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Abstract. In this paper, we first determine a ring structure of Z4 equivariant cutting
and pasting theory SK*Z“. Using the result, we obtain a minimal set of generators of
Ker ¢, where ¢ : S’K,.‘Z4 — A(Z4) is the natural surjection to the Burnside ring for Zj.
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1. Introduction

Let G be a finite abelian group, A(G) the Burnside ring and SKS the
G-equivariant cutting and pasting ring in the sence of [4]. In [6] Kosniowski
proposed that we have a natural homomorhism SK& — A(G) and what we
can say about this homomorhism. In Koshikawa has studied it for the
case G = Zs. In this note, we consider the case G = Z4.

In Section 2, we determine a ring structure of SK%4 (Theorem 2.13)
by calculating the euler characteristic of manifold with some slice types.
In Section 3, we obtain a relation between SKZ4 and Burnside ring A(Z,)
(Theorem 3.9). Finally we mention a transfer map SKZ4 — SKZ (Propo-
sition 3.11).

Throughout this paper, by a G manifold we mean an unoriented com-
pact smooth manifold with smooth G action. Further it usually has no
boundary.

2. A ring structure of SK?Z*

In this section, we first recall some basic facts about the theory SK¢,
and we next determine a ring structure of SKZ4.

Let M™ be a closed n dimensional G' manifold, and let L C M satisfy
the following properties,

(1) L is a G invariant codimension 1 smooth submanifold of M,
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(2) L has trivial normal bundle in M, and
(3) the normal bundle of L in M is G equivalent to L x R with trivial
action of G on the real numbers R.

We assume that L separates M, that is M = N; U N, (pasting along
the common boundaries L = dN;) for some G invariant submanifolds N; of
codimension zero. It is no gain in generality to drop this condition, because
the union of L with a second copy of L, suitably embedded near L, will
separate M.

Let M; and M be n-dimensional G manifolds. We say that M and
M, are obtained from each other by a G equivariant cutting and pasting
if M, has been obtained from M by the step as mentioned above, that is,
M; = N1Uy,Np and M = Ny Uy N; pasting along the common parts L C M,
(or M) by some G diffeomorphisms ¢, : L — L.

Definition 2.1 If M7 has been obtained from M™ by a finite sequence of
G equivariant cuttings and pastings, then we say that M; and M are SK¢
equivalent.

This is an equivalence relation on the set of n dimensional G mani-
folds. The set of equivalence classes forms an abelian semigroup if we use
disjoint union as addition, and has a zero given by the empty set . The
Grothendieck group of this semigroup is then denoted by SK¢. If G = {1},
then SK¢ is denoted by SK,. We denote by [M] the equivalence class
containing a G manifold M. Further we define SK& as 3,50 SKS. Then
it is a graded module over SK, = ), -9 SK,, where SK, is the integral
polynomial ring over the integers Z with a generator «a represented by the
real projective plane [RP?] ([6], 2.5.1). The module operation is given by
[RP?™[M™ = [(RP?)™ x M™], where we consider (RP?)™ has the trivial
G action and (RP?)™ x M™ has the diagonal G action. Moreover, SKC is
a graded ring with multiplication by [M™][N"] = [M™ x N"| with unit [pt],
where M™ x N™ has also diagonal G action and pt is the one-point space
with trivial action.

If H is a subgroup of G, then H module is a finite dimensional real vec-
tor space together with a linear action of H on it. If M is a G manifold and
z € M, then there is a G, module U, which is equivariantly diffeomorphic
to a G, neighbourhood of z where G, = {g € G | gz = z} is the isotropy
subgroup at z. This module U, decomposes as U, = R? @V, when G, acts
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trivially on R? and V¢ = {v € V, | gv = v for any g € G} = {0}. We
refer to the pair o, = [G;; V.| as the slice type of z. By a G slice type in
general, we mean a pair [H; V] of a subgroup H and an H module V such
that VH# = {0}.

There is a partial order on the set of all G slice types given by: [H; V] <
[K; W] means [K;W] is a slice type of the G manifold G xg V where
G xg V is G x V factored by the equivalence relation: (g,z) ~ (gh,h™'z)
for h € H. If M is a G manifold and o = [H;V] is a slice type, define
M, ={x € M |6, < o}. Then M, is a G invariant submanifold of M with
dim(My) = dim(M) — dim(V') (cf. [4, p. 37]).

Now let G = Z4, the cyclic group of order 4 with a generator ¢ = v/—1.
Let R denote the real numbers with Z4 (and Zs) acting by multiplication by
—1, while let C denote the complex numbers with Z4 acting by multiplica-
tion by i. Then, the Z4 slice types are o_; = [1;{0}], oj = [Zg; R7], (j > 0)
and o = [Zy; R/ x Ck], (j,k > 0). Concerning the partial order, we note
that ojr < 09k < 0-1 and o941 < 0_1. We can therefore define an invari-
ant submanifold of Z4 manifold of M as follows: M,, ={x € M |0, = o9
or 0jk(j > 0)}, Moy, ={x €M |0y =01} or My, ={z€M|o, =
ojk}- We see that dim(M,,) = m — j and dim(M,,,) = m — (j + 2k) as
mentioned above, where m = dim(M) (cf. [6, p. 121 and p. 211]). Notice
that M, , = M.

Let

M; = Zy xz, RP(R x RY), M, = RP(R x R/) x RP(R x CF),

and let x = [Zy)], z; = [M;], zjr = [Mjk].
Then the SK, module structure of SK*Z4 is as follows.

Proposition 2.2 ([6], 5.4.1) SKZ4 is a free SK, module with basis B =
{w’mi)xj,k (?’)J’k > 0)}

Proposition 2.3 ([6],5.4.7) Two n dimensional Z4 manifolds M, M’ are
SK?4 equivalent if and only if

(1) X(M):X(M,) (2) Xi(M):Xi(M/) 1=0,1,...,n

(3) xjk(M)=x;k(M') 4,k 2>0,j+2k <n where x;(M) = x(M,,) and
Xj,k(M) = X(Maj,k)‘

Remark 2.4 Let M be Zy, M; or M;,. Then the values x;(M) and
X' k(M) which do not vanish are as follows.
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X =4 on Z4, x = x2i = 2 0n My, X1 = X2i+1 = 2 0n Moiy1, X = Xok =
X2jk = 1 on My, and x1x = X2j+1,6 = 1 on Moj .

For each M, the manifolds M,, and Ma,-,k are obvious. We therefore
obtain the above data.

Proposition 2.5 Let K = C or the field H of quaternions and let
KP(K x K") be the projective space associated to K x K™ with Z4 action
id X i (n > 0). Then we have

(i) [CP(CxC")]=xyn+ne™'zo1, and

(ll) [HP(H X f‘in)] = To2n t na2"’2:1:0,2.

Proof.  Note that CP(C x C") (or HP(H x H")) has the data on slice
typesas x =n+1, xomn =1, x01 =n (or x =n+1, x02n = 1, X02 = n)
respectively ([3], p. 106). Hence the relation (i) or (ii) follows by comparing
the data of both sides (cf. Remark 2.4). L]

Example 2.6 We show (i) by an SK?4 process as follows.

Put N; = A;+ B; (i = 1,2) where A; = D(C"), Ay = D(C) x 51 S(C"),
By = [-1,1] xz, S(C") and By = [~1,1)’ x 2, S(C™). Further, consider L =
L' + L" where L' = I = S(C") with natural embeddings L' = dA4; C A;
and L" = {-1,1} xz, S(é") C B;. Now let ¢, ¢:L = ON; — L = 0N, be
identifications:

p:A1DL -L cAy,, B DL'—L"C By,
v:A DL - L"CBy, BiDL' - L C A,

Then
N; U, Ny = CP(C x C™) + 8! x 2, S(C") and
N1U¢N2 RP(RXCn)+P
where
P = D(C) xg1 S(C*) U [-1,1] xz, S(C)
~ D(C) xg1 S(C™) U ([-1,1] Xz, §*) x g1 S(C™)

14

RP(R x C) xg1 S(C")

with obvious identifications. Observe P fibers equivariantly over CP"_1~:
S(C™)/S! with fiber RP(R x C). Hence [P] = [CP""!]. [RP(R x C)]
by [6, Theorem 2.4.1] or [4, Lemma (1.5)]. Since CP™"! is cobordant to
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(RP™1)? in the unoriented cobordism ring N, (cf. [7], Lemma 7),

[CP™Y] = [RP"™I 4 L(x(CP™™")  x(RP")2)) (5%
= n[RP™?

= na™!

by [§?"?] = 2[RP??] and [RP?™] = [RPQ]"” in general (cf. [6 Corollary
2.3.4 and p. 62]). On the other hand, S* x z, §(C") fibers equivariantly over
RP! = S!/Z, with fiber §(C™), which implies that [S x z,$(C")] = [RP1]-
[S(C™)] = 0 since [RP'] =0 in SK, ([6], Theorem 2.4.1 (i)). Therefore we
have the relation for CP(C x C"). []

Since [CP(C x C")] = zp, or [HP(H x H")] = 203, (mod SK, de-
composable), we have the following result.

Corollary 2.7 The element - Zo,n (or xo2n) in the basis B is replaced by
[CP(C x C")] (or [HP(H x H"))) respectively.

Now we go back to G slice types. Let ¢ = [H;V] be a slice type of
r =[g,w] € GxgW. Since Gy, = H(C K), W decomposes as W = (w)®W’
as an H module, where (w) is a submodule generated by w and W' is its
complement. We therefore V.= NT(W') = NT(W), where NT(-) is the
non-trivial part of H module. Let M be a G manifold, and let 0 = [H; V]
and o' = [H; V'] be H slice types. If x € M, N M,, then both ¢ and ¢’ be
H slice types of G xg, V;. Hence 0 = o/ because V =V’ = NT(V,) as H
modules. We therefore M = [[, M, (disjoint union), where the sum is
taken over all H slice types o = [H;V].

Lemma 2.8 Let M and N be Z4 manifolds, then

i(M x N) Z xp(M and
p+q=i
Xjk(M x N) = Z Xp,r(M)xq,s(N).
ptq=j,r+s=k

Proof. ~ We first prove that

(281) (M xN),, = [ (Ms, xNs,) and
ptg=1
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(M xN)g,, = ]_[ (M, X No,.,)-
ptq=j,r+s=k

Suppose that H = Zy. Since (M X N),, = ]_[p+q (Mg, x Ng,), i
sufficies to show that M,, x My, C (M X N),,, where j = p+q. Let p = 2k
g = 2l+1 and put (z,y) € Mg, X No, . There are two cases for the slice type
of z, that is, one: o, = [Zy; R2k] and the other: o, = [Zg; R/ x C"’] for some
j > 0. On the other hand, o, = [Zy; R2+1]. Then a Z, neighbourhood of
(z,y) in M x N is equivariantly diffeomorhic to Rk x R2+1 in the first case
and R7 x R%* x R2*! in the second one. Therfore oy ) = [Zg; R#*T21H]
in both cases, and (z,y) € (M x N),, with j = p+q. Similarly we have the
same results in another cases, from which the first part of (2.8.1) follows.
In a same way, we have the second part. Taking x for both sides of (2.8.1),
we obtain the lemma. ]

Proposition 2.9

(1) .’132 =4z (2) TI2j4+1 = 0, TI2; = 2aj:c
I EY _
(3) zwaj411 =0, 3Ty =0T (4) kT = 2Ta(k)
_ ! k+1
(5) TokTor+1 = 2Tok+aip1 + 200 Lok y1 — 207 Ty
_ ki1 ! k k1
(6) Tops1Tosr = —4aF T e 4+ 230 10140+ 20 Topyn + 205 Ty + 25T
(7) TomTong = " Tomiry  (8) TiTon411 =10
mi1Zonl = Q" Tomyoi41 + " Ty — oMty

(9) Tomy1Tony =«
(10) To2m,jTonl = L2(m+n),j+l
(11)  Zom jTont1l = Tamt2nt1j+l + @ Tom1j+1 — AT 54

1

(12) ZTom+1,Tont1s = —22™ "Moo + a"Tomi2,j+1 + " Tont2 i+

+ a™ ™9 i1 + Tomton42,j+

Proof. ~ We prove (12) by [Proposition 2.3 Let

(Mam1,7][Mans14) = a[RP**[Z4) + Zbi[RPQ]i[Mﬂt—i)]

+ Z Cq,r [RPQ]q[M2(t—q—r),r]
q,T
where a,b;,cqr € Z, t=m+n+1+j+land 0<i<t, 0<g+r <t
The euler characteristics of the left side are x = 0, Xom+2n+2,j4+1 =
Xom+2.j+1 = Xon+2,j+ = X2,j+1 = 1 and the others xpr = 0. On the other
hand, those of the right side are x = 4a+23;b; + >, , Cqry X2m+2n+2,5+ =

COj+ls X2m+42,j+1 = Cnj+ly X2n4+2,5+ = Cmj+ly X2,j+ = Cmn,j+l X2j+20 =
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2bm+n+1 + 4, X2(m+n+1+j+l—z') = 2bz (0 <1< t) and the others Xh,k = 0.
(cf. Remark 2.4 and Lemma 2.8).

Therefore cg j11 = Cnjtl = Cm j+l = Cmin,j+l = 1, bngns1 = =2, a =0
and the other coefficients are 0. Hence we can obtain (12). In the similar
way we have the rest equalities. ]

Lemma 2.10 Let ¢, = [CP(Cx C")] and h,, = [HP(H x H")] in SKZ*,

then the following relations hold.

(1) Cm - Cn = Cmgn +Ma™ teny1 + na™ tepyr + mna™t2cy — (2mn +
m+n)a™ le;  (m+n > 2),

(2) hm-hp=hmin+ mo2™m=Dh, 1 +na®Dh, 0 + mna2Mm+n=2)p,
(2mn +m +n)aX ™" DR (m4n > 2),

(3) 1 = hami1 +2(2m + 1)a® i1 — (2m + 1)a*™hy (m > 0),

(4)  hpm = com + ma?™ 2cy — 2ma®?™le;  (m > 1),

and cg = hg = 1.

The proofs are obtained from [Proposition 2.5 and 2.9 (10) straightfor-
wardly, so we omit them here. From this, we have the following proposition.

Proposition 2.11 Let C (or H) be an SK, submodule generated by the
class {cn, | n > 0} (or {h, | n > 0}) respectively, then it is an SK, subalge-
bra of SKZ4 and H C C.

Next we consider an SK, algebra structure of SKZ4. We first reduce
the following equalities.

Lemma 2.12

(i)  zom = zo(z01)™, m2>1
m

(i) zom+3 = x3(xo1)™ — (23 — ax;) Z ai(xo,l)m_i, m>1
i=1

(lll) Tom,j = (CL'Q,O)m(:BO,l)ja m Z Oa .7 Z 0

m
(iv) Toms3; = (530,1)]{(-’172,0)m~’133,0—($3,0—a$1,0) Zal(l‘zo)m_z}, m > 1,

. =1
720

Proof. ~ We use the equalities in [Proposition 2.9. From (7) we obtain
(i) by induction on m, while from (10) we obtain (iii) by induction on j
and m. Next let us put (n,l) = (0,1) on (9), then we have x93 =
Tam+120,1— (T3 —ax1)a™. From this, (ii) follows by induction on m. Finally,
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Tom+3; = £0,T2m+3,0 from (11). Moreover, from (12) we have zomi30 =
(22,0)™x30 — (T30 — ax10) 1r%; a'(22,0)™ " as (ii). These imply (iv).

]

Since SK?Z4 is freely generated over SK, by these z,z;, z; (i,j,k > 0),
we have the following.

Theorem 2.13 As an SK.-algebra SKZ¢ = P /T, where P is an SK,
polynomial ring with indeterminates x, xo, 1, T3, To,1, T1,0, T2,0 and T30,
and Z is an ideal generated by the relations induced from Proposition 2.9
(or Lemma 2.12).

Let p = 2355 and ¢ = 23, — 203, — a’z20 + 203z for example,

then p = ¢ = x60 in SK?* from [Proposition 2.9 (10) and (12). Hence
p —q € I. Further it is easy to see that the above eight indeterminates
supply a minimal set of generators.

3. The relation between SK?Z* and A(Z,).

We define another equivalence relation as follows. Let M and N be
closed smooth G manifolds, then M ~ N if and only if the H fixed point sets
MH" and NH for all subgroups H of G have the same euler characteristics
x(M™) and x(N"). Denote by A(G) the set of equivalence classes under
this equivalence relation, and denote by [M] € A(G) the class of M (we use
conveniently same notation as the element of SK). The disjoint union and
the cartesian product of G manifolds induce an addition and multiplication
on A(G). Then A(G) becomes a commutative ring with identity [pt].

Definition 3.1 We call A(G) the Burnside ring of G.

Let M be a G manifold and H be a subgroup of G. Then we define
My ={x € M | G, = H}. Now we note that we consider only G a finite
abelian group. So the next formula is the special case of tom Dieck’s one

([2], 5.5.1).

Proposition 3.2 A(G) is the free abelian group with basis {|G/H| | H C
G} and any element [M] € A(G) have the relation [M]| =3 g x(Mu/G)
(G/H].

By this fomula, A(Z,) & Z[z]/(z? — pz) for any prime integer p ([5],
Lemma 6). On the other hand, we have the following.
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Lemma 3.3
A(ZQ") = Z[Zl, Ry ey zn]/(zzzz+J - 2n_(i+j_1)zi)

where z; = [Zon [Zgi—1] (i=1,...,n+1).

Proof.  From [Proposition 3.2, A(Z2~) is a free abelian group generated by
z;, where 2,41 = 1. Put M = (Zon/Zgi-1), then y(MZ2+-1) = 2n—k+1 for
1<k<ior0fori+1<k<n+1. Hence we obtain 2z, ; = 2"~ (+i=1) 4,
by comparing euler characteristics of both sides. U]

Definition 3.4 Let [M] € SKZ4, then [M] can be naturally regarded
as an element of A(Z4). We denote this correspondence by ¢ : SKZ4 —
A(Z4). Then ¢ is well-defined because x(M?%2) = ¥, x;(M) and x(M?%4) =
> ik Xjk(M), and is a ring homomorphism.

The generators of SKZ4 are mapped by ¢ as follws.

Lemma 3.5 ¢(z) = u, ¢(z2) = v, ¢(T2i+1) = 2v — u, P(x2;j) = 1 and,
qﬁ(.’IJQH.l’j) =2—v fov“ i,j Z 0, where u = [Z4], V= [Z4/Z2] and 1 = [Z4/Z4].
Proof.  ¢(x) = u is a trivial. Let ¢(z9i41) = au + bv + ¢ for a,b,c € Z.
Since x(Ma;1) = 0, x(M3i41%2) = 4 and x(Myi1124) = 0 from Remark 2.4,

we have 4a+2b+c¢ =0, 2b+c =4 and ¢ = 0. So we have ¢(z2;11) = 2v—u.
Similarly we ontain another equalities. []

Next let us calculate Ker ¢.

Lemma 3.6 Ker¢ is freely generated by P(l,i,j) = o'zoir1; — 1,0,
Q(p, h, k) = oPxopk — T00, R(q,t) = alzars1 — x1, S(r,w) = a"Toy + 210 —
2x90 and, T'(s) = o’z + 1 + 2210 — 4x00 where 3, j,k,l,p,q,7,s,t,w > 0.

Proof.  For any fixed n > 0, let [M] be in Ker¢ and let it be an SK,
linear combination as follows.

_ 4J 1 h.k t
[M] = Zal o' Ti41,5 + Z b, aPxop i + Zcqaq$2t+1
,7,1 h.k,p q,t

WJj phk t
-I-Zd;”arxgwwLZesasx, for alj,bp’ ,Cqrdy , €5 € Z,
raw s

where the suffix are taken over 0 < i+ j+ L, h+k+p,g+t,r+w,s <n.



470 T. Hara and H. Koshikawa

Now ¢(a) = 1, so by [Lemma 3.5,
oM = (=L +23 o e o
i’jal q’t mw
+ (22(1}"" + ) bj;”“) + (-ch + Zes)u.
1,,0 h.,k,p q,t s
Then we have the following simultaneous equations with rank 3:

(S ) ~Ydr -2 e, =0
rw 8

1,0

< > bk +2) dY +4) e, =0
h,k,p raw S
Z cfl — Z es = 0.

\ q,t

Now let df’j be the vector whose (i, j,1)-the coordinate af’j = 1 and the
others are zero. Similary we define the vectors for another letters. Then the
vectors @yl —ag”, bk — 500, & a3, d¥ +ag” — 260" and & +2ay° —4by" + ¢
are linearly independent solutions. This gives the result. []

Since SK, C SK?4, we may consider A(Z4) as SK, algebra via ¢ ([1],
Chapter 2). In this case, for [M] € SK, and [N] € A(Z4), [M][N] =
#([M))[N] = [M x N| and ¢ is algebra homomorphism.

Now we will reduce the above generators in order to get the minimal
set of generators of Ker ¢ as SK, subalgebra.

Let for i > 0 A; = P(i,0,0), B; = P(0,i,0) + S(0,0), C; = Q(4,0,0),
D; = Q(0,1,0), E; = Q(0,0,%), F; = R(7,0), G; = R(0,7) — 25(0,0) + T(0),
H; = 5(i,0) — S(0,0), I; = S(0,%) and J; = T'(¢). Then we can reduce these
relations as follows.

Lemma 3.7

A= A) o® (3.1)
s=1
) 1—2
Bi = Bi(D1 +1)""'+ (2D, — H1) ) (D1 +1)°, i>2 (3.2
s=0

Ci=Cr1y o* (3.3)
s=1
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s=0
1—1 i '
E; = ( )E;—S, i>1 (3.5)
S
s=0
F,=F ) o (3.6)
s=1
Gi = (E1 +1)'Go+ (2L — J1 + Go) D (Ey + 1)1
s=0
i—1 .
—(Gy—2H1 + J1 = 21y — Go — aGo) > _(E1 + 1) %,
s=1
i>1 (3.7)
Hy = H ) o (3.8)
s=1
1—1
L=L+(NL-1)) (B1+1)° i>1 (3.9)
s=1
Ji = T4+ Y o TR0 - 241 - ), 0> (3.10)

k=1

Proof.  We can easily obtain (3.1), (3.2), (3.3), [3.6), by induction
on i. We have (3.4) by the relation

D;y1 = D;Dy + D; + D,
Similarly we obtain (3.5). Next
Git1 = T2i43 —2x0 +

= z3(201)" — (z3 — az1) Z af(z01)"* — 2z0 + T

s=1
= T0,1%2i+1 — (T3 — axy)a' — 2zo +
= (o1 — 20,0)Gi + G; + 2(x2 — o) — (ax — ) — (T3 — az)at
= (E1 +1)G; + (2I; — J1 + Go)
— (G — 2H, + J, — 2Iy — Gy — aGp)a’
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Then we can obtain (3.7) by induction on ¢. By Lemma 2.9 and induction,
we obtain

Liv1 = T10 — 2700 + To(i41)
= 1,0 — 2%0,0 + T0,1T2i
= x1,0 — 2%0,0 + T0,1(L; — T1,0 + 200)
= I+ (E1 + I)Ii — (E1 + I)I() + I — I
= (I — Iy — IhEy) + (Eh + 1)I;

So we obtain [3.9). Finally we deform J;1; as follows by induction.

Ji+1 = 2£E1,0 — 43)0,0 + X1 + OéH_liL‘

= 2.’L‘1,0 - 4:[:0,() + 1+ OZ(JZ — 2:B1,0 + 41‘0’0 - 2131)
= 2(x1,0 — ax10) — 4(200 — a0 0) + (21 — az1) + aJ;
= aJ; + (—2A1 +4C, — Fl)

Then we obtain (3.10). [

Next we have the following lemma.

Lemma 3.8
(1) almgiH,j —T10= alBi(Ej + 1) + 20zlEj + 2C; — By — H;
j—1

—ol(I1 = Bo)) (E1+1)°, j>1
s=0

( ) a”:cgh,k — Zo,0 = Otp(DhEk + Dy, + Ek) + Cp

( ) aqiL‘Qt_H — I = aq(Gt — Go) + Fq

(4) 1,0 — 21‘0,0 +a Ty, =a" I, +2C, — A,

s—1

(5) 2z10—4x00+T1+a’T = a1 J) — (24; — 4C) +F1)Z A |
i=1

P’I'OOf. By lemma 2.12 Toi+1,5 = BiEj—}—Bi—I—QZE(),j—CL‘Qj. Let D; = T2 —To,

then al$2i+1’j —T10 = alB,'(Ej + 1) + 2a’EJ~ +2C, — By — H; — OélD;. If

j > 1, then D; = (I, — Bp) Y2Z4(E1 4+ 1)* by induction on j. So we have

(1). Similarly we obtain (2) from z9px = DpEy + Dy, + Ex + z90. We can

easily obtain (3) and (4). (5) is [3.10) of [Lemma 3.7. ]

Therefore, by and 3.8, we have the following.




A homomorphism between an equivariant SK ring and the Burnside ring 473

Theorem 3.9 If S is an SK,-subalgebra of SKZ4 generated by P(1,0,0),
P(O? 17 0)7 Q(l’ 07 0)7 Q(()’ 1, 0), Q(O’ 0’ 1)7 R(]‘, 0)7 R(07 1)7 S(l, 0)’ S(O7 1)?
S(0,0), T(0), T(1), then the sequence

0— 84 SKZ % A(Zy) - 0

1s a short exact sequence and splits as ring, where v is an inclusion homo-
morphism. Further, the above class supply a minimal set of generators.

Proof. By the above argument S = Ker ¢, so the exactness is trivial.
The split map 9 : A(Z4) — SKZ4 is give by (1) = zo, ¥(u) = z, and
¥ (v) = xo. By [Proposition 2.9 (1), (2), (4) and Lemma 3.5, we see that
is a ring homomorphism. U]

Remark. The transfer homomorphism

Let y = [Zo] € SKZ2, y; = [RP(R x R%)] € SK*2. Then SKZ2 is
a free SK, module with basis {y} U {y; | ¢ > 0} (cf. [6, 5.3.1]). As a ring
structure of SK%2, we have the following.

Proposition 3.10 ([5], Theorem 3) For any integers m,n > 0,

(1) y* =2y (2)  yyem+1 =10 (3) yyom =™y

(4)  vom = 3" (5)  Yom+1¥2n = Y2mi2nt1 + @M Yong1 — ™y

(6)  Yomt1Yont1 = @™ yo + amy;“L1 + a"y;"H + y;n+n+1 — 2qmtntly,

Let t : SKZ¢ — SKZ2 be a transfer map (restriction map) and let
e : SKZ2 — SKZ4 be an extension map, that is e([M]) = [Z4 xz, M|,
then we have the following result.

Proposition 3.11
(1) et(z) =2z, et(x;) = 2x;, et(xgi ;) = ai:vgj and et(zi+1,;) = 0.
(2) te(y) = 2y, te(y:) = 2y;.

Proof. By 5.3.7 in [6], t(z) = 2y, t(z;) = 2y; and t(z2; ;) = a’yz;. On the
other hand X(MQH_LJ') = 0 and X(MQZZ-?H’J-) = 0 so Z2i+1,5 = [M2i+1’j] =0
in SKZ2. This implies that #(z2;11;) = 0. On the extension map, e(y) = =
and e(y;) = x; are trivial. Therefore we have (1) and (2). O
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