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Singular integrals with rough kernels on product spaces

Dashan FAN, Kanghui GUo and Yibiao PAN*
(Received March 4, 1998; Revised October 23, 1998)

Abstract. Suppose that Q(z/,y’) € L'(S"~! x §™~1) is a homogeneous function of
degree zero satisfying the mean zero property (1.1), and that h(s,t) is a bounded function
on R xR. The singular integral operator T'f on the product space R™ xR™ (n > 2, m > 2)
is defined by

Tf(&n) =p.v. / h(lz|, lyD x|~ |yl ", ¥ ) f(€ — z,n — y)dz dy.
R™ xR™

We prove that the operator T'f is bounded in LP(R™ x R™), p € (1,00), provided that
2 is a function in certain block space Bg’l(.S'"_1 x 8™~ 1) for some q > 1. The result
answers a question posed in [JL].

We also study singular integral operators along certain surfaces.

Key words: singular integrals, rough kernel, block spaces, product spaces.

1. Introduction

Let RY (N = n or m), N > 2, be the N-dimensional Euclidean space
and SV-1 be the unit sphere in RN equipped with normalized Lebesgue
measure do = do(-). For nonzero points z € R™ and y € R™, we define
o' =z/|z|andy = y/|y|.- Forn > 2, m > 2, let Q(z',y') € L'(S""1x ™ 1)
be a homogeneous function of degree zero, and satisfy

/ | Q,y)do(a) = / ',y )do(y') = 0. (1.1)
STL 1

Sm—l

Let h(s,t) be a locally integrable function on R x R. The singular integral
operator T'f on the product space R™ x R™ is defined by

TH@y =pv. [ KEnf(o-&y—mdedn (1.2)

R xR™

where K(z,y) = h(|z|,|y))Q(z’,y')|z| "|y|™™ and f is a test function in
S(R™ x R™). If h =1 and (2 satisfies some regularity conditions, then it is
known that the operator T is bounded in LP(R™ x R™), 1 < p < oo (see
[Fe]). That the LP-boundedness of T' continues to hold under the weaker
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condition 2 € LI(S""! x §™~1) was obtained by Duoandikoetxea in the
following theorem.

Theorem A (see [Du]) Suppose n > 2, m > 2, that 2 is a homogeneous
function of degree zero satisfying (1.1), and that h satisfies

R ,S

sup S"lR_I/ / |h(s,t)|%ds dt < oco. (1.3)
$>0, R>0 0o Jo

Then the operator T' is bounded in LP(R™ x R™), 1 < p < oo, provided

Qe LI(S" ! x S™1) for some q > 1.

In order to weaken the condition 2 € L%, Jiang and Lu introduced
the block function spaces Bg’l on S"~! x §™~! and proved the following
L2-boundedness theorem.

Theorem B (see [JL]) Suppose n > 2, m > 2, and that Q is a ho-
mogeneous function of degree zero and satisfies (1.1). If h is a bounded
function, then the operator T is bounded in L?(R™ x R™) provided Q) €
Bf])’l(S’“1 x S™71) for some q > 1, where Bg’l are certain block spaces
strictly containing the L™ spaces for all v > 1.

It seems that the method in works only on the case p = 2, since it is
mainly based on Plancherel’s theorem. So Jiang and Lu asked the following
question.

Question Under the hypothesis on 2 in Theorem B, is the operator T
bounded on L? for all p € (1,00)?

The main purpose of this paper is to solve this problem. We have

Theorem 1 Suppose that €2 is a homogeneous function of degree zero sat-
isfying (1.1), and that h is a bounded function. Then T is bounded in
LP(R™ x R™), provided that € € BS’I(S"“1 x S™~1) for some ¢ > 1.

Remark. The conclusion in remains valid when the condition
h € L™ is replaced by the weaker condition on h. The proof of this
fact can be obtained by using a slight modification of our argument.

This paper is organized as follows. In the second section we will review
the definition of the block spaces. After proving the LP? boundedness prop-
erty for certain maximal functions in Section 3 and obtaining an L? estimate
in Section 4, we will prove in Section 5. Finally, in Section 6,
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we will discuss the LP boundedness for the singular integral operators along
surfaces. Throughout this paper, we always use letter C' to denote posi-
tive constants that may vary at each occurrence but is independent of the
essential variables.

2. Block spaces

First we review the definition of the block spaces.
A g-block on S™1 x S™lis an L7 (1 < q¢ < oo) function b(-,-) that
satisfies the following conditions (a) and (b).

(a)  supp(b) C @ where Q is an interval on S"~1 x §™~1. Precisely,

Q = Ql(gla a) X Q?(n,a /6)7 where
Q1 a)={z' € "1 : |z’ — €| < a for some ¢’ € S*! and a € (0,1]},
Q2(n,B8) ={y € S™ ! : |y — x| < 3 for some i € S~ L'and 8 € (0,1]}.

(b) 16l < 1Q|Y97V), where |Q| is the volume of Q.
The block spaces Bg’l on S"~! x §™~! are defined by

Byt ={Qe L' (s x §71): 0 ZCb z',y)

q

where each b, is a g-block supported in an 1nterva1 Q"

and MO1({C,.}) < oo}

where

MG = 2101 + (log" 1/10#1)%) (2.1)

The “norm” M{''(2) of @ € BY! is defined by MJ!(Q) = inf{M>! ({C,.})}
where the infimum is taken over all ¢g-block decompositions of €.

The block spaces were invented by M.H. Taibleson and G. Weiss in
the study of the convergence of the Fourier series (see [TW]). Later on,
these spaces and their applications were studied by many authors
[IMTW], et al. For further information, readers may see the book [LTW].
In particular, it was noted by Keitoku and Sato that J,.; L"(S""1) C
Bg’l(S"_l) for any fixed ¢ > 1, and the inclusion is proper (see [KS]).

Suppose n > 2, m > 2 and that b(,) is a g-block on §*~! x §™~1 with
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supp(b) C Q1(¢',a) x Q2(n', B). We let

Fy(s,t) = (1 — s)"372(1 — ¢2)m=3/2y 1 0 1 <1y (5, 8)O(s, 1)
(2.2)

where
(i) ifn>2and m > 2,

Ot = [, Ibls, (1= )Y, (1 = £)/25)|do (@)do (@)

(ii) if n =2 and m > 2 then O(s,t) is defined by

[ (s =52 = )2
+ [b(s, (1 = 8)M2,t, (1 = £)"/29)] ) do (3);

(iii) if n > 2 and m = 2 then O(s,t) is defined by

[ (bts, (1= 5201723, (1= )]
Sm——l
+ [b(s, (1 — 8)1/22,t, —(1 — 3)"/?)] ) do(2);
(iv) if m =n = 2, then O(s,t) is defined by
b(s, (1= s%)2,t, (1= £)Y2)| + |b(s, —(1 = s7)/2, 8, (1 — £*)'/?)]

+ Ib(S, (1 - 82)1/2’t’ _(1 - t2)1/2)|
+ |b(87 _(1 - 82)1/2at7 _(1 - t2)1/2)|'

Lemma 2.1 For any g-block b(-, ) supported in Q1(¢',a) x Q2(7/', 8), and
for the function F, defined in (2.2), there exists a number d € (1,q] such
that, up to a constant factor independent of b(-,-), Fp is a d-block on R x R.
More precisely, Fy is a function on R x R which satisfies the following
conditions (2.3) and (2.4).

supp(Fp) CI =1 x I (2.3)

where I = (& — 2r(¢'),& + 2r(€)), Ia = (n} — 2p(n'),nt + 2p(n')) with
r(€') = €] Bal, Bat = (a*€1, 0,063, ..., 0y) and p(n') = |n|~!|Agnl,
Agn = (B°n1, B2, -, B1im).

|Fylla < CIIM? (2.4)
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where C is a constant independent of b(-,-) and £ and n are any non-zero
vectors such that & = &/|E], ' = n/n|.

Proof.  The proof of this lemma is essentially the same as the proof of
the one parameter case in [FP]. For the sake of completeness and rigor,
we present its proof for the main case n > 2 and m > 2. Also without
loss of generality, we assume that 0 < @ < 1/4 and 0 < B < 1/4. Let
¢ = (€. (1 — £2)/20) for some ¢ € S"2 and let 7/ = (n}, (1 — 7;2)if) for
some 71 € S™72, If F, # 0 then

(5,(1=s1)’%) € Qu(€,0), (t,(1-1%)/?G) € Qa(n', B)
for some T € S"2 and § € S™ 2. Therefore we have

2615+ 2(1 = 1)V (1= 62)V2(,7) 2 2 - o
for some Z € "2 and

2njt +2(1 = )2 (1 - m;®) 2 (7,9) > 2 - 6

for some y € Sm2,
Since ((,Z) <1 and (77,y) < 1, we obtain

(s = &)° +1(1 =2 = (1- )7 < o,
(t=m)® + (1= )2 = (1 =)/ < B2 (2.5)
2.5) implies that

s—&l<a, |t-mI<B; (2.6)

(1= = (1-€%)? <o,

(1= t)Y2— (1= ni®)V2 < B; (2.7)
and

|s — &1| < 21¢]7Y|Bakl; (2.8)

It —nil < 20| Agnl, (2.9)

where ¢’ = £/|€| and 7' = n/|n|. Inequalities and follow from
trivially. The proof of is similar to those of [2.8). To see

we shall consider the following two cases.
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Case a: |£]| > 3/4. Then by and we have
s+ &1 =216 - s &> 1
and
|s — &1l < [s° — &
= 1=~ (=) 21 - )2 + (1 - )Y - (1- 6217
< o +20(1 - %)% < 20¢| 7 Bagl.

Case b: |£]] < 3/4. Then 1/2 < (1 — ¢2)Y/2. By we find
[s — €] < < a® + 2a(1 - )V < 21|71 Ba],

which proves |2.8).
By letting r(¢') = |¢]7!|Baf| and p(n') = |n|~!|Agn|, we see that
is satisfied.

It remains to verify (2.4). To this end, we consider the following three
cases.

Case 1: (1 —¢&%)Y2 < 99 and (1 — 7,2)1/2 < 998. By (2.2), and
Holder’s inequality, we find that ||F}||; is dominated by
, , 1 1 1
Caln=3)/d gm=9/4'{ / / (1=52) 92 (1 2) =912 s, 1) s dt | /4
-1J-1

< Ca(n—3)/q’ﬂ(m—3)/q’||b“Lq(Sn_lxsm_1) < Ca‘2/q',8‘2/ql
= C|I|7V9

Case 2: (1—¢€/2)Y/2 > 99q and (1 — 7,?) > 998. By we find
(1-&*?/2 < 1-s)Y2 <2(1-g2)Y2,
(1-mH)Y?/2 < (1-2)2 <201 -2V (2.10)

Fore > 0,4 >0, let

Te) = {zeR" 1 :1-¢< (z,¢) <1},
L) = {yeR™1:1-8< (y,7) <1},

and I'(¢,0) =T'(e) x ['(d). When ¢ and § are small we have

/ do(3) = (272 / do(f) = 6(m=2/2,
S§n=2NI(e) Sm=2n[(4)
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By the support condition of b(-,-), we find

{((Z,7) € 8™ 2 x §™ 2. b(s, (1 — s2)%%,t, (1 — t1)V/27) £ 0}
C{zes"2:2s+201 -1 -V, E) > 2-a?)
x {j € S™2 ot + 2(1 — )2 (1 - )2 (7, 9) > 2 - 6%}
C{ze s 2:1-(1-)21-s5)"V2%2/2<((,F) <1}
x{FesS™il— (1—m?) V2(1-3)"1282 /2 < (7,7) < 1}
=I'(e,9)

where € = a2/2(1—¢€,2)"Y2(1—s2)"1/2 and § = 82/2(1—n,2)Y/2(1-t2)"1/2.
Thus by Holder’s inequality and (2.10), we find that || Fp||; is dominated by

< O(1 - g2)m 912 (1 — g 2)im-9)/24

1/¢'
do(T)do(y bll 74
{Jignosmesyarios @@} bl

< O{(1 - €12 V20711 — 9}2)" V231 = C|1|~ 1.

Case 3:
i) (1-¢2)Y2<99a and (1 —7}2)/2 > 994, or
(i) (1 —&2)Y2 > 99a and (1 — 7}2)!/2 < 998.
The proofs of (i) and (ii) are exactly the same, we prove (i) only. By
inspecting the proofs for Cases 1 and 2, we find

n— ! m— / N\ /e
IFilly < Calm=90a' (L= g2y { [ do(q)

m=2NI'(§)

where § = (1 — ,7'12)—1/2(1 — t2)_1/2ﬂ/2 ~ (1 - nflz)—lﬂ/z So we easily see
| Fll, < C{a™?871(1 - n/12)—1/2}1/q’ — O] HVa,

O

3. Certain maximal functions

Let the functions h and Q = Y C,b, be as in [Theorem 1. Let Ey; =
{(z,y) € R® x R™ : 28 < || < 26+1)29 < |y| < 29+1} and Z2 = Z x Z. We
define the following functions and operators.

Buh@w) = [ [ hUel mDIel™ b€’ m) = &,y ~ m)de dy
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Gk, (&,m) = /E h(|zl, [y ||y 7", e e T g dy;
k,j

IO'b#,k,j|A(£, T]) — / | |$|_n|y|_m|bﬂ($l,yl)le—i{<x,£>+<yan>}dl- dy’

k,j

o0kl (€)= / eyl Ty lem O e dg dy;

k,j

or f@,y) = sup |low, kil * f(z,9)];
(k,j)eZ?

oof(z,y) = sup ||oqk;|* f(z,y)l-
(k,j)€Z?

Clearly, we have

T(f)=>_ CuBu(f) and T(f)=>.> ox;*f.
K S

Also, we can write
B#(f) = Zzab“,k,j * f,
k J

where

B, iea&m) = [ hllel lyDle] "yl b (e, e e+ Nz dy,
k.j

We define |loqk ;|| = fEk,j lz| =™ |y|"™ |z, ¥ )|dx dy. Tt is easy to see that
loae,ill = llleak,;|ll < C and [low, kil = lllob, k]l < C uniformly for k, j
and by, and both |oq ;| and |oy, k| are positive.

Next we will prove that the operators o} are bounded in LP(R™ x R™),
1 < p < 00, and the bounds are independent of the blocks b. Suppose that
b(-,-) is a g-block supported in Q1 (1, &) x Q5 (1, B) where 1 = (1,0,0,...,0) €
S" 1 and 1= (1,0,...,0) € S™ 1. Let I; = (2%, 2k+1) x (27,29%1). For
any & # 0 and 7 # 0, we choose rotations O and O such that O(§) = 1/¢|
and O(n) = 1|n|. Let 2’ = (u,z},...,z,) and ¥’ = (v, ¥}, ...,4,,). Then by
the method of rotation due to Calderén and Zygmund, we have

oursl € = [ 57 [ (0~ (=), 07 (4)
Ik,j Sgn—1ly gm—1

9 e—i{s|§l<1,$')+t|ﬂ|<i’n>}dg(a¢’)da(y’)d8 dt

where O~1 and O~! are the inverses of O and O, respectively. We denote
br(z',y') = b(O~1(z"),071(y')). Then it easy to see that by is a g-block
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supported in the interval Q1(¢', a) x Q2(n’, 3). Thus we have

oveal €m) = [ 57 [ Ry
Ik,j RxR
x e~ wllse= it 4o, dy ds dt (3.1)

where Fy is the function defined in (2.2).
We will use in to prove the LP boundedness of o} . For

this purpose, we also need to study some other maximal functions.

By we know that the function F} in is a g-block on
R xR with support in the interval I) x I, where I = (§] —2r(¢'), &1 +2r(¢)),

I = (m —2p(n'),m +20(n)), & = (&,-..,&) and 0’ = (0, ..., np,). We
define the functions Apk j, Apk; and Ik ; on R x R™, R” X R and R x R,
respectively, by

)\b,k,j * f(0, V)
= [ 1l O ) 16~ fal,V — y)dady,
k,j
Ap ki * f(U,Q)
= [l 07 AU — 5.~ lyl)da dy,
k,j
Iy, * f(6,C)
= [ a0, 676 ~ [a], ¢ ~ lyl)de dy.
k,j

Then it is easy to see that

Xb,k!,j (€1) n) =C S_lt_l / / Fb(U, 'U)e_itlr"ve_isEldu dv ds dt,
Ik,; RJ/R

Ap,j(&,m)=C / st / / Fy(u,v)e "t lElue=itm gy dy ds dt,
Ir; R JR

Oy ;(€1,m) = /

Iy,;

s_lt_le"itme_is{ldsdt/ / Fy(u,v)dudv.
RJR

Now we define the maximal functions

Mpfi= sup Mok * fil, Ajfo= sup |[Apgk;* fol,
(k,j)ez? (k,j)€Z?

and II; f3 = s,:lp Iy k. * f3]-
J
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Proposition 3.1 For 1 < p < oo, A}, A} and II} are bounded operators
in LP(R x R™), LP(R™ x R) and LP(R x R), respectively. These bounds are
independent of the blocks b(,-).

Proof. By the definition of II}, for any positive function f3 on R x R,

sup |y kj * f3(u,v)]
(k.j)ez?

TP
<C sup rip7? / / fa(u—s,v—t)dsdt
0o Jo

>0, p>0

S CM(fB)(uv v)

where M f is the Hardy-Littlewood maximal function on R x R. This proves
the LP boundedness of II}.

Now we turn to prove the LP boundedness of Ay and A};. Since the
proofs for these two operators are exactly the same, we will prove it for
Aj; only. By the definition of Ay ;, it is easy to see that for non-negative
functions fo on R™ x R,

|Abk,j * f2(€, )]
<C o [ bl )ldo(y)
Sgm—1

2k<|z|<2k+1
23+1

x {/2] fal€ — w0 — t)dt hda.

Since

27+1

/ fo(€ —z,v—t)t7dt
2

J

sup

S M1f2(§ - .’L‘,’U)
JEZ

with M; being the one-dimensional Hardy-Littlewood maximal function
acting on the v-variable, we only need to prove that supy |vp i * f| is bounded
in LP(R") and the bound is independent of b, where

%(€) = C ol [ 1bla’, ) ldo(y)e™ € da.

2k <|x| < 2k+1

But one easily verifies that
) = [ b y)ldo(y)
Sm-—

is a g-block on S™"!. This from the proof of (ii) in Lemma 3.1 of
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we obtain the LP boundedness of f — supycz |vs i * f|. [Proposition 3.1 is
proved. ]

Proposition 3.2 o} and of) are bounded in LP(R™ x R™) and the bound
of oy 1is independent of the block b(:,-).

Proof.  Clearly we only need to prove the LP boundedness of o}. Also
without loss of generality, we assume that the support of b is contained
in Q1(1,a) x QQ(I, B). Let Xpkj, Apk,; and Il ; be the corresponding
functions as in [Proposition 3.1. We first prove the following estimates.

(&m) = Aok j(€r,m) - Apri(&,m) + Ty j(€1,m)]

| |0b,k,j
< C|2%By&| |27 Agn, 3.9
B8
How kil (€,m) = Nok,j(€1,m)| < C|2%Bag] 29 Agn| =4, (3.3)
|ow kil (€,1) - Aprj(€,m)] < C|2¥Bo&|~V/¥ |27 Agn), (3.4)
| ob.k,i] (&,m)] < C|28Bo€| "V 4|29 Agn| =1/ (3.5)

for some d > 1, where d’' is the conjugate index of d, and C is a constant
independent of k, j and the blocks b.
To prove 3.2), by definitions we have that

owk,s] (€1) = Mok (€1,m) — Mo (€,m1) + Ty (€1, )|

/ §1p-1 / / Fy(u, v){e-™els _ g-ilkleis)
I R JR
x {e~ It _ e=ilmty gy, dy ds dt|. (3.6)

<

ij

By we know that F}, is a ¢g-block on R x R supported in the
interval Iy x Iy = (§ — 2r(£), & + 2r(£')) x (m = 2p(n'), n} + 2p(n')). So
follows easily from (3.6).

The proofs of and are similar, we will prove only. Let

FA‘b(i) be the Fourier transform of Fy(-,-) about the i-th variable, i = 1, 2.
Then

| |‘7b,k,j|A(§, n) — Xb,lc,j(§1,71)|

S/ s_lt_lf /Fb(u,v)e_itl"'”d'v |eislele _ e =%13| 4y, ds dt
Iy, RIJR

)j
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23+1

<C 2’“Ba§ 1B (u, t)|dt du.
9 b

In|

Thus by Holder’s inequality and the Hausdorff-Young inequality, we have
[00k51 (61 = X (€1,m)
< CI2“Bal @) ™ [ 1B, ooy
< CI2¥Bobl(2 n)) ™4 (€)Y | Foll Lorury-
Now by (2.4), the term in the previous line is dominated by
C12* Bkl (2 Inlp(n)) ™% = C|2“Ba] |27 Agn| /¢
is proved.

To prove (3.5), by (3.1} we have

2k+1 2J+1 I

lowes] (Em) < C / s~ U1 By (s, )| ds dt.
2klg| J27n)

Thus follows easily by Holder’s inequality, the Hausdorfl-Young in-
equality and [Lemma 2.1.

Let & € S(R"), ¥ € S(R™) be positive radial functions such that
3(0) = ¥(0) = 1 and define B (¢) = ®(2FB,&), ¥;(n) = ¥(27 Agn). Then,
we define the measures I'p i ; by

Lo (€1) = 1obkgl (6:1) = BulE) Mo (€1,m) = Li() Ao (6,m)
+ @ (£) W (n)pk,5 (€1, M)

Let tT® = inf(t*,¢t~). We can prove the following estimate for I'p . ;.
To,i (€, m)| < CI2°Bag[ 727 Agn[T* (3.7)

for some v, > 0, where the constant C is independent of k, j and the
block b. In fact, by the definition of 'yt ;

ITo k3 (€,
< ok (€1, m) — Ty g (€1, m) H(1 = Bi(O)Y
+ { Ak (& m) — Ty (€1, m) H1 — T (m)H
+ 10wl (€:m) = Mok (€1,m) = Ap i (€,m) + Mo (€1,m)]
+1(1 = Bk (€))(1 — T3 () Ty 5 (€1,m)].
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By the definitions of Xb,k,j, Kb,k,j and ﬁb,k,j, it is easy to see that

|Xb,k,j(fl,77) - ﬁb,k,j(ﬁhﬂl)l < C|2jAﬁ77|, (3.8)
1Kok (€,m) — Mok (€1,m)| < C|2°Baf (3.9)

where the constant C is independent of k, j and b(:,-). Thus by and
the choice of ® and ¥ we have

ok, (€,m)| < C|2FBot] 27 Agn. (3.10)
Next, we have
ok (€] < owril (€m) = Xoj(r,m)]
+ Ak (€1, M{1 — ®r(€)}
+ [ (M { A, j (€, m) — ok, j (€1, m1) }

+ {1 = B3, (M3 (€1, m))
= J1+ Jy+ J3 + Js.

By [3.3), we know J; < C|28Ba&||29 Agn|t/?. By [3.9), J3 < C|27 Agn|™!
|2kBa§|. Also it is easy to see, by the choice of ® and ¥, that Jy <
C|2¥Bu£| |27 Agn|~!. Following the proof of we find

9J+1
h < o8l [ [
R J2J
2l
< C|2’“Ba§|// =1 B (u, )| dt du
R J27|n|

< |25 Bag] |27 Agn| V7,

/ Fy(u, v)e Mgyl t~1dt du
R

which shows that

[To (6, m)| < C12°Bag] 29 Agn| /7. (3.11)
Similarly, we can prove

Dy (€,m)] < C125Bal]| ™/ |2 Agn). (3.12)
By the definition of Xb,k,j and Kb,k,j, it is easy to see

Aok, (€1,m) < C|27 Agn| =4,
Aok (€,m)| < Cl26BLETHY (3.13)
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where C' is independent of b(-,-), k, j and (&, 7).
Thus by the definition of & and ¥, we have

ITo k3 (6,m)] < C|25 Bog| 7V |29 Agn| 14 (3.14)

Therefore, follows from (3.10)—(3.12) and (3.14).

Now by a minor modification of the proof of [Theorem 1 in [Du] and
[Proposition 3.1, we obtain the LP boundedness of o} and that the bound is
independent of the block b. [Proposition 3.2 is proved. []

We also need to study two more maximal functions. We define A, ;
and Bb,k,j by

Apgj * f(z,y) = /E h(€l, InDb(E", n") €] In| ™™ f(z — &, y)d€ dn

+J

BussF@y) = [ (€l InDb(E' w)IEr | ™ (e, y — n)dé dn

)j

It is easy to see that
Appj(&,m) = /E h(lzl, lyD|z[ ™" ly|™b(x', y )e "4 d dy,
k.

Busy(€m) = [ hllal, lyDlal "yl b’ )e 0 do dy,
k,j
Now we define the functions 73 1 ; and ¥4 ; by

Toki(6:1) = Gon(€,m) — A i(€,7)

and

Sk (6,m) = Gokj(€,m) — Byi(€,m)-
Then for any non-negative function f

[Abk,j * f(U, V)| < C|Do,j * f(U, V)

|Bok,j * f(U, V)| < |Gy * f(U, V)]
where both Dy ; and Gy ; are positive and

Dos(6am) = [ lal Iyl b(a!, e d dy
k

»J

@b,k,j(ﬁ,n) :/ 2|7 y|"™|b(!, y')|e”HY M de dy.

k.
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Proposition 3.3 Let

Gyf = sup |Gpgj*fl, Dyf= sup |Dpg;*fl
(k.j)€Z? (k,j)€Z?
Then both G}, and D} are LP bounded.

Proof. Since the proofs for these two operators are the same, we will
prove G} only. In fact, for a non-negative function f

Gopy * F(U,V) = /é [~y "™ b, ) (U, V — y)d dy
k

7j

<C ly|""b(y) f(U,V — y)dy

29 <[y|<2i+1

where
o) = [ (e y)ldo(a)
Sn—

Since b is a g-block on S™~! the LP boundedness of G} can be found in
[FP]. It is easy to see that T k,; and X i ; are bounded by positive measures.
More precisely, for any non-negative function f

{lovk,jl + Dok} * f,
{lov kil + Gogj} * f. (3.15)

|Tbk,5 * [
Zb.k,5 * f]

Thus by Propositions B.2 and B.3, we have

INAIA

| up, s < A1

(k.j)€Z?
< || sup {lowisl + Do} * £]| < Clfl
(k,j)€z? p
| o, B =11,
(k.j)ez?
< CH sup {loeil +Gois}  f]| < Cllflly (3.16)
(k,j)€Z2
where C is independent of the block b(-,-). l

Now, we can obtain the following lemma.

Lemma 3.4 (see page 189in [Du]) Let Tx ; be one of the operators ok j,
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Obkj> Bbk,; ond Tyk ;. For arbitrary functions gy ;,

2\ 12 )\ 12
H(Z | Tk,j * 9.5 > (Z |9k ;] )
k’j k’j

for any p € (1,00), where the constant C is independent of the block b.

Proof.  Using [Proposition 3.2, [3.15) and [3.16), the lemma is an easy
corollary of Lemma 1 in [Du]. []

(3.17)

SC‘
p

p

4. An L? estimate
The main purpose of this section is to obtain the following lemma.

Lemma 4.1 Let Q2 = ) Cub, be a block function in Theorem 1, where
each b = b, is a g-block with supp(b) C Q. Then,
() loaks €l < Cl2¢€127n];
(i) kg€ ) < CI2%V el if Q] < e/t
(i) Rk (€, < CI25I7Y120]if 1QI = €M
(V) [Zor (€l < C125¢[ 120/ IRl if Q| < €8/,
(V) [Bek(€m] < O [2mIVTif Q] > e,
(Vi) [Gon(&m)| < C{|2%¢] [27n[} /18191 if |Q| < /179,
(Vil) (B (€ m)| < CLI28€ 1209} 79 i Q| > e/1 70
where C is a constant independent of k,j € Z, (£,m) € R™™™ and the block
b(-,-).
For the sake of simplicity, we prove the case n > 2 and m > 2 only.

The proof for other cases are similar, with only minor modifications.
By the mean zero property of ), we have

o€l = | [ hsnets [ 0y
Ik,j Sgn—lygm—1
% {e—it(ﬂ»y'> _ i}{e—is<€,w/> _ 1}do($’)d0(y’)ds gt

< CIUps(sessmosylélnl [ Ih(s,Bldsat.
k,j
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So we obtain (i).
We turn to prove (ii). Fixing any £ # 0 and n # 0, by the rotation
method, without loss of generality, we may write

|7'b,k,j(f,77)| = ‘/1 h(s,t)s“lt’1 /Sn_lxsm lb(x y')e —is|€|(1,2")
k,j

X {e‘itlnl(i’y,> — 1}do(z")do(y')ds dt‘

23+1
S ALY
sm—1 Jok

X \/ b,y e 1 do ()
Sn—1

Thus |7 k,;(€,n)| is dominated by

| g
C|231}|/ / s
sm=1 Jok|¢|

2k+1

(n')ds dt.

dsdo(y')

/ Ay (u)e " du
R

Therefore,

2k+1

s <cnl [ [0 5By )ids doty),

a3

Pick a number w in the interval (1, 2) such that w < ¢g. By Holder’s inequal-
ity we have

2k+1

. lw
sl <ol [ [T s Al doty)

q

Thus by the Hausdorff-Young inequality, we find that |74 ;(£,7)] is domi-
nated by

Clinlw— )2k — 2 [ Ay udo(y)

< Clnllw - )R =2 [ Ay flde (v).
(4.1)
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By Holder’s inequality again, we have

Lo 18y oty

IN

Cllbll Lo (sn-1x5m-1)
Cl|b]| La(sn-1x5m-1y Q|4
ClQI~ V. (4.2)

IN

IN

Now combining (4.1) and and taking w = log|Q|/(1 + log|Q|), we
easily obtain (ii). Switching the variables £ and 7 in the proof of (ii), we
obtain the estimate (iv). If |Q| > e?/(1=9) taking w = ¢ in the proofs of
(4.1) and [4.2), then we obtain that

7o, (& M < C127n] [25€7V/9|QI7VT < Cl27m| [25¢| 7/

where the constant C' depends only on ¢ > 1. Thus (iii) is proved. Similarly
we can prove (v). Since the proofs of (vi) and (vii) are similar, we will prove
(vi) only. By the method of rotation

2k+1ig] p2ity| ) -
Boi (6,m)| < C [ s e R oldsadr.
2k|¢| 23|

Again we use Holder’s inequality and the Hausdorff-Young inequality to
obtain

2k+1g| p2ity) 1/w
|0'b,k,j(§a 7])1 < C{ / s ¥t %ds dt} ”Fb”w-
2k|¢] 27|n]

Using the proof in [4.2), we obtain ||Fy||, < C|Q|~Y/*". Therefore
o, (€,m)| < Clw — 1) 72w’ 2|Q| =« [2k¢| =1/ |27 =1/
Letting w = log |Q|/{log |Q| + 1}, we obtain (vi).

5. Proof of Theorem 1.

Our proof is based on the method used in [Du]. For a given block
function 2 = 3 ¢,b,, by Lemma 4.1, without loss of generality, we assume
that the supports @, of b, are uniformly small such that

|Qul < e?U=9 and  log(log(1/|Qyl)) > 1.
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Take two radial Schwartz functions, ®! € S(R"), 2 € S(R™) such that

0< (@) <1, i=1,2% Z (2%s)? =Y (9% (271 =1,
J
supp(®) C {271 < || <2}, i=1,2.
If ), and ®? are defined by (®}) (¢) = (®!)(2%¢) and (%) () =
(®2)"(277), then

Tf=3 ) okj* (ke ®P2,,) * (D0 @5, ,) ¥ f =D Tuuf.

kg Ly
Thus
ITfle < DD M Tefllo+ D3 1 Tewfllp + DD 1 Tenfllp
£>20v>0 £<0v>0 £2>0v<0
+ Z Z “TZ,Vf“P’
<0 v<O
By Lemma 3.4, (i) in and the proof of in [Du], it is
easy to see
Z Z ||T€,uf“p < C”f”p' (5-1)

>0 v>0

For ¢ < 0 and v > 0, by the cancellation condition of {2 and the definition
of T j, we have

TZ uf Z TQ,k,j (I’k+e ® (I)]+u) ((I)k—i-f ® q)j—H/) f
k.

Thus

Z Z ”Tf,t/f“p < Z Z Z |Cu|||Ib,L,£,uf||P

£<0v>0 L<0v>0

where

bu,e Vf ZTb;u k.j* q’k-i—[ ® q)]—H/) ((I)IH-Z ® @]+1/) f

By and the Littlewood-Paley theorem, one has
”Ibu,f,r/f”po < C”f“Po for any 1 < pp < o0, (5.2)

where C is independent of b,, £, and v. On the other hand, by Plancherel’s
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theorem.

Il <3 [ Bt mPIfe nPdedn

k NERZ
where

Agjer = {(&n) eR" xR™: 9kl < |¢| < ok—t+1
2797 <y < 2777V,

Thus by (iv) of Lemma 4.1, we know that if (§,n) € Ak 4, then

o (€,1)] < I8 (2] 1981901 < -t/ 0610
Therefore, it is easy to see

£, e0ll 2z < C27027¥/ 1B 1Qu], (5.3)
We now use interpolation to obtain

1o, 00 fllp < C2777 1B 1170 £, (5.4)

for some 6 > 0. This shows that

DD M Teuflly < €23 D IC 27 e lRula=%) ],

v<0£>0 v<0 >0 K

< Clifllp Z |Cuullog(1/]Qul)- (5.5)
u

Clearly, the constant C above is independent of the essential variables.
Similarly, by (ii) in Lemma 4.1, we can prove

> D NTewflls < ClIFll Z |Cullog(1/]Qul)- (5.6)
v2>0£<0

Finally, using (vi) in and the same argument in [5.5), we find
YD e fllp < C||f||pz Cul(log(1/1Q1))*. (5.7)
<0 v<0

Now the theorem follows by [5.1), {5.5), [5.6) and [5.7).

6. Singular integrals along surfaces

Let K (z,y) be the kernel as in and let y(s, t) be a real valued func-
tion on R x R. For (z,y) € R® xR™, ({,n) € R® xR™ and z € R, we define
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the singular integral operator 7, f along the surface £ = (§,n,7(¢|,[nl)) by

T, f(z,y,2)
—pv. [ KEnf@-&y—nz =0l nh)dedn. (61)
R xR™

In the one parameter case, the LP boundedness of such kind of operators
T, f(z, z) was studied by a number of authors ([Ch], [FLP], [KWWZ], et.
al.). Our main purpose of this section is to study the LP boundedness of
T, f(z,y, 2). ~

For the functions 3 ;(€,7), |obk,;| (§,7), ..., in the Section 3, we define
their associated functions along the surface £ by adding a multiplier factor
e~ ¥€1(zLlvl) (or e=%7(%t) in the case of spherical coordinate) in their inte-
grands and denote these new functions by &, ;(§,7,(), |0%b,k’j|A(£,n,C)
and so on, where ( € R. More precisely, we define

3’7akaj (5’ 777 C)
— / h(|z|, [y x| ™ y| "™ (2, y')e*i{<£,w>+<n,y>}e—iCW(lwl,Iyl)dm dy,
Ek

|U’71bak>]|/\(€’ TI’ C)
= / |~y b(x, ) |eHE )} =i (2biv) gz gy,
Ey ;

~

A,k (€51, €C)
:/ s'lt_I/ / Fy(u, v)e~#ve=ist1o=iv(s) gy, dy ds dt
Ir R /R

and so on, where (£,17) € R x R™ and ¢ € R. We have the following L?
boundedness theorem.

Theorem 2 For any real valued function ~(s,t), there is a constant C
independent of f andy such that | Ty f||L2®rxrm xR) < CllfllL2@®nxRm xR)-

Proof. By inspecting the proof of Lemma 4., it is easy to see that the
estimates in [Lemma 4.1 also hold for the corresponding functions
87,Q,k,j(€a77’ C)? ?y,b,k,j(ganvC)a E'y,b,k,j(gvn, C) and a’y,b,k,j(g’n’ C) and the
constant C in is independent of v and (. Thus the theorem
follows easily by Plancherel’s theorem and Lemma 4.1,

By inspecting the proof of Theorem 1|, it is also easy to obtain the
following LP boundedness theorem. (]
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Theorem 3 Suppose that Q0 is a homogeneous function of degree zero
satisfying (1.1), and h is a bounded function. Suppose also that for any
€ (1,00

(ksﬁl)lpz Prsis * il LP(RXRMXR) = il @xrmxm), (6.2)
(ki‘l)lgzz |Ay 5.k, * fol Lo(B*XRXR) = Cl fall Lr(mn xRxR)5 (6.3)
(k’Sjl)lgZ2 ITLy p.k,5 * f3] Lr (RXRXR) = < O fsllLr@xrxR)5 (6.4)
" ,Sgl)lgz G p,k,s * £ Lp(RA+m xR) = < O\l fll r mntm xr) (6.5)

sup |Doypkj* fl|| R XR) < C|lfll e r+m xr) (6.6)

(k,j)ez?

where C 1is a constant independent of the block function b.
Then for any p € (1,00), we have ||T,f|rp@nsxrmxr) <
C”f”LP(R"xIRme) provided Q & Bg’l(sn_l X Sm—l)-

N

To prove the LP boundedness property of the maximal operators in
[Theorem 3, we only need to study the following three lower dimensional
maximal functions. Let u, v, 2 € R, we define

Myh(u, v, 2)
R S
= sup RSS! |h(u —s,v —t, 2z — (s, t)|dsdt,
R>0,5>0 R/2JS/2
M,g(u, 2)
R S
= sup R'S7! / / lg(u — s, 2 — (s, t)|ds dt,
R>0,5>0 R/2JS)2
tyg(v, )

R S
= sup R7'§7! / / lg(v —t, 2z — y(s,t)|ds dt.
R>0,5>0 R/2JS5/2

Theorem 4 Let ) and h be the functions as in Theorem 3. Suppose that
for any p € (1,0)

|MyhllLe@sy < CllhllLegs), (6.7)
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IMagll e 2y < CligllLew2), (6.8)
v gl e @2y < CllgllLr(w2)- (6.9)
Then the operator T, f is bounded in LP(R™ x R™ x R) for any p € (1,00).

Proof. For z,£ € R", y,n € R™ and u,v, z € R, we define

M) f(@,v, )

R /S
= sup R"IS_l/ / |f(x —s&' v —t,z— (s, t))|dsdt,
R>0,5>0 R/2JS/2

M f(u,y, 2)

R S
= sup R'S7! / / |f(u—s,y—tn',z— y(s,1))|ds dt,
R>0,5>0 R/2 Js/2

Mﬁ,'yf(x7 Z)

R S
= swp RS [ f@—sg'z = (s 0)lds
R>0,5>0 R/2Js)2

/'I’T],’Yf(y7 z)

R S
— sup RIS / / Fly =t 2 — (s, ))|ds dt.
R>0,5>0 R/2JS/2

By the method of rotation and (6.7), it is easy to see that for any p € (1, 00)
1

”Mi(,v)f“LP(R"xRxR) < C[[f e xRxR) (6.10)

M2 fllr @ xRy < ClF o (o <) (6.11)

where the constant C is independent of ¢ € $"~! and o' € S™~!. Similarly,
using the rotation method we have, for any p € (1, o),

IMe fllLe@®nxr) < Cllfllr e xr) (6.12)
by and
| ttny fll Lo ®mxR) < CllfllLr®m xR) (6.13)

by [(6.9), where the constant C is independent of the unit vectors ¢’ and
n’. Thus to prove the theorem, it suffices to show that the inequalities in
(6.10) to [[6.13) imply all the inequalities in [(6.2) to [(6.6). By the definition




458 D. Fan, K. Guo and Y. Pan

of Iy j, it is easy to see

sup Ty pk,; * f3(u, v, 2)| < CM, f3(u, v, 2).
(k,j)€z?

This proves [6.4). Next by the definition of K%b,k,j,

|Ay bk, * fa(T, v, 2)

S”1 /2

<O MEWM foa,v,2)do (€)

2k+1 2i+1

/ s oz —t€ v —t, 2 — (s, t) dsdt'
27

where
) = [ b€ ndo(n)

is a g-block on S™®~1. Thus for any p € (1,00), by Holder’s inequality we
have

sup |Ayp i * fo(z,v, 2)|
(k,j)eZ2

~ 1/p
<C {/Sn_l b(§’)(M£(,17)f2(w,v, z))pda(f’)} :

Thus follows easily from [[6.10).
Using the exactly same argument, we can prove by the inequality

in [6.11),

By the definition of ﬁ%b,k,j, it is easy to see that

lny,b k,j * f(.”l) Y,z

S"l »/2

where b is a g-block on $*!. Thus

2k+1 2]+1

/ Flz —t€,y, 2 — y(s,))|s~ 1t ds dt do(¢’)
27

P
{ sup ID'y,b,Ic,j * f(m7ya Z)I}
(k,j)ez?

<cC /
sn— l EZZ 2

Therefore, follows easily from (6.12). Similarly, we can use {6.13) to

2k+1 9j+1

| 1=t gz = a(s,0)ldsdt) do(e)
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prove [6.5). The theorem is proved. []

Ezample. Let v(s,t) = s*?, the singular integral along the surface
(€,m,1]%In|?) is defined by

T f(@y,2) =pv. [ K(Em i@ &y—nz— |6l dn,

where K (£, n) is the kernel as in and a > 0, 8 > 0. Then by inspecting
the proof of Corollary 3 in [Du], it is easy to see that the maximal functions
M,, u, and M, satisfy the inequalities (6.7)-{6.9). So by Theorem 4, T,
is bounded in LP(R™ x R™ x R) for all p € (1,00). We noticed that the one
parameter case of this T, was studied in under a stronger condition
Qe LI(s™ 1.

It would be interesting to know more functions 7(s,t) such that the
maximal functions M., M, and p, are bounded in LP. This question will
be studied in a forthcoming paper.

We would like to thank the referee for pointing out several misprints
and for his helpful suggestions.
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