) (g0 = X(P0))-
Let us define now a linear transformation on C" by ®; : u +— u-+t(v(u)—

Co{Cos v(u))) where v(u) = 80r(z,)u — d0r(z,)u. Note that we have:

U(Zi ng) ~ Co(Co, U>
(Ti¢2)?

X (Do) : (u,v) — ut

= ut(v — (,((o, V).
(Note here that 3, (% =1.)
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Thus with the notation g, = x(p,), the diagram

!

X

>‘S(po) M \/_—1)\S(po) — Ag(‘]o) M \/ji)\g(%)
" | |~ (8)

~J

Ker Ls(po) = Ker Lg(qo),
t

is commutative. We write 7, = 7(q,), denote by g the projection g : T, X —
S along the normal at 7,, and put R = g(®:(1%,5)). R satisfies all require-
ments of Lemma 2. ]

When dealing with a hypersurface S (and for a choice of an orientation
+q,), we write Lg(7,), To = T(qo) instead of Lg(g,). We point out that (8)
shows that

rank L(7,) = rank Ls(p,) + (I — 1). 9)

We also point out that (i) and (ii) imply, for small ¢:

LS(TO)ITS;R ~ LS(po)) (10)

« » . . . . o (TEX)z,

where “~” means equivalence in signature and rank. Let us identify (TFS*T)_
§/To

to a totally real plane N orthogonal to T R in TTOS by the aid of the
Euclidean structure of X® = T, X® = T, X®, and define N = N&+/—1N.
Thus N is the orthogonal complement of T’ E R in TS S. We note that

{tﬂgﬂ;c € R~ (T:X ), } is the spherical surface in R! of radius t (small),
and N is (identified to) its tangent plane at (—1,...,0). It follows that the
real Hessian Hessg verifies

Hessz(7,)(v,v) = —2t > Vwe N,

Note also that Hessg(7,)(v—1v,v—1v) < c|v|?> Vv € N. This implies
_ 1
LS’(TO)(U’U) = Z
¢t o tTH

We recall that Ker Lg(7,) < TER. Thus we may find N’ C TE S transversal
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to TE R and such that:
La(to)(@,v) =0 YueT R, ve N, 12
S To

By choosmg ¢ small enough, we may suppose that [11) still holds with the
new N'. It follows that

s5(70) = 55(Po) + (1= 1) (and s{(7o) = s&(po)).

We take now a hypersurface M which intersect S along R with order of
contact 2 and with M* C ST (where M* | ST are the closed half-spaces
with boundary M, S and inward conormal q). We note that this implies

—1(TJ’\‘;IX) =Ty X for a hypersurface M D S,
due to the assumption on the order of contact of M with S. We have clearly

LM(TO)ngR = LS(TO>|T;COR(N Ls(po,) for t small). (13)

Lemma 3 We have

Ly (1o)(t,v) =0 VYue TR, ve N (14)

Proof. We choose complex coordinates z = (zl,z 2"} such that 7, =
0,¢ =dy;, T, X =C,;, xTES = C,; x TSR x N = C,, x C7! x €L,
We take equations y; = h; and Y1 = hg for M and S respectlvely, and set
h = hl h2 We have

h|R = O, ath = 0. (15)
It follows

2%6 Ohlp =0 if %e(Za] ;) ETER.

In particular, since TR = Re (Spang(d,/)), then 8,0h(r,) = 0. Thus
Lp(a,v) = 0Vu € TCR in particular the property “Lp, (4,v) = 0 Vu €
TER, v € N'” holds for i = 1 iff it holds for i — 2. Thus (12) and (14) are
equlvalent []

End of proof of [Theorem 1
It is also clear that we can take M such that holds for L a7 and for
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N’ (with a new c). Recalling also (13), we have for small ¢:

55,(70) = 55(po) + (1= 1) (and s (7o) = 55 (po)).

We note now that, from A7 (7)Nv/—1Ay; () —+ > Am(p YNV =1 pm(p), (T =

7x(p)), we get, similarly to (9):

rank L (p) = rank L (7). (16)
It follows:

SX{(po) =3Sg (po) and SX[(po) = Sg‘-(po) + (I - 1). (17)
Thus M satisfies all requirements in the statement of Theorem 1. ]

Theorem 4 Let rank Lg(p) = constVp in T§X close to p,, and assume
that S is of class C®. Then there exists a germ of a hypersurface M at 2,
such that

sy(P) =s5(Po) VP ES XM ThyX. (18)

Proof. We transform TgX 5 Tz X (X = Xt S =5,). Since
X

KeI‘Lg(T) ” g) N V—1Ag( ) <‘“ As(p) N V—1Xs(p)

= Ker L
— Ker s(p),

has constant rank, then it is integrable (= closed under Lie-brackets) ac-
cording to [4]. (see also [8]). For this the assumption of C3-regularity for S
is required.

Thus each S = S; is foliated by the (complex) integral leaves of Ker Lg.
Since the hypersurfaces S, give in turn a t-parameter foliation of X'\ S, then
we get a foliation of X \ S by complex leaves tangent to the bundle:

Gl
T

Take a decomposition TS = L @ Ker Lg such that Lg is diagonal (with
unitary eigenvalues) in (L N y/—1L). Define R to be the union of the in-

W(r) & Ker Lg(h(r);¢-)  with



46 G. Zampieri

tegral leaves of W issued from g(®|¢, L) (9: TX — S). R is a germ of a
submanifold of S at T, which satisfies:

TFR DO KerLg(r) V7 e R, (19)
T:R=®{(1,,S) with |®] —1Id| <e for |(7,t)| < 6.
We still have
Lg(7)lreg ~ Ls(po), (20)
and, for a decomposition T¢S = TCR @ N
Lg(m)(0,v) < —ct™Hv)* Woe N/, (21)
Lg(1)(@,v) < €lullv] Yue TER, Vv e N.. (22)

From (20), [21}, {22}, and, essentially, by the first of (19), we get sz(q) =
sg(po) + (I — 1), Vp. We take a hypersurface M which intersect S along
R with order of contact 2 and with M+ C ST. It is not restrictive to
assume M invariant under the flow of W. For otherwise, if f is a projection

along the W-integral leaves, one replaces M by f~1fM. (Remark here that
R = f~1fR.) We have obviously:

LM(T)|T§R = Lg(T)IT;CR(N Ls(po)) tsmall, 7 € R close to 7.
We also have

Ly (7)(@,v) < elul|v] Yu€TER, Vve N,

Ly (1)(9,v) < —ct Hv|* Vv e N,
Ly (T)(@,w) =0 VueKerLg(r)(=W(r)), Ywe T°M, Vr e R,

(because M is invariant under the flow of W). It follows:

s(0) =s5(po) +(1—-1) Vge Rxy THX. (23)
From (23) we get the conclusion as in [Theorem 1. ]

Corollary 5 In the situation of Theorem 1 (resp. 4), we have

Ker Ly (po) = Ker Ls(p,)
(resp. Ker Ly (p) = Ker Lg(p) Vp € S x 31 Tjy X).
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Proof. It is an immediate consequence of the isomorphisms:

Ker Lg(p) i Ker Lz(7) = Ker L (1) :_>1 Ker Lps(p).
t

¢,

]

2. An application to complex curves in pseudoconvex manifolds

Let X be a complex manifold of dimension n. In it is proved that
any complex curve v in a pseudoconvex hypersurface S C X can be lifted
to a complex curve in T§X . We extend here the above result to the case of
codimS > 1 or dim~vy > 1.

Theorem 6 Let S be a generic submanifold of X of codimension I, p, a
point of T§X, z, = m(po), and suppose

s¢(p) =0 forany pe T;X close to p,. (24)

We also suppose that there exists a hypersurface M with M D S, Ty, X > p,
and which satisfies:

Ker Lg(p) C Ker Lys(p) Vp € S xpr Ty X, p close to p,. (25)

Let v be a complex submanifold of S. Then there exists v*, complex sub-
manifold of T$X , which contains p, and such that w(v*) = 7.

Proof. Take an equation 7 = 0 for M with 0r(z,) = p,. Then
Ly(2)(w,w) >0 YweTM,Vz¢€S.
Let u € TC; clearly L.(z)(u,@) = 0. Thus the above inequality implies:

L(2)(w,@) =0 Vze~y, YweTEM. (26)

—
¢}
=
=

|

X—¢ be the complex symplectic transformation x : (z;¢) —
(z + t—C%—; C). Thus for the hypersurface S=5_, (different from S =

Syt of §1), we have x(T¢X) = TgX. We remark that for p € T4X and
with ¢ = x(p) € TgX, we have rank Lg(q) = rank Ls(p) + (I — 1). We also

remark that, for ¢ small: sg(q) = s&(p) + (I — 1). In particular we have:

s3(9) =0 VgeTiX. (27)
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Let us define v = {z + ¢ Or(z) ;2 € v¢. We claim that 4 is a
{ ((,0=m(2)2)?) }

complex manifold in S. In fact let us take coordinates z = x + vV—1ly €
C" such that v = {0} x --- x {0} x C%, where d = dimc~y and 2’ =

(Zn—d+1s- - -»2n). What we need to prove is that:
or(z)
8Eh ( 1) |{()}>< cd :07 thn_d+1a (28)
(30:(8:7(2))?)2 e

or equivalently:

azhazjr(Z(a )?) - o, TZ (82, 0.,7)(0,,7) = 0
Vh>n—d+1\/] (29)

Let (e;) be an orthonormal system in C™, and let wg = 0yre;—0,,re;. Thus
for any fixed j, the set of vectors w!, i = 1,...,n, i # j, is a basis for TEM.

We may also assume that u = ey,. Then the term on the left side of is
equal to

z ((92,02,7)(0=7)? - <azhazir><azjr><azn>)
Z(a 0:,7)(Bzi7) — (95,8:,7)(9:;7) ) (D7)

- Z (85T(wzjv ﬂ)) (0;,m) = 0 V3, (30)

due to [26). It follows that 7 is a complex manifold in the pseudoconvex hy-
persurface S. Thus |1} applies (with suitable modifications because possibly
dimcy > 1), and entails the existence of a complex manifold 7* C TfX ,

such that 7(5*) = 4. Finally if we define ~* el x"1(7%), then v* is a
complex manifold in T*X which verifies 7(y*) = . ]

Remark 7 Let s5(p) = 0Vp € T4X at p,. One should wonder whether
there exists a pseudoconvex hypersurface M which contains S. But it is not
clear if this is true. For this reason we apply [1] not directly to M but to S
(with T*X = x(T%X)). In this respect the crucial point is that 7 is still a

complex manifold in S.
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Example 8 Let us consider in C3 with coordinates z = z + v/—1y:

S={zz3=0,z1 =0}, p=dzy, v={0} xC,, x {0}.

For M = {z; z1 = 0}, clearly v can be lifted to a complex curve v* C
S xar Tr; X in (trivial) accordance with [Theorem 6. But not any M has
this property. For instance if we take M = {z; 1 = xox3}, then L) is non-

degenerate and therefore T3, X contains no complex v* because otherwise
Tv* C T3 X N+/—1T3; X (~ Ker Lys) = 0 which is a contradiction.
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