Extension of submanifolds of \mathbb{C}^n preserving the number of negative Levi eigenvalues

Giuseppe Zampieri

(Received February 13, 1996; Revised September 16, 1997)

Abstract. Given a totally real C^2 -submanifold S of a complex manifold X, it is obvious that there exists a hypersurface M, in a neighborhood of any point of S, which contains S and which is the boundary of a strictly pseudoconvex domain. We prove here that if S is generic, then there exists a hypersurface M through S which has the same number of negative (or positive) Levi eigenvalues as S at a prescribed conormal. (Resp. at all common conormals when we assume in addition that the rank of the Levi-form L_S is constant.) As an application we show how to lift complex submanifolds from S to \dot{T}_S^*X , the conormal bundle to S in X, when L_S is semidefinite of constant rank (cf. Bedford-Fornaess [1] for the case of codim S=1). We point out that our method is not adequate to describe the behavior of the Levi form of M on points outside S. In particular it is still an open problem whether any submanifold S whose Levi form is positive semi-definite, is contained in a pseudoconvex hypersurface M.

Some of the results discussed here are also exposed in [9].

Key words: CR manifolds - real/complex symplectic structures.

1. Statement and Proof of the Main Result

Let X be a complex manifold of dimension n, S a real C^2 -submanifold of X with $\operatorname{codim}_X S = l$, $\pi: T^*X \to X$ the cotangent bundle to X, $\pi: T^*X \to S$ the conormal bundle to S in X. For a point $p = (z, \zeta) \in \dot{T}^*_S X$ $(= T^*_S X \setminus \{0\})$, choose a real C^2 -function r with $r|_S \equiv 0$ and $\partial r(z) = p$, and define the Levi form of S at p by

$$L_S(p) = \partial \bar{\partial} r(z)|_{T_{\cdot}^{\mathbb{C}}S}, \tag{1}$$

where $T^{\mathbb{C}}S = TS \cap \sqrt{-1}TS$. Denote by $s_S^{+,-,0}(p)$ the numbers of respectively positive, negative, and null eigenvalues of $L_S(p)$.

Assume that S is generic in the sense that

$$(T_S^*X)_z \cap \sqrt{-1}(T_S^*X)_z = \{0\}. \tag{2}$$

Fix $p_o \in \dot{T}_S^* X$.

¹⁹⁹¹ Mathematics Subject Classification: 58G99, 32F40.

Theorem 1 We may find a hypersurface M (in an open neighborhood of $z_o \stackrel{\text{def.}}{=} \pi(p_o)$) such that

$$\begin{cases}
M \supset S \\
p_o \in \dot{T}_M^* X \\
s_M^-(p_o) = s_S^-(p_o).
\end{cases}$$
(3)

(Similarly there exists M which satisfies (3) with s^- replaced by s^+ .)

Proof. We take complex coordinates z in a neighborhood B of z_o in X, and identify in these coordinates $X \simeq T_z X \, \forall z \in B$. We take the canonically associated complex symplectic coordinates (z,ζ) in T^*X . The action of the canonical 1-form $\omega = \omega^{\mathbb{R}} + \sqrt{-1}\omega^{\mathbb{I}}$ is then defined by means of the Hermitian product of X and that of $\omega^{\mathbb{R}}$ through the Euclidean product of $X^{\mathbb{R}}$ the real underlying manifold to X. This provides an identification of T_s^*X to T_s^{\perp} , the Euclidean orthogonal to T_s^*X . We shall also denote by $\sigma = \sigma^{\mathbb{R}} + \sqrt{-1}\sigma^{\mathbb{I}} (= d\omega)$ the canonical 2-form on T^*X . We define the complex modulus $\|\zeta\| = \left(\sum_{i=1}^n \zeta_i^2\right)^{\frac{1}{2}}$ where we choose the determination of the square root which is positive for real ζ . In particular $\|\zeta\|$ makes sense when $\sum_i \zeta_i^2 \notin \mathbb{R}^-$. This is the case of any $\zeta \in (T_s^*X)_z$, when z is close to z_o . (In fact, by (2) the coordinates can be chosen so that any $\zeta \in (T_s^*X)_{z_o}$ is real.) We write any $\tau \in (X \setminus S) \cap B$ as:

$$\tau = z - |\zeta| \frac{\zeta}{\|\zeta\|} \tag{4}$$

for an unique $(z;\zeta) \in \dot{T}_S^*X$ with $z \in B'$ and $|\zeta|$ small. In fact it is easy to check that the normals issued from different points of a C^2 -manifold S cannot have non-trivial intersection in a neighborhood of S. And this is still true if we replace normal directions $\frac{\zeta}{|\zeta|}$ by $\frac{\zeta}{|\zeta|}$. By (4), $X \setminus S$ and \dot{T}_S^*X are thus identified in neighborhoods of z_o and $(z_o; 0)$ respectively. This provides an orthogonal projection h and a distance function δ , defined locally by:

$$h: X \setminus S \to S, h(\tau) = z, \quad \delta: X \setminus S \to \dot{\mathbb{R}}^+, \delta(\tau) = \|\tau - z\| (= |\zeta|).$$

We have also to notice that $X \setminus S$ is foliated by the hypersurfaces of fixed distance to S:

$$\tilde{S}_t = \{ \tau \in B; \delta(\tau) = t \}$$

$$= \left\{ \tau = z - t \frac{\zeta}{\|\zeta\|}; (z, \zeta) \in \dot{T}_S^* X \cap \pi^{-1}(B') \right\},\,$$

with B and B' neighborhoods of τ_o and z_o in X and S respectively.

We fix t and write also \tilde{S} instead of \tilde{S}_t . We introduce a complex symplectic diffeomorphism $\chi = \chi_t$ of \dot{T}^*X defined, for $\sum \zeta_i^2 \notin \mathbb{R}^-$, by:

$$\chi:(z;\zeta)\mapsto \left(z-t\frac{\zeta}{\|\zeta\|};\zeta\right).$$

We remark that $\pi \chi_t(T_S^*X) = \tilde{S}$ and that $\chi(T_S^*X)$ has to be \mathbb{R} -Lagrangian (i.e. Lagrangian for $\sigma^{\mathbb{R}}$) because χ preserves Lagrangianity. It follows:

$$\chi_t(T_S^*X) = T_{\tilde{S}}^*X. \tag{5}$$

This implies in particular that

$$T_{h(\tau)}S \subset T_{\tau}\tilde{S}, \quad \forall \tau \in \tilde{S},$$
 (6)

under the identification, in coordinates, $X \simeq T_{\tau}X \simeq T_{h(\tau)}X$. \tilde{S} being a hypersurface, we identify the conormals $q \in T_{\tilde{S}}^*X$ in a neighborhood of q_o to the base-points $\tau = \pi(q) \in \tilde{S}$.

To carry on our proof we need to state now some Lemmas.

Lemma 2 There exists $R = R_t \subset \tilde{S}$ with dim $R = \dim S$ and such that

- (i) $T_{\tau_o}^{\mathbb{C}}R\supset \operatorname{Ker}L_{\tilde{S}}(\tau_o)$
- (ii) $T_{\tau_0}R = \Phi_t(T_{z_0}S)$,

where Φ_t is a linear transformation of \mathbb{C}^n with $\Phi_t - \mathrm{Id} = O(t)$.

Proof. We denote by $(r_1 = 0, ..., r_l = 0)$ $(l = \operatorname{codim} S)$ a system of independent equations for S. We set $p_o = (z_o; \zeta_o)$, observe that we can assume $\zeta_o \in \mathbb{R}^n$, $|\zeta_o| = 1$ due to (2), and choose an equation r = 0 for S which satisfies $\partial r(z_o) = \zeta_o$. We write $\lambda_S(p_o) : \stackrel{\text{def.}}{=} T_{p_o} T_S^* X$, and observe that we have the parametric description:

$$\lambda_{S}(p_{o}) = \left\{ \left(u, \sum_{j} t_{j} \partial r_{j}(z_{o}) + \partial \partial r(z_{o}) u + \partial \bar{\partial} r(z_{o}) \bar{u} \right); u \in T_{z_{o}}^{\mathbb{C}} S, (t_{j}) \in \mathbb{R}^{l} \right\}.$$

It follows

$$\lambda_{S}(p_{o}) \cap \sqrt{-1}\lambda_{S}(p_{o}) = \left\{ \left(u, \sum_{j} t_{j} \partial r_{j}(z_{o}) + \partial \partial r(z_{o}) u + \partial \bar{\partial} r(z_{o}) \bar{u} \right) \right.$$

$$= \left(\sqrt{-1} w, \sqrt{-1} \sum_{j} s_{j} \partial r_{j}(z_{o}) \right.$$

$$+ \partial \partial r(z_{o}) \sqrt{-1} w - \partial \bar{\partial} r(z_{o}) \overline{\sqrt{-1} w} \right)$$
for $u, w \in T_{z_{o}}^{\mathbb{C}} S, (t_{j}), (s_{j}) \in \mathbb{R}^{l} \right\}.$

This implies $u = \sqrt{-1}w$ and moreover

$$\partial \bar{\partial} r(z_o) \bar{u} = -\frac{1}{2} \Big(\sum_j (t_j - \sqrt{-1}s_j) \partial r_j(z_o) \Big)$$
 (i.e. $u \in \operatorname{Ker} L_S(p_o)$).

In particular $\sum_j t_j \partial r_j(z_o) = -2 \Re e \partial \bar{\partial} r(z_o) \bar{u}$. Also notice that

$$-2\Re e\partial\bar{\partial}r(z_o)\bar{u}+\partial\bar{\partial}r(z_o)\bar{u}=-\overline{\partial\bar{\partial}r(z_o)\bar{u}}=-\bar{\partial}\partial r(z_o)u.$$

It follows

$$\lambda_{S}(p_{o}) \cap \sqrt{-1}\lambda_{S}(p_{o})$$

$$= \{(u, v); u \in \operatorname{Ker} L_{S}(p_{o}), v = -2\Re e \partial \bar{\partial} r(z_{o}) \bar{u} + \partial \partial r(z_{o}) u + \partial \bar{\partial} r(z_{o}) \bar{u}\}\}$$

$$= \{(u, v); u \in \operatorname{Ker} L_{S}(p_{o}), v = \partial \partial r(z_{o}) u - \bar{\partial} \partial r(z_{o}) u\}.$$
(7)

In particular

$$\lambda_S(p_o) \cap \sqrt{-1}\lambda_S(p_o) \xrightarrow[\pi']{\sim} \operatorname{Ker} L_S(p_o),$$

is one-to-one. Clearly similar injectivity for π' and similar parametric description as (7) also holds for $\lambda_{\tilde{S}}(q_o) \cap \sqrt{-1}\lambda_{\tilde{S}}(q_o)$ $(q_o = \chi(p_o))$.

Let us define now a linear transformation on \mathbb{C}^n by $\Phi_t : u \mapsto u + t(v(u) - \zeta_o(\zeta_o, v(u)))$ where $v(u) = \partial \partial r(z_o)u - \bar{\partial} \partial r(z_o)u$. Note that we have:

$$\pi'\chi'_{t}(p_{o}): (u, v) \mapsto ut \frac{v(\sum_{i} \zeta_{oi}^{2}) - \zeta_{o}\langle\zeta_{o}, v\rangle}{(\sum_{i} \zeta_{oi}^{2})^{\frac{3}{2}}}$$
$$= ut(v - \zeta_{o}\langle\zeta_{o}, v\rangle).$$
(Note here that $\sum_{i} \zeta_{oi}^{2} = 1.$)

Thus with the notation $q_o = \chi(p_o)$, the diagram

$$\lambda_{S}(p_{o}) \cap \sqrt{-1}\lambda_{S}(p_{o}) \xrightarrow{\overset{\chi'}{\sim}} \lambda_{\tilde{S}}(q_{o}) \cap \sqrt{-1}\lambda_{\tilde{S}}(q_{o})$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi' \qquad (8)$$

$$\operatorname{Ker} L_{S}(p_{o}) \xrightarrow{\overset{\sim}{\Phi_{t}}} \operatorname{Ker} L_{\tilde{S}}(q_{o}),$$

is commutative. We write $\tau_o = \pi(q_o)$, denote by g the projection $g: T_{\tau_o}X \to \tilde{S}$ along the normal at τ_o , and put $R = g(\Phi_t(T_{z_o}S))$. R satisfies all requirements of Lemma 2.

When dealing with a hypersurface \tilde{S} (and for a choice of an orientation $\pm q_o$), we write $L_{\tilde{S}}(\tau_o)$, $\tau_o = \pi(q_o)$ instead of $L_{\tilde{S}}(q_o)$. We point out that (8) shows that

$$\operatorname{rank} L_{\tilde{S}}(\tau_o) = \operatorname{rank} L_S(p_o) + (l-1). \tag{9}$$

We also point out that (i) and (ii) imply, for small t:

$$L_{\tilde{S}}(\tau_o)|_{T_{\tau_o}^{\mathbb{C}}R} \sim L_S(p_o),\tag{10}$$

where " \sim " means equivalence in signature and rank. Let us identify $\frac{(T_S^*X)_{z_o}}{(T_S^*X)_{\tau_o}}$ to a totally real plane N orthogonal to $T_{\tau_o}R$ in $T_{\tau_o}\tilde{S}$ by the aid of the Euclidean structure of $X^{\mathbb{R}} = T_{\tau_o}X^{\mathbb{R}} = T_{z_o}X^{\mathbb{R}}$, and define $\tilde{N} = N \oplus \sqrt{-1}N$. Thus \tilde{N} is the orthogonal complement of $T_{\tau_o}^{\mathbb{C}}R$ in $T_{\tau_o}^{\mathbb{C}}\tilde{S}$. We note that $\{t\frac{\zeta}{\|\zeta\|}; \zeta \in \mathbb{R}^l \simeq (T_S^*X)_{z_o}\}$ is the spherical surface in \mathbb{R}^l of radius t (small), and N is (identified to) its tangent plane at $(-1,\ldots,0)$. It follows that the real Hessian Hess \tilde{S} verifies

$$\operatorname{Hess}_{\tilde{S}}(\tau_o)(v,v) = -2t^{-1}|v|^2 \quad \forall v \in N.$$

Note also that $\operatorname{Hess}_{\tilde{S}}(\tau_o)(\sqrt{-1}v,\sqrt{-1}v) \leq c|v|^2 \quad \forall v \in \mathbb{N}$. This implies

$$L_{\tilde{S}}(\tau_o)(\bar{v}, v) = \frac{1}{4} \left[\operatorname{Hess}_{\tilde{S}}(\tau_o)(v, v) + \operatorname{Hess}_{\tilde{S}}(\tau_o)(\sqrt{-1}v, \sqrt{-1}v) \right]$$

$$\leq \left(-\frac{t^{-1}}{2} + c \right) |v|^2 \leq -\frac{t^{-1}}{3} |v|^2 \quad \forall v \in N.$$
(11)

We recall that $\operatorname{Ker} L_{\tilde{S}}(\tau_o) \hookrightarrow T_{\tau_o}^{\mathbb{C}} R$. Thus we may find $\tilde{N}' \subset T_{\tau_o}^{\mathbb{C}} \tilde{S}$ transversal

to $T_{\tau_o}^{\mathbb{C}}R$ and such that:

$$L_{\tilde{S}}(\tau_o)(\bar{u}, v) = 0 \quad \forall u \in T_{\tau_o}^{\mathbb{C}} R, \ v \in \tilde{N}'. \tag{12}$$

By choosing t small enough, we may suppose that (11) still holds with the new \tilde{N}' . It follows that

$$s_{\tilde{S}}^-(\tau_o) = s_S^-(p_o) + (l-1)$$
 (and $s_{\tilde{S}}^+(\tau_o) = s_S^+(p_o)$).

We take now a hypersurface \tilde{M} which intersect \tilde{S} along R with order of contact 2 and with $\tilde{M}^+ \subset \tilde{S}^+$ (where \tilde{M}^+ , \tilde{S}^+ are the closed half-spaces with boundary \tilde{M} , \tilde{S} and inward conormal q). We note that this implies

$$\chi^{-1}(T_{\tilde{M}}^*X) = T_M^*X$$
 for a hypersurface $M \supset S$,

due to the assumption on the order of contact of \tilde{M} with \tilde{S} . We have clearly

$$L_{\tilde{M}}(\tau_o)|_{T_{\tau_o}^{\mathbb{C}}R} = L_{\tilde{S}}(\tau_o)|_{T_{\tau_o}^{\mathbb{C}}R} (\sim L_S(p_o) \text{ for } t \text{ small}).$$
(13)

Lemma 3 We have

$$L_{\tilde{M}}(\tau_o)(\bar{u}, v) = 0 \quad \forall u \in T_{\tau_o}^{\mathbb{C}} R, \ v \in \tilde{N}'.$$
(14)

Proof. We choose complex coordinates $z=(z_1,z',z'')$ such that $\tau_o=0,\ q=\mathrm{d}y_1,\ T_{\tau_o}X=\mathbb{C}_{z_1}\times T_{\tau_o}^{\mathbb{C}}\tilde{S}=\mathbb{C}_{z_1}\times T_{\tau_o}^{\mathbb{C}}R\times \tilde{N}=\mathbb{C}_{z_1}\times \mathbb{C}_{z'}^{n-l}\times \mathbb{C}_{z''}^{l-1}$. We take equations $y_1=h_1$ and $y_1=h_2$ for \tilde{M} and \tilde{S} respectively, and set $h=h_1-h_2$. We have

$$h|_R \equiv 0, \quad \partial h|_R \equiv 0.$$
 (15)

It follows

$$\sum_{j} \bar{a}_{j} \bar{\partial}_{z_{j}} \partial h|_{R} \equiv 0 \text{ if } \Re \left(\sum_{j} a_{j} \partial_{z_{j}}\right) \in T_{\tau_{o}}^{\mathbb{C}} R.$$

In particular, since $T_{\tau_o}^{\mathbb{C}}R = \Re \exp(\operatorname{Span}_{\mathbb{C}}(\partial_{z'}))$, then $\bar{\partial}_{z'}\partial h(\tau_o) = 0$. Thus $L_h(\bar{u},v) = 0 \ \forall u \in T_{\tau_o}^{\mathbb{C}}R$; in particular the property " $L_{h_i}(\bar{u},v) = 0 \ \forall u \in T_{\tau_o}^{\mathbb{C}}R$, $v \in \tilde{N}'$ " holds for i = 1 iff it holds for i = 2. Thus (12) and (14) are equivalent.

End of proof of Theorem 1

It is also clear that we can take \tilde{M} such that (11) holds for $L_{\tilde{M}}$ and for

 \tilde{N}' (with a new c). Recalling also (13), we have for small t:

$$s_{\tilde{M}}^-(\tau_o) = s_S^-(p_o) + (l-1)$$
 (and $s_{\tilde{M}}^+(\tau_o) = s_S^+(p_o)$).

We note now that, from $\lambda_{\tilde{M}}(\tau) \cap \sqrt{-1}\lambda_{\tilde{M}}(\tau) \xrightarrow{\sim}_{\chi'-1}^{\sim} \lambda_{M}(p) \cap \sqrt{-1}\lambda_{M}(p)$, $(\tau = \pi\chi(p))$, we get, similarly to (9):

$$\operatorname{rank} L_M(p) = \operatorname{rank} L_{\tilde{M}}(\tau). \tag{16}$$

It follows:

$$s_M^-(p_o) = s_S^-(p_o)$$
 and $s_M^+(p_o) = s_S^+(p_o) + (l-1).$ (17)

Thus M satisfies all requirements in the statement of Theorem 1.

Theorem 4 Let rank $L_S(p) \equiv \text{const } \forall p \text{ in } \dot{T}_S^*X \text{ close to } p_o, \text{ and assume that } S \text{ is of class } C^3.$ Then there exists a germ of a hypersurface M at z_o such that

$$s_M^-(p) \equiv s_S^-(p_o) \quad \forall p \in S \times_M T_M^* X. \tag{18}$$

Proof. We transform $T_S^*X \xrightarrow{\sim} T_{\tilde{S}}^*X$ $(\chi = \chi_t, \tilde{S} = \tilde{S}_t)$. Since

$$\operatorname{Ker} L_{\tilde{S}}(\tau) \ \stackrel{\sim}{\underset{\pi'}{\leftarrow}} \ \lambda_{\tilde{S}}(q) \cap \sqrt{-1}\lambda_{\tilde{S}}(q) \ \stackrel{\sim}{\underset{\chi'}{\leftarrow}} \ \lambda_{S}(p) \cap \sqrt{-1}\lambda_{S}(p)$$

$$\stackrel{\sim}{\underset{\pi'}{\rightarrow}} \operatorname{Ker} L_{S}(p),$$

has constant rank, then it is integrable (= closed under Lie-brackets) according to [4]. (see also [8]). For this the assumption of C^3 -regularity for S is required.

Thus each $\tilde{S} = \tilde{S}_t$ is foliated by the (complex) integral leaves of Ker $L_{\tilde{S}}$. Since the hypersurfaces \tilde{S}_t give in turn a t-parameter foliation of $X \setminus S$, then we get a foliation of $X \setminus S$ by complex leaves tangent to the bundle:

$$\mathcal{W}(\tau) : \stackrel{\text{def.}}{=} \operatorname{Ker} L_S(h(\tau); \zeta_{\tau}) \quad \text{with} \quad \frac{|\zeta_{\tau}|\zeta_{\tau}}{\|\zeta_{\tau}\|} = \tau - h(\tau).$$

Take a decomposition $TS = L \oplus \operatorname{Ker} L_S$ such that L_S is diagonal (with unitary eigenvalues) in $(L \cap \sqrt{-1}L)$. Define R to be the union of the in-

tegral leaves of W issued from $g(\Phi_{|\zeta_t|}L)$ $(g:TX\to \tilde{S})$. R is a germ of a submanifold of \tilde{S} at τ_o which satisfies:

$$\begin{cases}
T_{\tau}^{\mathbb{C}}R \supset \operatorname{Ker} L_{\tilde{S}}(\tau) & \forall \tau \in R, \\
T_{\tau}R = \Phi_{t}^{\tau}(T_{z_{o}}S) & \text{with } |\Phi_{t}^{\tau} - \operatorname{Id}| < \epsilon \text{ for } |(\tau, t)| < \delta_{\epsilon}.
\end{cases}$$
(19)

We still have

$$L_{\tilde{S}}(\tau)|_{T_{\tau}^{\mathbb{C}}R} \sim L_{S}(p_{o}), \tag{20}$$

and, for a decomposition $T_{\tau}^{\mathbb{C}}\tilde{S} = T_{\tau}^{\mathbb{C}}R \oplus \tilde{N}_{\tau}'$:

$$L_{\tilde{S}}(\tau)(\bar{v}, v) \le -ct^{-1}|v|^2 \quad \forall v \in \tilde{N}_{\tau}', \tag{21}$$

$$L_{\tilde{S}}(\tau)(\bar{u}, v) \le \epsilon |u||v| \quad \forall u \in T_{\tau}^{\mathbb{C}} R, \, \forall v \in \tilde{N}_{\tau}'. \tag{22}$$

From (20), (21), (22), and, essentially, by the first of (19), we get $s_{\tilde{S}}^-(q) = s_{\tilde{S}}^-(p_o) + (l-1)$, $\forall p$. We take a hypersurface \tilde{M} which intersect \tilde{S} along R with order of contact 2 and with $\tilde{M}^+ \subset \tilde{S}^+$. It is not restrictive to assume \tilde{M} invariant under the flow of W. For otherwise, if f is a projection along the W-integral leaves, one replaces \tilde{M} by $f^{-1}f\tilde{M}$. (Remark here that $R = f^{-1}fR$.) We have obviously:

$$L_{\tilde{M}}(\tau)|_{T_{\tau}^{\mathbb{C}}R} = L_{\tilde{S}}(\tau)|_{T_{\tau}^{\mathbb{C}}R}(\sim L_{S}(p_{o}))$$
 t small, $\tau \in R$ close to τ_{o} .

We also have

$$L_{\tilde{M}}(\tau)(\bar{u},v) \le \epsilon |u||v| \quad \forall u \in T_{\tau}^{\mathbb{C}} R, \quad \forall v \in \tilde{N}_{\tau}',$$

$$L_{\tilde{M}}(\tau)(\bar{v},v) \leq -ct^{-1}|v|^2 \ \forall v \in \tilde{N}_\tau'$$

$$L_{\tilde{M}}(\tau)(\bar{u},w) = 0 \quad \forall u \in \operatorname{Ker} L_{\tilde{S}}(\tau)(=\mathcal{W}(\tau)), \quad \forall w \in T_{\tau}^{\mathbb{C}}\tilde{M}, \quad \forall \tau \in R,$$

(because \tilde{M} is invariant under the flow of W). It follows:

$$s_{\tilde{M}}^{-}(q) = s_{\tilde{S}}^{-}(p_o) + (l-1) \quad \forall q \in R \times_{\tilde{M}} T_{\tilde{M}}^* X.$$
 (23)

From (23) we get the conclusion as in Theorem 1.

Corollary 5 In the situation of Theorem 1 (resp. 4), we have

$$\operatorname{Ker} L_M(p_o) = \operatorname{Ker} L_S(p_o)$$

 $(\operatorname{resp.} \operatorname{Ker} L_M(p) = \operatorname{Ker} L_S(p) \, \forall p \in S \times_M T_M^* X).$

Proof. It is an immediate consequence of the isomorphisms:

$$\operatorname{Ker} L_S(p) \xrightarrow{\sim}_{\Phi_t} \operatorname{Ker} L_{\tilde{S}}(\tau) = \operatorname{Ker} L_{\tilde{M}}(\tau) \xrightarrow{\sim}_{\Phi_t^{-1}} \operatorname{Ker} L_M(p).$$

2. An application to complex curves in pseudoconvex manifolds

Let X be a complex manifold of dimension n. In [1] it is proved that any complex curve γ in a pseudoconvex hypersurface $S \subset X$ can be lifted to a complex curve in \dot{T}_S^*X . We extend here the above result to the case of codim S > 1 or dim $\gamma > 1$.

Theorem 6 Let S be a generic submanifold of X of codimension l, p_o a point of \dot{T}_S^*X , $z_o = \pi(p_o)$, and suppose

$$s_S^-(p) \equiv 0$$
 for any $p \in \dot{T}_S^* X$ close to p_o . (24)

We also suppose that there exists a hypersurface M with $M \supset S$, $T_M^*X \ni p_o$ and which satisfies:

$$\operatorname{Ker} L_S(p) \subset \operatorname{Ker} L_M(p) \quad \forall p \in S \times_M \dot{T}_M^* X, \ p \ close \ to \ p_o.$$
 (25)

Let γ be a complex submanifold of S. Then there exists γ^* , complex submanifold of \dot{T}_S^*X , which contains p_o and such that $\pi(\gamma^*) = \gamma$.

Proof. Take an equation r = 0 for M with $\partial r(z_o) = p_o$. Then

$$L_r(z)(w, \bar{w}) \ge 0 \quad \forall w \in T_z^{\mathbb{C}} M, \, \forall z \in S.$$

Let $u \in \dot{T}_z^{\mathbb{C}} \gamma$; clearly $L_r(z)(u, \bar{u}) = 0$. Thus the above inequality implies:

$$L_r(z)(w, \bar{u}) = 0 \quad \forall z \in \gamma, \ \forall w \in T_z^{\mathbb{C}} M.$$
 (26)

Let $\chi = \chi_{-t}$ be the complex symplectic transformation $\chi : (z; \zeta) \mapsto (z + t \frac{\zeta}{(\sum_i \zeta_i^2)^{\frac{1}{2}}}; \zeta)$. Thus for the hypersurface $\tilde{S} = \tilde{S}_{-t}$ (different from $\tilde{S} = \tilde{S}_{+t}$ of §1), we have $\chi(\dot{T}_S^*X) = \dot{T}_{\tilde{S}}^*X$. We remark that for $p \in \dot{T}_S^*X$ and with $q = \chi(p) \in \dot{T}_{\tilde{S}}^*X$, we have rank $L_{\tilde{S}}(q) = \operatorname{rank} L_S(p) + (l-1)$. We also remark that, for t small: $s_{\tilde{S}}^+(q) = s_S^+(p) + (l-1)$. In particular we have:

$$s_{\tilde{S}}^{-}(q) \equiv 0 \quad \forall q \in \dot{T}_{\tilde{S}}^{*}X.$$
 (27)

Let us define $\tilde{\gamma} = \left\{z + t \frac{\partial r(z)}{\left((\sum_{i}(\partial_{z_{i}}r(z))^{2})^{\frac{1}{2}}\right)}; z \in \gamma\right\}$. We claim that $\tilde{\gamma}$ is a complex manifold in \tilde{S} . In fact let us take coordinates $z = x + \sqrt{-1}y \in \mathbb{C}^{n}$ such that $\gamma = \{0\} \times \cdots \times \{0\} \times \mathbb{C}^{d}_{z''}$ where $d = \dim_{\mathbb{C}} \gamma$ and $z'' = (z_{n-d+1}, \ldots, z_{n})$. What we need to prove is that:

$$\partial_{\bar{z}_h} \left(\frac{\partial r(z)}{(\sum_i (\partial_{z_i} r(z))^2)^{\frac{1}{2}}} \right) |_{\{0\} \times \dots \times \mathbb{C}^d_{z''}} = 0, \quad \forall h \ge n - d + 1, \qquad (28)$$

or equivalently:

$$\partial_{\bar{z}_h} \partial_{z_j} r \Big(\sum_i (\partial_{z_i} r)^2 \Big) - \partial_{z_j} r \sum_i (\partial_{\bar{z}_h} \partial_{z_i} r) (\partial_{z_i} r) = 0$$

$$\forall h \ge n - d + 1, \ \forall j.$$
(29)

Let (e_i) be an orthonormal system in \mathbb{C}^n , and let $w_i^j = \partial_{z_i} r e_j - \partial_{z_j} r e_i$. Thus for any fixed j, the set of vectors w_i^j , $i = 1, \ldots, n$, $i \neq j$, is a basis for $T_z^{\mathbb{C}}M$. We may also assume that $u = e_h$. Then the term on the left side of (29) is equal to

$$\sum_{i} \left((\partial_{\bar{z}_{h}} \partial_{z_{j}} r) (\partial_{z_{i}} r)^{2} - (\partial_{\bar{z}_{h}} \partial_{z_{i}} r) (\partial_{z_{j}} r) (\partial_{z_{i}} r) \right)
= \sum_{i} \left((\partial_{\bar{z}_{h}} \partial_{z_{j}} r) (\partial_{z_{i}} r) - (\partial_{\bar{z}_{h}} \partial_{z_{i}} r) (\partial_{z_{j}} r) \right) (\partial_{z_{i}} r)
= \sum_{i} \left(\partial_{\bar{z}_{h}} \partial_{z_{j}} r \right) (\partial_{z_{i}} r) = 0 \, \forall j,$$
(30)

due to (26). It follows that $\tilde{\gamma}$ is a complex manifold in the pseudoconvex hypersurface \tilde{S} . Thus [1] applies (with suitable modifications because possibly $\dim_{\mathbb{C}} \gamma > 1$), and entails the existence of a complex manifold $\tilde{\gamma}^* \subset \dot{T}_{\tilde{S}}^*X$, such that $\pi(\tilde{\gamma}^*) = \tilde{\gamma}$. Finally if we define $\gamma^* :\stackrel{\text{def.}}{=} \chi^{-1}(\tilde{\gamma}^*)$, then γ^* is a complex manifold in \dot{T}_S^*X which verifies $\pi(\gamma^*) = \gamma$.

Remark 7 Let $s_S^-(p) \equiv 0 \,\forall p \in \dot{T}_S^* X$ at p_o . One should wonder whether there exists a pseudoconvex hypersurface M which contains S. But it is not clear if this is true. For this reason we apply [1] not directly to M but to \tilde{S} (with $\dot{T}_S^* X = \chi(\dot{T}_S^* X)$). In this respect the crucial point is that $\tilde{\gamma}$ is still a complex manifold in \tilde{S} .

Example 8 Let us consider in \mathbb{C}^3 with coordinates $z = x + \sqrt{-1}y$:

$$S = \{z; x_3 = 0, x_1 = 0\}, p = dx_1, \gamma = \{0\} \times \mathbb{C}_{z_2} \times \{0\}.$$

For $M = \{z; x_1 = 0\}$, clearly γ can be lifted to a complex curve $\gamma^* \subset S \times_M \dot{T}_M^* X$ in (trivial) accordance with Theorem 6. But not any M has this property. For instance if we take $M = \{z; x_1 = x_2 x_3\}$, then L_M is non-degenerate and therefore $\dot{T}_M^* X$ contains no complex γ^* because otherwise $T\gamma^* \subset \dot{T}_M^* X \cap \sqrt{-1} \dot{T}_M^* X (\simeq \operatorname{Ker} L_M) = 0$ which is a contradiction.

Acknowledgment I wish to thank Professor Alexander Tumanov for frequent discussions and helpful advices.

References

- [1] Bedford E. and Fornaess J.E., Complex manifolds in pseudoconvex boundaries. Duke Math. J. 48 (1981), 279–287.
- [2] D'Agnolo A. and Zampieri G., Microlocal direct images of simple sheaves with applications to systems with simple characteristics. Bull. Soc. Math. de France 23 (1995), 101–133.
- [3] Kashiwara M. and Schapira P., Microlocal study of sheaves. Astérisque 128 (1985).
- [4] Rea C., Levi flat submanifolds and holomorphic extension of foliations. Ann. SNS Pisa **26** (1972), 664–681.
- [5] Trépreau J.-M., Sur la propagation des singularités dans les varietés CR. Bull. Soc. math. de France 118 (1990), 129–140.
- [6] Tumanov A., Connections and propagation of analyticity for CR functions. Duke Math. Jour. **73** 1 (1994), 1–24.
- [7] Zampieri G., The Andreotti-Grauert vanishing theorem for dihedrons of \mathbb{C}^n . J. Math. Sci. Univ. Tokyo **2** (1995), 233–246.
- [8] Zampieri G., Canonical symplectic form of a Levi-foliation. Complex Analysis and Geometry, Marcel-Dekker (1995), 541–554.
- [9] Zampieri G., Hypersurfaces through higher-codimensional submanifolds of \mathbb{C}^n with preserved Levi-Kernel. Israel J. of Math., in press (1998).

Dip. Mat. Univ. Padova v. Belzoni 7 35131 Padova Italy

E-mail: zampieri@math.unipd.it