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A homomorphism between an equivariant SK ring
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Abstract. In this paper, we first determine a ring structure of Z_{4} equivariant cutting
and pasting theory SK_{*}^{Z_{4}} . Using the result, we obtain a minimal set of generators of
Ker \phi , where \phi : SK_{*}^{Z_{4}} – A(Z_{4}) is the natural surjection to the Burnside ring for Z_{4} .
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1. Introduction

Let G be a finite abelian group, A(G) the Burnside ring and SK_{*}^{G} the
G-equivariant cutting and pasting ring in the sence of [4]. In [6] Kosniowski
proposed that we have a natural homomorhism SK_{*}^{G}arrow A(G) and what we
can say about this homomorhism. In [5] Koshikawa has studied it for the
case G=Z_{2} . In this note, we consider the case G=Z_{4} .

In Section 2, we determine a ring structure of SK_{*}^{Z_{4}} (Theorem 2.13)
by calculating the euler characteristic of manifold with some slice types.
In Section 3, we obtain a relation between SK_{*}^{Z_{4}} and Burnside ring A(Z_{4})

(Theorem 3.9). Finally we mention a transfer map SK_{*}^{Z_{4}} - SK_{*}^{Z_{2}} (PropO-
sition 3.11).

Throughout this paper, by a G manifold we mean an unoriented com-
pact smooth manifold with smooth G action. Further it usually has no
boundary.

2. A ring structure of SK_{*}^{Z_{4}}

In this section, we first recall some basic facts about the theory SK_{*}^{G} .
and we next determine a ring structure of SK_{*}^{Z_{4}} .

Let M^{n} be a closed n dimensional G manifold, and let L\subset M satisfy
the following properties,

(1) L is a G invariant codimension 1 smooth submanifold of M.
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(2) L has trivial normal bundle in M, and
(3) the normal bundle of L in M is G equivalent to L\cross R with trivial

action of G on the real numbers R.

We assume that L separates M, that is M=N_{1}\cup N_{2} (pasting along
the common boundaries L=\partial N_{i} ) for some G invariant submanifolds N_{i} of
codimension zero. It is no gain in generality to drop this condition, because
the union of L with a second copy of L , suitably embedded near L , will
separate M

Let M_{1} and M be n-dimensional G manifolds. We say that M and
M_{1} are obtained from each other by a G equivariant cutting and pasting
if M_{1} has been obtained from M by the step as mentioned above, that is,
M_{1}=N_{1} \bigcup_{\varphi}N_{2} and M=N_{1} \bigcup_{\psi}N_{2} pasting along the common parts L\subset M_{1}

(or M) by some G diffeomorphisms \varphi , \psi : Larrow L .

Definition 2.1 If M_{1}^{n} has been obtained from M^{n} by a finite sequence of
G equivariant cuttings and pastings, then we say that M_{1} and M are SK^{G}

equivalent.

This is an equivalence relation on the set of n dimensional G mani-
folds. The set of equivalence classes forms an abelian semigroup if we use
disjoint union as addition, and has a zero given by the empty set \emptyset . The
Grothendieck group of this semigroup is then denoted by SK_{n}^{G} . If G=\{1\} ,
then SK_{n}^{G} is denoted by SK_{n} . We denote by [M] the equivalence class
containing a G manifold M . Further we define SK_{*}^{G} as \sum_{n\geq 0}SK_{n}^{G} . Then
it is a graded module over SK_{*}= \sum_{n\geq 0}SK_{n} , where SK_{*} is the integral
polynomial ring over the integers Z with a generator \alpha represented by the
real projective plane [RP^{2}]([6], 2.5.1) . The module operation is given by
[RP^{2}]^{m}[M^{n}]=[(RP^{2})^{m}\cross M^{n}] , where we consider (RP^{2})^{m} has the trivial
G action and (RP^{2})^{m}\cross M^{n} has the diagonal G action. Moreover, SK_{*}^{G} is
a graded ring with multiplication by [M^{m}][N^{n}]=[M^{m}\cross N^{n}] with unit [pt] ,
where M^{m}\cross N^{n} has also diagonal G action and pt is the one-point space
with trivial action.

If H is a subgroup of G, then H module is a finite dimensional real vec-
tor space together with a linear action of H on it. If M is a G manifold and
x\in M , then there is a G_{x} module U_{x} which is equivariantly diffeomorphic
to a G_{x} neighbourhood of x where G_{x}=\{g\in G|gx=x\} is the isotropy
subgroup at x . This module U_{x} decomposes as U_{x}=R^{p}\oplus V_{x} when G_{x} acts
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trivially on R^{p} and V_{x}^{G_{x}}= {v\in V_{x}|gv=v for any g\in G_{x} } =\{0\} . We
refer to the pair \sigma_{x}=[G_{x} ; V_{x}] as the slice type of x . By a G slice type in
general, we mean a pair [H;V] of a subgroup H and an H module V such
that V^{H}=\{0\} .

There is a partial order on the set of all G slice types given by: [H;V]\leq

[K;W] means [K;W] is a slice type of the G manifold G\cross_{H}V where
G\cross_{H}V is G\cross V factored by the equivalence relation: (g, x)\sim(gh, h^{-1}x)

for h\in H . If M is a G manifold and \sigma=[H;V] is a slice type, define
M_{\sigma}=\{x\in M|\sigma_{x}\leq\sigma\} . Then M_{\sigma} is a G invariant submanifold of M with
\dim(M_{\sigma})=\dim(M)-\dim(V) (cf. [4, p. 37]).

Now let G=Z_{4} , the cyclic group of order 4 with a generator i=\sqrt{-1} .
Let \tilde{R} denote the real numbers with Z_{4} (and Z_{2} ) acting by multiplication by
-1, while let \tilde{C} denote the complex numbers with Z_{4} acting by multiplica-
tion by i . Then, the Z_{4} slice types are \sigma_{-1}=[1;\{0\}] , \sigma_{j}=[Z_{2;}\tilde{R}^{j}] , (j\geq 0)

and \sigma_{j,k}=[Z_{4;}\tilde{R}^{j}\cross\tilde{C}^{k}] , (j, k\geq 0) . Concerning the partial order, we note
that \sigma_{j,k}\leq\sigma_{2k}\leq\sigma_{-1} and \sigma_{2k+1}\leq\sigma_{-1} . We can therefore define an invari-
ant submanifold of Z_{4} manifold of M as follows: M_{\sigma_{2k}}=\{x\in M|\sigma_{x}=\sigma_{2k}

or \sigma_{j,k}(j\geq 0)\} , M_{\sigma_{2k+1}}=\{x\in M|\sigma_{x}=\sigma_{2k+1}\} or M_{\sigma_{j,k}}=\{x\in M|\sigma_{x}=

\sigma_{j,k}\} . We see that \dim(M_{\sigma_{j}})=m-j and \dim(M_{\sigma_{j,k}})=m-(j+2k) as
mentioned above, where m=\dim(M) (cf. [6, p. 121 and p. 211]). Notice
that M_{\sigma_{-1}}=M

Let

M_{i}=Z_{4}\cross z_{2}RP(R\cross\tilde{R}^{i}) , M_{j,k}=RP(R\cross\tilde{R}^{j})\cross RP(R\cross\tilde{C}^{k}) ,

and let x=[Z_{4}] , x_{i}=[M_{i}] , x_{j,k}=[M_{j,k}] .
Then the SK_{*} module structure of SK_{*}^{Z_{4}} is as follows.

Proposition 2.2 ([6], 5.4.1) SK_{*}^{Z_{4}} is a free SK_{*} module with basis B =

\{x, x_{i}, x_{j,k}(i,j, k\geq 0)\} .

Proposition 2.3 ([6], 5.4.7) Two n dimensional Z_{4} manifolds M, M’ are
SK^{Z_{4}} equivalent if and only if
(1) \chi(M)=\chi(M’) (2) \chi_{i}(M)=\chi_{i}(M’) i=0,1 , . , n
(3) \chi_{j,k}(M)=\chi_{j,k}(M’) j , k\geq 0,j+2k\leq n where \chi_{i}(M)=\chi(M_{\sigma_{i}}) and
\chi_{j,k}(M)=\chi(M_{\sigma_{j,k}}) .

Remark 2.4 Let M be Z_{4} , M_{i} or M_{j,k} . Then the values \chi_{i’} (M) and
\chi_{j’,k’}(M) which do not vanish are as follows.
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\chi=4 on Z_{4} , \chi=\chi_{2i}=2 on M_{2i} , \chi_{1}=\chi_{2i+1}=2 on M_{2i+1} , \chi=\chi_{2k}=

\chi_{2j,k}=1 on M_{2j,k} , and \chi_{1,k}=\chi 2j+1,k=1 on M_{2j+1,k} .
For each M, the manifolds M_{\sigma_{i}} and M_{\sigma_{j,k}} are obvious. We therefore

obtain the above data.

Proposition 2.5 Let K=C or the field H of qua-ternions and let
KP(K\cross\overline{K}^{n}) be the projective space associated to K\cross K^{n} with Z_{4} action
id\cross i(n\geq 0) . Then we have
(i) [CP(C\cross\overline{C}^{n})]=x_{0,n}+n\alpha^{n-1}x_{0,1} , and
(ii) [HP(H\cross\overline{H}^{n})]=x_{0,2n}+n\alpha^{2n-2}x_{0,2} .

Proo/. Note that CP(C\cross\overline{C}^{n}) (or HP(H\cross\overline{H}^{n}) ) has the data on slice
types as \chi=n+1 , \chi_{0,n}=1 , \chi_{0,1}=n (or \chi=n+1 , \chi 0,2n=1 , \chi 0,2=n )
respectively ([3], p. 106). Hence the relation (i) or (ii) follows by comparing
the data of both sides (cf. Remark 2.4). \square

Example 2.6 We show (i) by an SK^{Z_{4}} process as follows.
Put N_{i}=A_{i}+B_{i}(i=1,2) where A_{1}=D(\overline{C}_{-}^{n}) , A_{2}=D(C)\cross_{S^{1}}S(\overline{C}^{n}) ,

B_{1}=[-1,1]\cross z_{2}S(\overline{C}^{n}) and B_{2}=[-1,1]’\cross z_{2}S(C^{n}) . Further, consider L=
L’+L’ where L’=L’=S(\overline{C}^{n}) with natural embeddings L’=\partial A_{i}\subset A_{i}

and L’=\{-1,1\}\cross z_{2}S(\overline{C}^{n})\subset B_{i} . Now let \varphi , \psi:L =\partial N_{1} -arrow L=\partial N_{2} be
identifications:

\varphi : A_{1}\supset L’ -arrow L’\subset A_{2} , B_{1}\supset L’ -arrow L’\subset B_{2} ,
\psi : A_{1}\supset L’ -arrow L’\subset B_{2} , B_{1}\supset L’ - L’\subset A_{2} .

Then

N_{1} \bigcup_{\varphi}N_{2}=CP(C\cross\overline{C}^{n})+S^{1}\cross z_{2}S(\overline{C}^{n}) and
N_{1} \bigcup_{\psi}N_{2}=RP(R\cross\overline{C}^{n})+P,

where

P=D(C)\cross_{S^{1}}S(\overline{C}^{n})\cup[-1,1]\cross z_{2}S(\overline{C}^{n})

\cong D(C)\cross_{S^{1}}S(\overline{C}^{n})\cup([-1,1]\cross_{Z_{2}}S^{1})\cross_{S^{1}}S(\overline{C}^{n})

\cong RP(R\cross C)\cross_{S^{1}}S(\overline{C}^{n})

with obvious identifications. Observe P fibers equivariantly over CP^{n-1}=

S(\overline{C}^{n})/S^{1} with fiber RP(R\cross\overline{C}) . Hence [P]=[CP^{n-1}] [RP(R\cross\overline{C})]

by [6, Theorem 2.4.1] or [4, Lemma (1.5)]. Since CP^{n-1} is cobordant to
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(RP^{n-1})^{2} in the unoriented cobordism ring N_{*} (cf. [7], Lemma 7),

[ CP^{n-1}]=[RP^{n-1}]^{2}+\frac{1}{2}(\chi(CP^{n-1})-\chi((RP^{n-1})^{2}))[S^{2n-2}]

=n[RP^{2n-2}]

=n\alpha^{n-1}

by [S^{2n-2}]=2[RP^{2n-2}] and [RP^{2m}]=[RP^{2}]^{m} in general (cf. [6 Corollary
2.3.4 and p. 62]). On the other hand, S^{1}\cross z_{2}S(\overline{C}^{n}) fibers equivariantly over
RP^{1}=S^{1}/Z_{2} with fiber S(\overline{C}^{n}) , which implies that [S^{1}\cross z_{2}S(\overline{C}^{n})]=[RP^{1}] .
[S(\overline{C}^{n})]=0 since [RP^{1}]=0 in SK_{*} ( [6] , Theorem 2.4.1 (i)). Therefore we
have the relation for CP(C\cross\overline{C}^{n}) . \square

Since [CP(C\cross\overline{C}^{n})]=x_{0,n} or [HP(H\cross\overline{H}^{n})]=x_{0,2n} (mod SK_{*} de-
composable), we have the following result.

Corollary2.7- The element x_{0,n} (or x_{0,2n} ) in the basis B is replaced by
[CP(C\cross C^{n})] (or [HP(H\cross\overline{H}^{n})] ) respectively.

Now we go back to G slice types. Let \sigma=[H;V] be a slice type of
x=[g, w]\in G\cross_{K}W . Since G_{w}=H(\subset K) , W decomposes as W=\langle w\rangle\oplus W’

as an H module, where \langle w\rangle is a submodule generated by w and W’ is its
complement. We therefore V=NT(W’)=NT(W) , where NT(-) is the
non-trivial part of H module. Let M be a G manifold, and let \sigma=[H;V]

and \sigma’=[H;V’] be H slice types. If x\in M_{\sigma}\cap M_{\sigma’} , then both \sigma and \sigma’ be
H slice types of G\cross c_{x}V_{x} . Hence \sigma=\sigma’ because V=V’=NT(V_{x}) as H
modules. We therefore M^{H}=\square _{\sigma}M_{\sigma} (disjoint union), where the sum is
taken over all H slice types \sigma=[H;V] .

Lemma 2.8 Let M and N be Z_{4} manifolds, then

\chi_{i}(M\cross N)=\sum_{p+q=i}\chi_{p}(M)\chi_{q}(N) and

\chi_{j,k}(M\cross N)=\sum_{p+q=j,r+s=k}\chi_{p,r}(M)\chi_{q,s}(N) .

Proof. We first prove that

(2.8.1)
(M \cross N)_{\sigma_{i}}=\prod_{p+q=i}(M_{\sigma_{p}}\cross N_{\sigma_{q}})

and
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(M \cross N)_{\sigma_{j,k}}=\prod_{p+q=j,r+s=k}(M_{\sigma_{p,r}}\cross N_{\sigma_{q,s}})
.

Suppose that H=Z_{2} . Since (M\cross N)_{\sigma_{i}}=\square _{p+q=i}(M_{\sigma_{p}}\cross N_{\sigma_{q}}) , it
sufficies to show that M_{\sigma_{p}}\cross M_{\sigma_{q}}\subset(M\cross N)_{\sigma_{j}} , where j=p+q. Let p=2k ,
q=2l+1 and put (x, y)\in M_{\sigma_{p}}\cross N_{\sigma_{q}} . There are two cases for the slice type
of x , that is, one: \sigma_{x}=[Z_{2;}\tilde{R}^{2k}] and the other: \sigma_{x}=[Z_{4;}\tilde{R}^{j}\cross\tilde{C}^{k}] for some
j\geq 0 . On the other hand, \sigma_{y}=[Z_{2;}\tilde{R}^{2l+1}] . Then a Z_{2} neighbourhood of
(x, y) in M\cross N is equivariantly diffeomorhic to \tilde{R}^{2k}\cross\tilde{R}^{2l+1} in the first case
and R^{j}\cross\tilde{R}^{2k}\cross\tilde{R}^{2l+1} in the second one. Therfore \sigma_{(x,y)}=[Z_{2;}\tilde{R}^{2k+2l+1}]

in both cases, and (x, y)\in(M\cross N)_{\sigma_{j}} with j=p+q. Similarly we have the
same results in another cases, from which the first part of (2.8.1) follows.
In a same way, we have the second part. Taking \chi for both sides of (2.8.1),
we obtain the lemma. \square

Proposition 2.9
(1) x^{2}=4x (2) xx_{2j+1}=0 , xx_{2j}=2\alpha^{j}x

(3) xx_{2j+1,l}=0 , xx_{2j,l}=\alpha^{j+l}x (4) x_{2k}x_{2l}=2x_{2(k+l)}

(5) x_{2k}x_{2l+1}=2x_{2k+2l+1}+2\alpha^{l}x_{2k+1}-2\alpha^{k+l}x_{1}

(6) x_{2k+1^{X}2l+1}=-4\alpha^{k+l+1}x+2x_{2k+2l+2}+2\alpha^{l}x_{2k+2}+2\alpha^{k}x_{2l+2}+2\alpha^{k+l}x_{2}

(7) x_{2m}x_{2n,l}=\alpha^{n}x_{2(m+l)} (8) x_{i}x_{2n+1,l}=0

(9) x_{2nl+1^{X}2n,l}=\alpha^{n}x_{2m+2l+1}+\alpha^{m+n}x_{2l+1}-\alpha^{m+n+l}x_{1}

(10) x_{2m,j}x_{2n,l}=x_{2(m+n),j+l}

(11) x_{2m,j}x_{2n+1,l}=x_{2m+2n+1,j+l}+\alpha^{n}x_{2m+1,j+l}-\alpha^{m+n}x_{1,j+l}

(12) x_{2m+1,j}x_{2n+1,l}=-2\alpha^{m+n+1}x_{2j+2l}+\alpha^{n}x_{2m+2,j+l}+\alpha^{m}x_{2n+2,j+l}

+\alpha^{m+n}x_{2,j+l}+x_{2m+2n+2,j+l}

Proo/. We prove (12) by Proposition 2.3. Let

[M_{2m+1,j}][M_{2n+1,l}]=a[ RP^{2}]^{2t}[Z_{4}]+\sum_{i}b_{i}[RP^{2}]^{i}[M_{2(t-i)}]

+ \sum_{q,r}c_{q,r}[RP^{2}]^{q}[M_{2(t-q-r),r}]

where a , b_{i} , c_{q,r}\in Z , t=m+n+1+j+l and 0\leq i\leq t , 0\leq q+r\leq t .
The euler characteristics of the left side are \chi=0 , \chi 2m+2n+2,j+l=

\chi 2m+2,j+l=\chi 2n+2,j+l=\chi 2,j+l=1 and the others \chi h,k=0 . On the other
hand, those of the right side are \chi=4a+2\sum_{i}b_{i}+\sum_{q,r}c_{q,r} , \chi 2m+2n+2,j+l=

c_{0,j+l} , \chi 2m+2,j+l=c_{n,j+l} , \chi 2n+2,j+l=c_{m,j+l} , \chi 2,j+l=c_{m+n,j+l} , \chi 2j+2l=
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2b_{m+n+1}+4 , \chi_{2(m+n+1+j+l-i)}=2b_{i}(0\leq i\leq t) and the others \chi_{h,k}=0 .
(cf. Remark 2.4 and Lemma 2.8).

Therefore c_{0,j+l}=c_{n,j+l}=c_{m,j+l}=c_{m+n,j+l}=1 , b_{m+n+1}=-2 , a=0
and the other coefficients are 0. Hence we can obtain (12). In the similar
way we have the rest equalities. \square

Lemma 2.10 Let c_{n}=[CP(C\cross\overline{C}^{n})] and h_{n}=[HP(H\cross\overline{H}^{n})] in SK_{*}^{Z_{4}} ,
then the following relations hold.
(1) c_{m}\cdot c_{n}=c_{m+n}+m\alpha^{m-1}c_{n+1}+n\alpha^{n-1}c_{m+1}+mn\alpha^{m+n-2}c_{2}-(2mn+

m+n)\alpha^{m+n-1}c_{1} (m+n\geq 2) ,
(2) h_{m}\cdot h_{n}=h_{m+n}+m\alpha^{2(m-1)}h_{n+1}+n\alpha^{2(n-1)}h_{m+1}+mn\alpha^{2(m+n-2)}h_{2}-

(2mn+m+n)\alpha^{2(m+n-1)}h_{1} (m+n\geq 2) ,
(3) c_{2m+1}^{2}=h_{2m+1}+2(2m+1)\alpha^{2m}h_{m+1}-(2m+1)\alpha^{4m}h_{1} (m\geq 0) ,
(4) h_{m}=c_{2m}+m\alpha^{2m-2}c_{2}-2m\alpha^{2m-1}c_{1} (m\geq 1) ,
and c_{0}=h_{0}=1 .

The proofs are obtained from Proposition 2.5 and 2.9 (10) straightfor-
wardly, so we omit them here. From this, we have the following proposition.

Proposition 2.11 Let C (or H) be an SK_{*} submodule generated by the
class \{c_{n}|n\geq 0\} (or \{h_{n}|n\geq 0\} ) respectively, then it is an SK_{*} subalge-
bra of SK_{*}^{Z_{4}} and H \subset C .

Next we consider an SK_{*} algebra structure of SK_{*}^{Z_{4}} . We first reduce
the following e\acute{q}ualities .

Lemma 2.12
(i) x_{2m}=x_{0}(x_{0,1})^{m} , m\geq 1

(ii) x_{2m+3}=x_{3}(x_{0,1})^{m}-(x_{3}- \alpha x_{1})\sum_{i=1}^{m}\alpha^{i}(x_{0,1})^{m-i} , m\geq 1

(iii) x_{2m,j}=(x_{2,0})^{m}(x_{0,1})^{j} , m\geq 0 , j\geq 0

(iv) x_{2m+3,j}=(x_{0,1})^{j} \{(x_{2,0})^{m}xs,0-(x_{3,0}-\alpha x_{1,0})\sum_{i=1}^{m}\alpha^{i}(x_{2,0})^{m-i}\} , m\geq 1 ,

j\geq 0

Proof We use the equalities in Proposition 2.9. From (7) we obtain
(i) by induction on m, while from (10) we obtain (iii) by induction on j
and m . Next let us put (n, l)=(0, 1) on (9), then we have x_{2m+3}=
x_{2m+1}x_{0,1}-(x_{3}-\alpha x_{1})\alpha^{m} . From this, (ii) follows by induction on m . Finally,
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x_{2m+3,j}=x_{0,j}x_{2m+3,0} from (11). Moreover, from (12) we have x_{2m+3,0}=
(x_{2,0})^{m}x_{3,0}-(x_{3,0}- \alpha x_{1,0})\sum_{i=1}^{m}\alpha^{i}(x_{2,0})^{m-i} as (ii). These imply (iv).

\square

Since SK_{*}^{Z_{4}} is freely generated over SK_{*} by these x , x_{i} , x_{j,k}(i, j, k\geq 0) ,
we have the following.

Theorem 2.13 As an SK_{*} -algebra SK_{*}^{Z_{4}}\cong P/I , where P is an SK_{*}

polynomial ring with indeterminates x , x0 , x_{1} , x_{3} , x_{0,1} , x_{1,0} , x_{2,0} and xo ,
and I is an ideal generated by the relations induced from Proposition 2.9
(or Lemma 2.12).

Let p=x_{2,0}^{3} and q=x_{3,0}^{2}-2\alpha x_{2,0}^{2}-\alpha^{2}x_{2,0}+2\alpha^{3}x_{0} for example,
then p=q=x_{6,0} in SK_{*}^{Z_{4}} from Proposition 2.9 (10) and (12). Hence
p-q\in I . Further it is easy to see that the above eight indeterminates
supply a minimal set of generators.

3. The relation between SK_{*}^{Z_{4}} and A(Z_{4}) .
We define another equivalence relation as follows. Let M and N be

closed smooth G manifolds, then M\sim N if and only if the H fixed point sets
M^{H} and N^{H} for all subgroups H of G have the same euler characteristics
\chi(M^{H}) and \chi(N^{H}) . Denote by A(G) the set of equivalence classes under
this equivalence relation, and denote by [M]\in A(G) the class of M (we use
conveniently same notation as the element of SK_{*}^{G} ). The disjoint union and
the cartesian product of G manifolds induce an addition and multiplication
on A(G) . Then A(G) becomes a commutative ring with identity [pt] .

Definition 3.1 We call A(G) the Burnside ring of G .

Let M be a G manifold and H be a subgroup of G . Then we define
M_{H}=\{x\in M|G_{x}=H\} . Now we note that we consider only G a finite
abelian group. So the next formula is the special case of tom Dieck’s one
([2], 5.5.1).

Proposition 3.2 A(G) is the free abelian group with basis \{[G/H]|H\subset

G\} and any element [M]\in A(G) have the relation [M]= \sum_{H\subset G}\chi(M_{H}/G)

[G/H] .

By this fomula, A(Z_{p})\cong Z[x]/(x^{2}-px) for any prime integer p([5] ,
Lemma 6). On the other hand, we have the following.



A homomorphism between an equivariant SK ring and the Burnside ring 469

Lemma 3.3

A(Z_{2^{n}})\cong Z[z_{1}, z_{2} , . ’
_{z_{n}]}/(z_{i}z_{i+j}-2^{n-(i+j-1)}z_{i})

where z_{i}=[Z_{2^{n}}/Z_{2^{i-1}}] (i=1, \ldots, n+1) .

Proof. From Proposition 3.2, A(Z_{2^{n}}) is a free abelian group generated by
z_{i} , where z_{n+1}=1 . Put M=(Z_{2^{n}}/Z_{2^{i-1}}) , then \chi(M^{Z_{2^{k-1}}})=2^{n-k+1} for
1\leq k\leq i or 0 for i+1\leq k\leq n+1 . Hence we obtain z_{i}z_{i+j}=2^{n-(i+j-1)}z_{i}

by comparing euler characteristics of both sides. \square

Definition 3.4 Let [M]\in SK_{*}^{Z_{4}} , then [M] can be naturally regarded
as an element of A(Z_{4}) . We denote this correspondence by \phi : SK_{*}^{Z_{4}}arrow

A(Z_{4}) . Then \phi is well-defined because \chi(M^{Z_{2}})=\sum_{i}\chi_{i}(M) and \chi(M^{Z_{4}})=

\sum_{j,k}\chi_{j,k}(M) , and is a ring homomorphism.

The generators of SK_{*}^{Z_{4}} are mapped by \phi as follws.

Lemma 3.5 \phi(x)=u , \phi(x_{2i})=v , \phi(x_{2i+1})=2v-u , \phi(x_{2i,j})=1 and
\phi(x_{2i+1,j})=2-v for i , j\geq 0 , where u=[Z_{4}] , v=[Z_{4}/Z_{2}] and 1=[Z_{4}/Z_{4}] .

Proof. \phi(x)=u is a trivial. Let \phi(x_{2i+1})=au+bv+c for a , b , c\in Z .
Since \chi(M_{2i+1})=0 , \chi(M_{2i+1}^{Z_{2}})=4 and \chi(M_{2i+1}^{Z_{4}})=0 from Remark 2.4,
we have 4a+2b+c=0,2b+c=4 and c=0. So we have \phi(x_{2i+1})=2v-u .
Similarly we ontain another equalities. \square

Next let us calculate Ker \phi .

Lemma 3.6 Ker \phi is freely generated by P(l, i, j)=\alpha^{l}x_{2i+1,j}-x_{1,0} ,
Q(p, h, k)=\alpha^{p}x_{2h,k}-x_{0,0} , R(q, t)=\alpha^{q}x_{2t+1}-x_{1} , S(r, w)=\alpha^{r}x_{2w}+x_{1,0}-

2x_{0,0} and, T(s)=\alpha^{s}x+x_{1}+2x_{1,0}-4x_{0,0} where i,j k , l,p, q , r, s , t , w\geq 0 .

Proof. For any fixed n\geq 0 , let [M] be in Ker \phi and let it be an SK_{*}

linear combination as follows.

[M]= \sum_{i,j,l}a_{l}^{i,j}\alpha^{l}x_{2i+1,j}+\sum_{h,k,p}b_{p}^{h,k}\alpha^{p}x_{2h,k}+\sum_{q,t}c_{q}^{t}\alpha^{q}x_{2t+1}

+ \sum_{r,w}d_{r}^{w}\alpha^{r}x_{2w}+\sum_{s}e_{s}\alpha^{s}x
, for a_{l}^{i,j} , b_{p}^{h,k} , c_{q}^{t} , d_{r}^{w} , e_{s}\in Z ,

where the suffix are taken over 0\leq i+j+l , h+k+p, q+t , r+w, s\leq n .
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- \sum_{r,w}d_{r}^{w} -2 \sum_{s}e_{s}=0

\sum_{h,k,p}b_{p}^{h,k} +2 \sum_{r,w}d_{r}^{w} +4 \sum_{s}e_{s}=0

\sum_{q,t}c_{q}^{t} - \sum_{s}e_{s}=0 .

Now \phi(\alpha)=1 , so by Lemma 3.5,

\phi([M])=(-\sum_{i,j,l}a_{l}^{i,j}+2\sum_{q,t}c_{q}^{t}+\sum_{r,w}d_{r}^{w})v

+(2 \sum_{i,j,l}a_{l}^{i,j}+\sum_{h,k,p}b_{p}^{h,k})+(-\sum_{q,t}c_{q}^{t}+\sum_{s}e_{s})u .

Then we have the following simultaneous equations with rank 3:

\{\sum_{i,j,l}a_{l}^{i,j}

Now let \overline{a}_{l}^{i,j} be the vector whose (i, j, l) -the coordinate a_{l}^{i,j}=1 and the
others are zero. Similary we define the vectors for another letters. Then the
vectors \overline{a}_{l}^{i,j}-\overline{a}_{0}^{0,0},\overline{b}_{p}^{h,k}-\overline{b}_{0}^{0,0},\overline{c}_{q}^{t}-\overline{c}_{0}^{0},\overline{d}_{r}^{w}+\overline{a}_{0}^{0,0}-2\overline{b}_{0}^{0,0} and

\overline{e}^{s}+2\overline{a}_{0}^{0,0}-4\overline{b}_{0}^{0,0}+\overline{c}_{0}^{0}\square

are linearly independent solutions. This gives the result.

Since SK_{*}\subset SK_{*}^{Z_{4}} , we may consider A(Z_{4}) as SK_{*} algebra via \phi([1] ,
Chapter 2). In this case, for [M]\in SK_{*} and [N]\in A(Z_{4}) , [M][N]=
\phi([M])[N]=[M\cross N] and \phi is algebra homomorphism.

Now we will reduce the above generators in order to get the minimal
set of generators of Ker \phi as SK_{*} subalgebra.

Let for i\geq 0A_{i}=P(i, 0, 0) , B_{i}=P(0, i, O)+S(0,0) , C_{i}=Q(i, 0, 0) ,
D_{i}=Q(0, i, 0) , E_{i}=Q(0,0, i) , F_{i}=R(i, 0) , G_{i}=R(0, i)-2S(0, O)+T(0) ,
H_{i}=S(i, O)-S(0,0) , I_{i}=S(0, i) and J_{i}=T(i) . Then we can reduce these
relations as follows.

Lemma 3.7

A_{i}=A_{1} \sum_{s=1}^{i}\alpha^{i-s} (3.1)

B_{i}=B_{1}(D_{1}+1)^{i-1}+(2D_{1}-H_{1}) \sum_{s=0}^{i-2}(D_{1}+1)^{s} , i\geq 2 (3.2)

C_{i}=C_{1} \sum_{s=1}^{i}\alpha^{i-s} (3.3)
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D_{i}= \sum_{s=0}^{i-1} (\begin{array}{l}is\end{array}) D_{1}^{i-s} , i\geq 1 (3.4)

E_{i}= \sum_{s=0}^{i-1} (\begin{array}{l}is\end{array}) E_{1}^{i-s} , i\geq 1 (3.5)

F_{i}=F_{1} \sum_{s=1}^{i}\alpha^{i-s} (3.6)

G_{i}=(E_{1}+1)^{i}G_{0}+(2I_{1}-J_{1}+G_{0}) \sum_{s=0}^{i-1}(E_{1}+1)^{i-1-s}

-(G_{1}-2H_{1}+J_{1}-2I_{0}-G_{0}- \alpha G_{0})\sum_{s=1}^{i-1}(E_{1}+1)^{i-1-s}\alpha^{s} ,

i\geq 1 (3.7)

H_{i}=H_{1} \sum_{s=1}^{i}\alpha^{i-s} (3.8)

I_{i}=I_{1}+(I_{1}-I_{0}) \sum_{s=1}^{i-1}(E_{1}+1)^{s} . i\geq 1 (3.9)

J_{i}= \alpha^{i-1}J_{1}+\sum_{k=1}^{i-1}\alpha^{i-1-k}(4C_{1}-2A_{1}-F_{1}) , i\geq 1 (3.10)

Proof. We can easily obtain (3.1), (3.2), (3.3), (3.6), (3.8) by induction
on i . We have (3.4) by the relation

D_{i+1}=D_{i}D_{1}+D_{i}+D_{1}

Similarly we obtain (3.5). Next

G_{i+1}=x_{2i+}s-2x0+x

=x_{3}(x_{0,1})^{i}-(x_{3}- \alpha x_{1})\sum_{s=1}^{i}\alpha^{s}(x_{0,1})^{i-s}-2x0+x

=x_{0,1}x_{2i+1}-(x_{3}-\alpha x_{1})\alpha^{i}-2x_{0}+x

=(x_{0,1}-x0,0)G_{i}+G_{i}+2(x_{2}-x_{0})-(\alpha x-x)-(x_{3}-\alpha x_{1})\alpha^{i}

=(E_{1}+1)G_{i}+(2I_{1}-J_{1}+G_{0})

-(G_{1}-2H_{1}+J_{1}-2I_{0}-G_{0}-\alpha G_{0})\alpha^{i}
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Then we can obtain (3.7) by induction on i . By Lemma 2.9 and induction,
we obtain

I_{i+1}=x_{1,0}-2x_{0,0}+x_{2(i+1)}

=x_{1,0}-2x_{0,0}+x_{0,1}x_{2i}

=x_{1,0}-2x_{0,0}+x_{0,1}(I_{i}-x_{1,0}+2x0,0)

=I_{0}+(E_{1}+1)I_{i}-(E_{1}+1)I_{0}+I_{1}-I_{0}

=(I_{1}-I_{0}-I_{0}E_{1})+(E_{1}+1)I_{i}

So we obtain (3.9). Finally we deform J_{i+1} as follows by induction.

J_{i+1}=2x_{1,0}-4x_{0,0}+x_{1}+\alpha^{i+1}x

=2x_{1,0}-4x_{0,0}+x_{1}+\alpha(J_{i}-2x_{1,0}+4x_{0,0}-x_{1})

=2(x_{1,0}-\alpha x_{1,0})-4(x_{0,0}-\alpha x0,0)+(x_{1}-\alpha x_{1})+\alpha J_{i}

=\alpha J_{i}+(-2A_{1}+4C_{1}-F_{1})

Then we obtain (3. 10). \square

Next we have the following lemma.

Lemma 3.8
(1) \alpha^{l}x_{2i+1,j}-x_{1,0}=\alpha^{l}B_{i}(E_{j}+1)+2\alpha^{l}E_{j}+2C_{l}-B_{0}-H_{l}

- \alpha^{l}(I_{1}-B_{0})\sum_{s=0}^{j-1}(E_{1}+1)^{s}’. j\geq 1

(2) \alpha^{p}x_{2h,k}-x_{0,0}=\alpha^{p}(D_{h}E_{k}+D_{h}+E_{k})+C_{p}

(3) \alpha^{q}x_{2t+1}-x_{1}=\alpha^{q}(G_{t}-G_{0})+F_{q}

(4) x_{1,0}-2x_{0,0}+\alpha^{r}x_{2w}=\alpha^{r}I_{w}+2C_{r}-A_{r}

(5) 2x_{1,0}-4x_{0,0}+x_{1}+ \alpha^{s}x=\alpha^{s-1}J_{1}-(2A_{1}-4C_{1}+F_{1})\sum_{i=1}^{s-1}\alpha^{s-1-i}.
,

s\geq 1

Proof. By lemma 2.12 x_{2i+1,j}=B_{i}E_{j}+B_{i}+2x_{0,j}-x_{2j} . Let D_{j}’=x_{2j}-x_{0} ,
then \alpha^{l}x_{2i+1,j}-x_{1,0}=\alpha^{l}B_{i}(E_{j}+1)+2\alpha^{l}E_{j}+2C_{l}-B_{0}-H_{l}-\alpha^{l}D_{j}’ . If
j\geq 1 , then D_{j}’=(I_{1}-B_{0}) \sum_{s=0}^{j-1}(E_{1}+1)^{s} by induction on j . So we have
(1). Similarly we obtain (2) from x_{2h,k}=D_{h}E_{k}+D_{h}+E_{k}+x_{0,0} . We can
easily obtain (3) and (4). (5) is (3.10) of Lemma 3.7. \square

Therefore, by Lemma 3.7 and 3.8, we have the following.
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Theorem 3.9 If S is an SK_{*} -subalgebra of SK_{*}^{Z_{4}} generated by P(1,0,0) ,
P(0, 1, 0), Q(1,0, 0) , Q(0,1, 0) , Q(0,0, 1) , R(1,0) , R(0,1) , S(1,0) , S(0,1) ,
S(0,0) , T(0) , T(1) , then the sequence

0arrow Sarrow SK_{*}^{Z_{4}}\iotaarrow A(Z_{4})\emptyset
-arrow 0

is a short exact sequence and splits as ring, where \iota is an inclusion homO-
morphism. Further, the above class supply a minimal set of generators.

Proof. By the above argument S =Ker\phi , so the exactness is trivial.
The split map \psi : A(Z_{4}) - SK_{*}^{Z_{4}} is give by \psi(1)=x_{0,0} , \psi(u)=x , and
\psi(v)=x_{0} . By Proposition 2.9 (1), (2), (4) and Lemma 3.5, we see that \psi

is a ring homomorphism. \square

Remark. The transfer homomorphism

Let y=[Z_{2}]\in SK_{0}^{Z_{2}} , y_{i}=[RP(R\cross\tilde{R}^{i})]\in SK_{i}^{Z_{2}} . Then SK_{*}^{Z_{2}} is
a free SK_{*} module with basis \{y\}\cup\{y_{i}|i\geq 0\} (cf. [6, 5.3.1]). As a ring
structure of SK_{*}^{Z_{2}} , we have the following.

Proposition 3.10 ([5], Theorem 3) For any integers m, n\geq 0 ,
(1) y^{2}=2y (2) yy_{2m+1}=0 (3) yy_{2m}=\alpha^{m}y

(4) y_{2m}=y_{2}^{m} (5) y_{2m+1}y_{2n}=y_{2m+2n+1}+\alpha^{m}y_{2n+1}-\alpha^{m+n}y_{1}

(6) y_{2m+1}y_{2n+1}=\alpha^{m+n}y_{2}+\alpha^{m}y_{2}^{n+1}+\alpha^{n}y_{2}^{nz+1}+y_{2}^{m+n+1}-2\alpha^{m+n+1}y .

Let t : SK_{*}^{Z_{4}} -arrow SK_{*}^{Z_{2}} be a transfer map (restriction map) and let
e : SK_{*}^{Z_{2}} -arrow SK_{*}^{Z_{4}} be an extension map, that is e([M])=[Z_{4}\cross z_{2}M] ,
then we have the following result.

Proposition 3.11
(1) et(x) =2x, et (x_{i})=2x_{i} , et(x_{2i,j})=\alpha^{i}x_{2j} and et(x_{2i+1,j})=0 .
(2) te(y)=2y, e(y)=2yi

Proof. By 5.3.7 in [6], t(x)=2y, t(x_{i})=2y_{i} and t(x_{2i,j})=\alpha^{i}y_{2j} . On the
other hand \chi(M_{2i+1,j})=0 and \chi(M_{2i+1,j}^{Z_{2}})=0 so x_{2i+1,j}=[M_{2i+1,j}]=0

in SK_{*}^{Z_{2}} . This implies that t(x_{2i+1,j})=0 . On the extension map, e(y)=x
and e(y_{i})=x_{i} are trivial. Therefore we have (1) and (2). \square
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