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Abel-Tauber theorems for Hankel and Fourier
transforms and a problem of Boas
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Abstract. We prove Abel-Tauber theorems for Hankel and Fourier transforms. For
example, let f be a locally integrable function on [0, c0) which is eventually decreasing to
zero at infinity. Let p = 3,5,7,... and £ be slowly varying at infinity. We characterize the
asymptotic behavior f(t) ~ £(t)t as ¢ — oo in terms of the Fourier cosine transform of
f. Similar results for sine and Hankel transforms are also obtained. As an application,

we give an answer to a problem of R.P. Boas on Fourier series.

Key words: Abel-Tauber theorems, Hankel transforms, Fourier transforms, Fourier series,
I1-variation.

1. Introduction and results

As a prototype, we use Fourier cosine transforms to explain our prob-
lem. Let f be a locally integrable, eventually decreasing function on [0, c0)
which tends to zero at infinity, and let F. be its Fourier cosine transform.
Let p > 0 and £ be slowly varying at infinity (see below). We are con-
cerned with Abel-Tauber theorems which characterize the asymptotic be-
havior f(t) ~ £(t)t™” as t — oo in terms of F.. It turns out that the
values 1,3, 5, ... of p are exceptional. For p # 1,3,5, ..., one can obtain the
desired Abel-Tauber theorems using regular variation — or Karamata the-
ory. See Bingham-Goldie-Teugels [BGT, Ch. 4], where references to earlier
work by Hardy and Rogosinski, Aljanci¢, Bojani¢ and Tomié, Vuilleumier,
Zygmund and others are given. However the same theorems do not hold
for p=1,3,5,.... These exceptional values are related to the power series
expansion of the kernel cos z (see Soni-Soni [SS]).

In [I1], one of the authors showed that one could use Il-variation —
or de Haan theory in the terminology of — to obtain the desired
Abel-Tauber theorem for cosine transforms when p = 1. For theorems of
the same type, we refer to (cosine series and integrals), (sine series
and integrals), (Fourier-Stieltjes coefficients), and Bingham-Inoue
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(Hankel transforms).

In this paper, we consider the remaining exceptional values, e.g., p =
3,5, ... for cosine transforms. In fact, as in [BI], we consider those for Hankel
transforms from the beginning; the results for cosine and sine transforms
follow as special cases. As an application, we give an answer to a problem
of R.P. Boas on Fourier series.

We write Ry for the class of slowly varying functions at infinity, that
is, the class of positive measurable ¢, defined on some neighbourhood of
infinity, satisfying

((Ax)/l(z) > 1 (z—00) VA>DO.
For ¢ € Ry, the class II, is the class of measurable f satisfying
{f(\z) — f(z)} J€(z) = clogh (z—00) VA>0

for some constant ¢, called the K—indea: of f. See [BGT] for background.
Let v > —1/2, t”+%h(t) Li [0,00), and h be ultlmately decreasing to
zero at infinity. We consider the Hankel Transform

o0 —

H,(z) = /0 )@t (st)dt (0 < @ < o), (1.1)

where f0°°_ denotes an improper integral limps o0 fOM and J, is the Bessel
function

o0

Z vt (0 <z < 0)

with

(=1)
Cyq = -
DIt LT (v 4+ 5+ 1)

(v>-1/2, j=0,1,...). (1.2)

Since the improper integral on the right of converges uniformly on
each (a,00) with a > 0, H, is finite and continuous on (0, o).
For n € N and z € (0,00), we define H,,, by

H,,(x)

y

= $”+%+2”{ (1/z) — Z Cu,j / t”+%+2jh(t)dt - m_”_%—%}

(1.3)
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if [0 t/~22"R(t)dt < co.

Theorem 1 Let £ € Ry and n € N. Let v > —1/2, t”+%h(t) € LL [0, 00),

loc
and h be ultimately decreasing to zero at infinity, with Hankel transform H,,.

Then
h(t) ~t77272%(t)  (t — o) (1.4)
if and only if

/ t”—%+2"h(t)dt < oo and H,, € Il, with ¢-indez cyn. (1.5)
0

Note that includes results for Fourier cosine and sine trans-

forms, as

2 2
ml/QJ_l/g(a:) = \/;cos T, x1/2J1/2(a:) = \/;sin .

For z € (0, 00), we define H, by

H,(z) = 2" 3 H,(1/z). (1.6)
We will prove by reducing the problem to the following known

result (which corresponds to the case n = 0 of [1.4)):

Theorem A ([BI], extending [I1], I2]) Let v, h, H, and £ be as in The-
orem 1. Then

h(t) ~t7720(t) (¢t — oo) (1.7)
if and only if

H, € 11, with £-indez c,yp. (1.8)

—

The cosine case v = —3 of A is due to [I1], the sine case v = 3
to [I2], and the general case v > —3 to Bingham-Inoue [BI].

The theorems above treat the boundary cases to the following known
Abel-Tauber theorem for Hankel transforms:

Theorem B ([RS], [SS], extending [P], [B]) Let v, h, H, and ¢ be as in
Theorem 1.
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(1) For0<p<v+3,
h(t) ~t=Pe(t) (t — 00) (1.9)

if and only if

rE4r_g
H,(z)~ 2" (1)) .22 P4 "2 2 — 04). 1.10
(z) ~ 2P~ (1/2) ey (z ) (1.10)

(2) LetneNandv—3+2n<p<v+ % +2n. Then (1.9) holds if and
only if [/~ 2T h(t)dt < 0o and

n—1 00 . .
Hy(o) = Yy [ ¢ UR(0)dt - a7+34
=0 0

[

oM o
S | N

I'(

~ zf (1)) .937P

+|+
[NCTANE [\STRN
+

(x — 0+). (1.11)

=
~~
ST ST

The part (1) of B is due to Pitman [P], Bingham [B], and
Ridenhour-Soni [RS], while the part (2) to Soni-Soni [SS].

We focus on Fourier (cosine and sine) transforms. Let f € Li _[0,00)
and f be ultimately decreasing to zero at infinity. We write F. for the

Fourier cosine transform of f:
Fi(z) = / f(t)cos(zt)dt (0 <z < o0). (1.12)
0

Similarly, let g(t)t € Li _[0,00), and g be ultimately decreasing to zero at

loc
infinity. We write G5 for the Fourier sine transform of g:

Gs(z) = /Ooo— g(t) sin(xt)dt (0 <z < 00). (1.13)

Now, at least formally,



Abel- Tauber theorems 581

So for n € N we define FC n by

F. o (z):= 2"{ (1/z) — Z—:

(21

j} (0 <z < 00)

(1.14)
if F. € C*2([0,00)). Similarly, for n € N, we define Gs ,, by
Gon(z) = 2"+1{ (1/z) - 2_: G () -Qi—l} (0 < 2 < 00)
’ =0 (25 + 1)!
(1.15)

if G5 € C*™1([0,00)). Here as usual, C™([0,00)) is the class of functions
which are of C™(I)-class for some open neighbourhood I of [0, 00).

Theorem 2 Let { € Ry and n € N. Let f € L _[0,00) and f be ul-
timately decreasing to zero at infinity, with Fourier cosine transform F..
Then

F@) ~t72 ) (t = 00) (1.16)
of and only if

_ _1)»
F. € C*%([0,00)) and F., €1, with {-index (-1) . (1.17)

Theorem 3 Let £ € Ry and n € N. Let g(t)t € Li_[0,00) and g be
ultimately decreasing to zero at infinity, with Fourier sine transform Gs.

Then
g(t) ~t722(t)  (t = o) (1.18)
if and only if

_ = . . -1)"
. 2n—1 d “n I _ _(______
Gs € C*"77([0,00)) and Gy € Iy with £-index 2n i 1

(1.19)

Remark. In[Theorem 2, F. € C?"~%([0,00)) implies that the limit F,(0+)
exists and that F., with F¢(0) := F.(0+), is in C?"~2([0, 00)); similarly for
the meaning of G5 € C?"~1([0, 00)) in Theorem 3.
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We will prove Theorems 2 and 3 using Theorem 1.

We give an application of Theorem 3 to probability theory. Let X be a
real random variable defined on a probability space (2, F, P). The tail-sum
of X is the function T defined by

T(z) = P(X < —2) +P(X >z) (0<z<o0).

Note that T is finite and decreases to zero at infinity. Now

oo —

1-V© = [ T@sin@e)iz (0 <€ <o)
where U is the real part of the characteristic function of X:
U(§) := Elcos((X)] (£ €R)
(see [BGT, p. 336]). By Theorem 3, the asymptotic behavior
T(z) ~ z7 2" 24(x) (x — 00)

with n € N and ¢ € Ry is characterized in terms of U.
We can apply Theorems 1 and A to Question 7.19 of Boas [Bo]. For
f € L0, 7], we define its Fourier cosine coefficients a, by

2 ™
an = = / f(t)cos(nt)dt (n=1,2,...),
m™Jo
1 ™
S / f(O)dt (n=0). (1.20)
™ Jo
Similarly, for g € L'[0, 7], we define its Fourier sine coefficients b, by

_ Z/"Q(t) sin(nt)dt  (n=1,2,...). (1.21)
™ Jo

Theorem 4 Let f € L'|0,n| with Fourier cosine coefficients (ay). We
assume that ai, > 0 for all k > 0. Let n € N and ¢ € Ry. Then

1
Z ay ~ m2” o (m — o00) (1.22)
if and only if
feC™%0,7]) and f, €1l, with {-index (=1 (1.23)
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where

folz) =z { f(l/z) —

_23} (1/m <z < 0).

(1.24)

j=0

Corollary  In Theorem 4, we further assume that (ax) is decreasing.
Then (1.23) is equivalent to
£(m)

Theorem 5 Let g € L'[0, 7] with Fourier sine coefficients (bx). We as-
sume that by, >0 for all k> 1. Let n € N and ¢ € Ry. Then

m 1
Zm 2£1%+1 (m — 00) (1.26)

if and only if

—~1\"
g € C2n—1([0,ﬂ-]) and gn € Hg with ¢-index (7(71__'_)']'3"7 (127)

= ZJH)(O) =21

gn(z) := 2n+1{ (1/z) — Z i) "} (1/m <z < 00).

(1.28)

Corollary In Theorem 5, we further assume that (by) is decreasing.
Then (1.27) is equivalent to

¢(m)

b ~ m2n+2

(m — 00). (1.29)

Remark. We understand that L![0, 7] consists of equivalence classes with
respect to the equivalence relation fi ~ fo & f1 = f2 a.e. So, e.g., in (1.23),
f € C™2([0, 7)) implies that there exists a function in C?"~2([0,7]) which
lies in the equivalence class of f and that we identify the function with f.
In particular, if 320 4 |ax| < 00, then by [Z, Ch. III, Theorem 3.9] (Theorem
of Lebesgue on Cesaro summability) f € C([0,7]) and we may assume that



584 A. Inoue and H. Kikuchi

flz) = Y igakcos(kx) for 0 < z < 7. Similarly, if > 32, |bx| < 0o, then
g € C([0,7]) and we may assume that g(z) = 3.2 ; b sin(kz) for 0 < z < .

For with n = 0, we have the following:
Theorem 6 Let g, (by) and £ be as in Theorem 5. We write g(z) =
zg(1/z) for x > 1/n. Then
> 4
Y b~ fm) (m — 00) (1.30)
m

iof and only if
g€ C([0,x]) and §ell, with -index 1. (1.31)

See also [I2, Theorem 1.2].
Theorems 4, 5 and 6 treat the boundary cases to the following known
results due to Yong [Y]:

Theorem C ([Y]) Let f, (ax) and £ be as in Theorem 4. Let n € N and
2n—1<p<2n+1. Then

— ¢ 1
k;ak ~ nfz)l . (m — o0) (1.32)
if and only if f € C*™2([0,7]) and
£ ™ _
flz) - 12:;) @) 2% ~ e Cos(pw/z)xp Y(1/z) (z — 0+).

(1.33)

Theorem D ([Y]) Let g, (by) and £ be as in Theorem 5. Let n € N and
2n < p<2n+2. Then

Zbk mpl'pil (m — o0) (1.34)

if and only if g € 02”—1([0,7r]) and

2]—{—1

_ 21+1N ™ e (e |
g 2J+1 2T (p) sin(pm/2) P7U(1/z) (z—0+)

(1.35)
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Theorems 4, 5 and 6, together with Theorems C and D, give an answer
to [Bo, Question 7.19].

2. Proof of Theorem 1
We note that (1.4) implies

/ =32 p(1)dt < oo. (2.1)
0

So, when proving the equivalence of (1.4) and (1.5), we may assume (2.1).
We define hyg,...,h,—1 by

:/ h(s)s”+%ds (0 <t < o),
t
£) :/t hioi(s)sds  (0<t<oo, j=1,...,n—1).

Since h is eventually non-negative, h; are all eventually decreasing. By

Fubini’s theorem,
/dtt/ dt; qtj 1. / hito)ty " 2 dto
1

.7

tj—1
:/ doh(to)t. " ? O ®dtrty - /OJ tidt;

1 [o° :
= — R T4 gt

Since
2 Ju(2) = 0(1)  (z - o0),
% {33—“‘]#(33)} =~z *Juy1(z),
T = cuo (8- 04)

for any u > —1/2 (see Watson [W], pages 199 and 45), we obtain, by
integration by parts,

H,(x)
_ gt / TR {(te) T (o)} dt
0

= 2"+ ho(0)cy 0 — 232 / * ho(t)t{(te) ™" Ty (tz) dt =
0
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3
L

. l .
(=1 2"* 2% R (0)cuj0

<.
I
(=]

I /0 T B (OH{(t2) ", e (t) bt

3
!
—_

I

. 1 .
(=1)72"* 2% h;(0)cyj0

j=0
HE1 [T g0t st
0

where

g(t) ==t T h,_1(t) (0 <t < o).
Since

. 0o 1o
(~1Yhj(0)cy450 = Cuy / 2 b (1) g,
0

we have

Hypn(z) = (_1)n$(u+n)+% /Ooo— g(t)(t/a:)l/z.],,_'_n(t/m)dt. (2.2)

Now t+m)+3 g(t) € L _[0,00) and g is eventually decreasing to zero,

loc

whence by A (with v replaced by v + n) (1.5) is equivalent to
t) ~tTVTTR()  ———— =TT 2(t)  — t
ot by - i) (- o)
or
1
-2
hoa(t) ~ £7208) - e (8 00). (2.3)

Since h; is eventually decreasing, log {h;(t)t} is slowly increasing, whence
by the Monotone Density (see [BGT, §1.7]) is equivalent to

ho(t) = /too s”+%h(s)ds ~ t72(t) - —2% (t — 00). (2.4)

By assumption, h is eventually decreasing, whence log{h(t)t”%} is slowly
increasing. Again by the Monotone Density [Lheoreml, (2.4) is equivalent to
(1.4). This completes the proof. [
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3. Proofs of Theorems 2 and 3

Lemma 3.1 Let n €N, and let f € L. [0,00), f be ultimately decreasing
to zero at infinity, with Fourier cosine transform F.. If F. € C*2([0,00))
and

= O0(z?"?) (x — 0+4), (3.1)

B nil FC(QJ)
7=0
then [5°t2"~2f(t)dt < co. In particular,

F)(z) = (—1) /O ™23 £(t) cos(wt)dt

0<zr<oo, j=0,...,n—1).

Remark. For the meaning of F, € C?"2([0,0)), see the remark just after

Theorem 3

Proof.  We first show that we lose no generality by supposing that f is
finite and decreasing on [0, 00).
Choose X so large that f is finite and decreasing on [X, 00). Set

f):=f(X) (0<t<X), =f@1) (X<,

and let FC be its Fourier cosine transform:
F.(z):= /Ooo_ F(t) cos(xt)dt (0 <z < 00).
Set D(z) := F,(z) — F.(x). Then
/ {f(®) X)} cos(xt)dt (0 < z < 00),
and so D can be extended to a function in C*°([0,00)). Moreover,
i

/ {f(¢) {cos (tz) .— }dt
=0

(%) (x — 0+4).

21)




588 A. Inoue and H. Kikuchi

So for F; to be in C?"~2(]0, 00)) and satisfy it is necessary and sufficient
that F. has the same properties. Thus we may replace f by f — that is,
we may assume that f is finite and decreasing on [0, o).

Since Fe(z) — Fc(0) as £ — 0+, we have [;° f(¢)dt < oo by [SS,
Theorem 20] (with k(t) = cost). In particular,

m@g:/ f(t)cos(at)dt (0 <z < o0). (3.2)
0
If n > 2, then we proceed to the next step. We follow the idea of the proofs

of Chan|[C, Theorems 1-10]. By (3.1), F.(z) — F.(0) = O(z?) as = — 0+
or, by (3.2),

/.WHL%%WHﬁ:mﬁ) (z = 04).
0
Since the integrand is non-negative,
1/z
f(#) {1 — cos(xt)} dt = O(z?) (x = 0+).
By [C, Lemma 3] (or directly), 1 —cos(tz) > (tx)?/4 for 0 < tz < 1, whence
1/z
ﬁ/'t%@ﬁzoaﬂ (¢ = 04)
0

/01/3: t2f(t)dt =0(1) (z— 0+4).

Thus [;° t2f(t)dt < oo and so

T
S

&
!

(—1)/ t2f(t) cos(xt)dt (0 <z < ). (3.3)
0
If n > 3, then we proceed to the next step. By (3.1),

(2)
F.(z) - {FC(O) + Fe 2!(0) mg} = O(z*) (x — 0+4)
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Since

2
cosu—(l—%)ZO (0 < u < 00), > —— (0<u<])

(see [C, Lemma 3]), we have, as x — 0+,

A /z /z t)2
m/ol tf(t)dt < 1 f(t) {cos(tm) - {1 — (;') }]dt

= O(z%),

whence [;° ¢! f(t)dt < co. Therefore
FO(z) = (1) / £ 1) cos(zt)dt (0 <z < o0).
0
If n > 4, then in a similar way we obtain inductively

/Oo t% f(t)dt < oo,
0

F2) () = (1)) /0 T2 (1) cos(at)dt (0 < 3 < 00)

for  =3,...,n — 1. This completes the proof. []

Proof of [Theorem 2. 1If holds, then [;°t?"~2f(t)dt < oo, and so
F. € C*™%([0,00)) and

F2)(0) = (1) /Ooo t9f(t)dt  (j=0,...,n—1). (3.4)

Therefore, by with v = —1/2, (1.17) follows.

Conversely, if F. satisfies (1.17), then by [BGT, Theorem 3.7.4] we
obtain (3.1}, whence, by Lemma 3.1, [;°t>" 2 f(t)dt < co as well as [3.4).
Therefore, by with v = —1/2, follows. []

Lemma 3.2 Let n € N, and let g(t)t € Li_[0,00), g be ultimately

loc
decreasing to zero at infinity, with Fourier sine transform Gs. If Gs €

C?*1(]0,0)) and
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then [3° t*" 1g(t)dt < oo. In particular,

G (g) = (—1) / £25+1(¢) cos(zt)dt
0

0<z<o00, j=0,...,n—1).

The proof of is quite similar to that of Lemma 3.1; we use
[SS, Theorem 20] with k(t) = sint as well as [C, Lemma 2] instead of [C,
Lemma 3|. We omit the details.

The proof of is also quite similar to that of Theorem 2; we
use with v = 1/2 as well as instead of Lemma 3.1.
The details are omitted.

4. Proofs of Theorems 4, 5 and 6

Lemma 4.1 Let n €N, and let g € L'[0, 7] with Fourier sine coefficients
(bi). We assume by > 0 for all k > 1. If g € C?*71([0,n]) and

=l 429+ ()

g(z) — 2 WUU%H =0(z* 1) (z — 0+), (4.1)

then Y32, k*""1by < 0co. In particular,
gFt(g) = (-1) Z k21, cos(kx)

k=1
0<z<m j=0,1,...,n—1).

Proof.  Since ¢’ is bounded on [0,7], g € Lip 1 (in the sense of [Bo, pp.
46-47)]). By [Bo, Theorem 7.28], we have ) - kbi < oco. Therefore,

g(x) =) besin(kz), ¢'(z) = > kbgcos(kz) (0<z<m).
k=1 k=1
(4.2)

If n > 2, then we proceed to the next step. As in the proof of
3.1, we follow the idea of the proofs of [C, Theorems 1-10]. By [4.1),
g(z) — zgW(0) = O(z®) as = — 0+, or by (4.2),

i b {kz — sin(kz)} = O(z?) (x — 0+4).
k=1
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Since

u3

u—sinu >0 (0<u< o00), u—sinu> — (0<

2.3l usl)

(see [C, Lemma 2]), we have

m™3 & <
531 O Kbk < 3 b {(k/m) — sin(k/m)} = O(m™®)  (m — o0),
T k=1 k=1

whence 52, k3b; < 0o and

¢®(z) = (-1) {2 k3by, cos(kx) (0<z<m).
k=1

If n > 3, then in a similar way we can show inductively

oo

>k < oo,
k=1

gt (g) = (1) Z k2t 1b cos(kz) (0 <z <)
k=1
for j =2,...,n— 1. This completes the proof. Ul

Proof of Theorem 5. By [BGT, Theorem 3.7.4], (1.27) implies [4.1),
whence by Lemma 4.1,

> kb < oo (4.3)

k=1

On the other hand, by partial summation, [1.26) also implies [4.3). There-
fore, when proving the equivalence of and (1.27), we may assume
(4.3), whence g € C?"~1([0, ), and

g (z) = (=1)7 Y k¥ by cos(kz)
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Following [SS, pp. 620-621], we define a function h by

Z bk (t < 1),
h(t):={ ¥ (4.4)
Z by (n<t<n+1, n=12...).
\ k:n+1
Then
g(z) = —/ sin(zt)dh(t) = :1:/ _h(t) cos(xt)dt
[0,00) 0
_ \/ng_l n(z)  (0<z<m) (4.5)
(recall H_; 5 from [1.1})). On the other hand, for j =0,1,...,n — 1,
0 1 .
t2 h(t)dt = b | {(n +1)¥FL — p2i+l
/0 “ 2J+1n0<kzn:+1 ) }
_ )2+ _ 2041
23 +1 Z O Z{ (1 J
1 = . (=1 .
= — S k¥, = 2L g2, 4.6
2j+1k=1 k 2j+19 (0) (4.6)

In particular, [;°¢*"~2h(t)dt < co. Recall H_y/3, from (1.3). By and

46),
) /2 n+1 = 2]“ 2j—1

H — T e 1 4 . 47

—1/2,n($) 7T17 { /SU E } ( )

Now is equivalent to

£(t) 1
t2ntl 9n 41

which by is equivalent to

h(t) ~

(t — 00),

_ . . C_1/2,n 12 (=1)"
th ¢- =/ - 4.8
H_y/p, €l wi index ot 1 T 2n 1) (4.8)

or to (1.27) by (4.7). This completes the proof. [
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Proof of [Theorem 6. By [BGT, Theorem 3.7.4], (1.31) implies g(t)/t €
L0, 7]. Therefore, since

L sin{zz(n + 1)} sin(3zn)
Z sinkx = -
sin(5x)

and |sin(32)| > z/x for (0 < z < ), we obtain

n 9 fm no
kg_jlb,c ~ |12 /O g(t)gz_:lsm(kt)dtl

T

BOfh

k=1

2 /0“ o) sin{5t(n + 1)} sin(tn) dtl

T sin(5t)

T
<2/ |—Q(L)|dt<oo.
0 t

Thus
> by < o0. (4.9)
k=1

On the other hand, also implies [4.9). So, when proving the equiv-
alence of and (1.31), we may assume [4.9), whence g € C([0,n])

and

g(m):Zbksinkx (0<z<m).

We define h by (4.4). Then (1.30) is equivalent to
h(t) ~ ﬁ(t_t) (t = 00). (4.10)

On the other hand, by (4.5) and [Theoreml A with v = —1/2, [(4.10) is
equivalent to (1.31). This completes the proof. O]

Lemma 4.2 Let n € N, and let f € L'(0,n] with Fourier cosine coeffi-
cients (ay). We assume ay, > 0 for all k> 0. If f € C*™2([0,7]) and

nl ¢(2j) |
flz) = f(2j§?) % = 0% (z— 04), (4.11)
§=0 '
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then 3" o k*"2a), < 0o. In particular,

o)

F@)(z) = (1) E k% ay, cos(kx)
k=0
0<z<m j=0,1,...,n—1).

Proof.  Since f(z) approaches f(0) as x — 0+, we have ) 32, ar < oo by
[Bo, Theorem 7.26]. The rest of the proof is similar to that of
(see also the proof of Lemma 3.1)), whence we omit the details. ]

Proof of Theorem 4. By [BGT, Theorem 3.7.4], (1.23) implies [4.11),
whence by Lemma 4.2

Y k", < oo. (4.12)
k=0

On the other hand, by partial summation, also implies (4.12). There-
fore, when proving the equivalence of and (1.23), we may assume
(4.12), whence f € C?"~2([0,x]) and

F)(g) = (—1)J'Zk2ja;C cos(kx)
k=0
0<z<m j=0,1,...,n—1).

Following [SS, p. 623], we define a function h by

(00
Z ag (t < 0),
k=0

h(t) == (4.13)
Z ag m<t<n+1l n=0,1,...).
\ k=n+1
Then is equivalent to
(t) 1

Recall Hy/, from (1.1). Since

oo—

f(@) = - /[O,oo) cos(zt)dh(t) = f(0) — o / h(t) sin(zt)dt

0
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for 0 < z < 7, we obtain

$0) - fl@) = \[Sathple) (<o) (4.15)

First we assume n = 1. Then, by A with v = 1/2, (4.14)
holds if and only if

7 . : cii20 1 /2
H II th ¢-ind — = —/ =
1/2(x) € Ly wi index —3 S\ -
(recall Hy/p from [1.6)), which by is equivalent to (1.23) with n = 1.
Next we assume n > 2. For j =0,1,...,n— 2,
oo . 1 i . (_1)j+1 ,
2 () dt = ——— Y kP2, = ———— FEF2(0).
/0 ®) 2] +2 = ¥ 2]+2f (0)

(4.16)

In particular, [3°t2" 3h(t)dt < co. Recall Hy/p-1 from (1.3). By [4.15)
and (4.16),

ﬁl/g,n_l(m):—\/g {1/3: ._ } (4.17)

By with v = 1/2, (4.14) is equivalent to
cijam-1 _ [2(=1)"!

on  Vrm (2n)
which by is equivalent to (1.23). This completes the proof. ]

}—Il/Q,n—wl € Hg with /-index
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