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The Connes spectrum for actions of compact Kac algebras
and factoriality of their crossed products
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Abstract. In this paper, we introduce the Connes spectrum for actions of c ompact Kac
algebras on von Neumann algebras. Among other things, it is shown that the crossed
product by an action of a compact Kac algebra is a factor if and only if the action is
centrally ergodic and has full Connes spectrum.
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Introduction

It is widely acknowledged that the Arveson-Connes theory of tlle spec-
trum for actions of locally compact abelian groups on von Neumann algebras
was highly successful and was a principal tool for the structure analysis of
factors of type III (see [C], [CT]). It is no doubt that to look at the (Connes)
spectrum is always very essential to have a deep understanding of such ae\cdot-

tions. Later, this theory was effectively extended by Olesen-Pedersen (s\epsilon^{Y}e

[Ped] ) (also by Kishimoto [Ki]) to the case of abelian actions on C^{*} algebras
in order to investigate the (ideal) structure (i.e., primeness or simplicity)
of the crossed product algebras. Definitions in the case of a non-abelian
(compact) group action were presented both in the C^{*} and W^{*}-situations
[EvS] , [K], [GLP]. It seems however that the definition employed in [GLP]
is a “best” one in the C^{*} -case in the sense explained in the introduction of
[GLP]. At the same time, this spectrum theory was generalized also to the
case of group coactions on operator algebras in [K], [N] (see also [Q] for the
discrete case). So one would naturally expect that there should be a unified
approach to both situations. Our purpose of this article is to extend this
generalization program as far as the case of an action of a compact Kac
algebra on a von Neumann algebra. As noted in the introduction of [GLP],
in a “good” definition of the spectrum, the kind of result one would exp ect
to generalize in the W^{*} -case is the theorem of Connes and Takesaki in [CT ,
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Corollary 3.4], which states that the crossed product by an abelian action
is a factor if and only if the action is centrally ergodic and has full Connes
spectrum. We shall undertake our program in this spirit.

The organization of the paper is as follows. In Section 1, we introduce
notation used in the sections that follow. We also briefly recall fundamental
facts on (compact) Kac algebras. In Section 2, we pursue an analogue of
Landstad’s argument in [L], algebras of spherical functions. The goal of this
section is to show that the map \Psi_{\pi} defined there, which is seemingly just
a linear map, is actually a *-isomorphism. This is a crucial step towards
our goal. In Section 3, we introduce the Connes spectrum of an action
of a compact Kac algebra. This definition is suggested by the one given
in [GLP] in the C^{*} -case. The point is that what is important in dealing
with non-abelian actions is to look at the eigenspaces associated with an
action rather than to look at the spectral subspaces. With this definition,
we prove our main theorem that the crossed product by a compact Kac al-
gebra action is a factor if and only if the action is centrally ergodic and has
full Connes spectrum, which does generalize the Connes-Takesaki’s theorem
mentioned above. In the course of a proof, we obtain also a generalization
of the theorem of Paschke [P , Corollary 3.2]. In Section 4, we consider sev-
eral examples of compact Kac algebra actions and discuss (compute) their
(Connes) spectrum. In the discussion, we compare the existing definitions
with ours.

Finally, the author would like to thank Professor Y Sekine for stimu-
lating discussion and for sending him a preprint [S].

1. Notation and Fundamentals on compact Kac algebras

In this section, we introduce notation which will be necessary for our
discussion that follows. We also briefly review basic results on (compact)
Kac algebras and their representations. For the general theory of Kac alge-
bras, we refer to [ES], the notation of which we mainly adopt as well.

From now on, all von Neumann algebras are assumed to have separable
preduals.

A Kac algebra is a quadruple K=(\mathcal{M}, \Gamma, \kappa, \varphi) [ES, Definition 2.2.5] in
which:

(Ki) (\mathcal{M}, \Gamma, \kappa) is a co-involutive Hopf von Neumann algebra [ES, Def-
inition 1.2.5];
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(Kii) \varphi is a faithful normal semifinite weight on \mathcal{M} , called a Haar
measure (weight) of K;

(Kiii) (id_{\mathcal{M}}\otimes\varphi)\Gamma(x)=\varphi(x) 1 (x\in \mathcal{M}_{+}) ;
(Kiv) (id_{\mathcal{M}}\otimes\varphi)((1\otimes y^{*})\Gamma(x))=\kappa((id_{A4}\otimes\varphi)(\Gamma(y^{*})(1\otimes x))) (x, y\in

\mathfrak{R}_{\varphi}) ;
(Kv) \kappa 0\sigma_{t}^{\varphi}=\sigma_{-t}^{\varphi}0\kappa(t\in R) .

We say that K is compact if \varphi(1)<\infty . In this case, it turns out that \varphi

is a trace with \varphi 0\kappa=\varphi . Whenever we deal with a compact Kac algebra,
we always normalize a Haar measure: \varphi(1)=1 . Let us fix a Kac algebra
K=(\mathcal{M}, \Gamma, \kappa, \varphi) . We always think of \mathcal{M} as represented on the Hilbert
space L^{2}(\varphi) obtained from \varphi . Let \Lambda_{\varphi} denote the canonical injection of \mathcal{M}

into L^{2}(\varphi) . Then the equation

W(\Lambda_{\varphi}(x)\otimes\Lambda_{\varphi}(y))=\Lambda_{\varphi\otimes\varphi}(\Gamma(y)(x\otimes 1)) (x, y\in \mathfrak{R}_{\varphi})

defines a unitary on L^{2}(\varphi)\otimes L^{2}(\varphi) , called the fundamental unitary of K
[ES, Proposition 2.4.2], and denoted by W(K) if an unnecessary confusion
may occur. It implements \Gamma : \Gamma(x)=W(1\otimes x)W^{*}(x\in \mathcal{M}) .

The main feature of the theory is the construction of the dual Kac
algebra \hat{K}=(\hat{\mathcal{M}},\hat{\Gamma},\hat{\kappa},\hat{\varphi}) [ES, Chap. 3]. The fundamental unitary W(\hat{K})

of \hat{K} is \Sigma W(K)^{*}\Sigma [ES, Theorem 3.7.3], where \Sigma in general stands for the flip
(twist) operator: \Sigma(\xi\otimes\eta)=\eta\otimes\xi . There are other Kac algebras canonically
attached to K, such as K’= the commutant of K, K^{\sigma}=the opposite of K,
etc. (see [ES]).

The predual \mathcal{M}_{*} becomes an involutive Banach algebra. We shall be
mainly concerned with (nondegenerate) representations of \mathcal{M}_{*} . By [ES,
Theorem 3.1.4], any representation \mu of \mathcal{M}_{*} on a Hilbert space H_{\mu} admits
a generator, i.e., there is a unitary V on H_{\mu}\otimes L^{2}(\varphi) such that \mu(\omega)=

(id\otimes\omega)(V) . The representation \lambda that has W(\hat{K}) as a generator is called the
regular (Fourier) representation of K. It generates the dual Kac algebra \hat{\mathcal{M}} .
We denote by \mathfrak{D}(K) the set of all unitary equivalence classes of irreducible
representaions of \mathcal{M}_{*} , and call it the unitary dual of K. In the following
sections, we often fix a complete set Irr(K) of representatives of the unitary
dual \mathfrak{D}(K) .

An action of K on a von Neumann algebra A is a unital injective *-
homomorphism \alpha from A into A-\otimes \mathcal{M} satisfying (\alpha\otimes id_{\mathcal{M}})\circ\alpha=(idA\otimes\Gamma)\circ\alpha .
The crossed product A x_{\alpha}K of A by the action \alpha is by definition the von
Neumann algebra generated by \alpha(A) and C\otimes\hat{\mathcal{M}}’ . Once \alpha is given, we may
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associate a new action \overline{\alpha} of K on A\otimes \mathcal{L}-(L^{2}(\varphi)) (or, more generally, on A\otimes B-

with B another von Neumann algebra), defined by \alpha-=(id_{A}\otimes\sigma)o(\alpha\otimes id) ,
where \sigma=Ad\Sigma . We call \overline{\alpha} the amplified action of \alpha . The fixed-point
algebra A^{\alpha} of \alpha is defined to be the set \{x\in A : \alpha(x)=x\otimes 1\} . For a
subspace B of A, we say that B is \alpha-invariant if \alpha(B)\subseteq B\otimes \mathcal{M} .

In the remainder of this section, let K=(\mathcal{M}, \Gamma, \kappa, \varphi) be a compact Kac
algebra with the normalized Haar measure \varphi . For each \pi\in Irr(K) , take its
generator V(\pi)\in \mathcal{L}(H_{\pi})\otimes \mathcal{M} . For representation theory of compact Kac
algebras, refer to [ES, \S 6]. We write V(\pi) in the form:

V( \pi)=\sum_{i,j=1}^{d(\pi)}e_{i,j}\otimes V(\pi)_{i,j} ,

where d(\pi)=\dim H_{\pi} and \{e_{i,j}\} is a system of matrix units of \mathcal{L}(\mathcal{H}_{\pi}) . Then
it is known that (1) the linear subspace generated by { V(\pi)_{i,j} : 1\leq i ,
j\leq d(\pi) , \pi\in Irr(K)\} is \sigma-weakly dense in \mathcal{M} , and that (2) the sys-
tem \{\sqrt{d(\pi)}\Lambda_{\varphi}(V(\pi)_{i,j}) : 1\leq i, j\leq d(\pi), \pi\in Irr(K)\} is a complete
orthonormal basis of L^{2}(\varphi) – the Peter-Weyl theorem and the Schur’s or-
thogonality relations. For V(\pi)_{i,j} , we have the following useful identity:
\Gamma(V(\pi)_{i,j})=\sum_{k=1}^{d(\pi)}V(\pi)_{i,k}\otimes V(\pi)_{k,j} . The element \chi_{\pi} of \mathcal{M} given by
d( \pi)\sum_{i=1}^{d(\pi)}V(\pi)_{i,i} is called the (normalized) character of \pi , which is inde-
pendent of the choice of the matrix units \{e_{i,j}\} .

Let \alpha be an action of K on a von Neumann algebra A. It is well-known
that E_{\alpha}=(id\otimes\varphi)\circ\alpha : Aarrow A is a faithful normal conditional expectation
from A onto the fixed-point algebra A^{\alpha} . Take a faithful normal state \omega_{0} on
A^{\alpha} . Then set \psi=\omega_{0}\circ E_{\alpha} . From now on, we shall always think of A as
represented on L^{2}(\psi)=L^{2}(A) , the Hilbert space obtained from \psi by the
GNS construction.

For each \pi\in Irr(K) , we define the \pi-eigenspace A^{\alpha}(\pi) of \alpha to be the
set given by

A^{\alpha}(\pi)=\{X\in A\otimes \mathcal{L}(H_{\pi}) : \overline{\alpha}(X)=X_{12}V(\pi)_{23}\} ,

where, in this case, \overline{\alpha} is the amplified action \overline{\alpha}=(id_{A}\otimes\sigma)\circ(\alpha\otimes id_{\mathcal{L}(H_{\pi})}) .
On the other hand, with E_{\pi}=(id\otimes\chi_{\pi}^{*}\varphi)\circ\alpha , we set A_{\pi}=E_{\pi}(A) . This
subspace is called the \pi-spectral subspace of \alpha . Set Q=A\otimes \mathcal{L}(H_{\pi}) . Other
than the amplified action \overline{\alpha} on Q as above, there is another action \beta_{\pi} of
K on Q defined by \beta_{\pi}=AdV(\pi)_{23}\circ\overline{\alpha} . The fixed-point subalgebra Q^{\beta_{\pi}} of
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Q by this action \beta_{\pi} shall play a vital role in the discussion of the following
sections.

2. An analogue of an theorem of Landstad-Algebras of spherical
functions

In the case of a compact group action on a C^{*} -algebra, it turned out
in [L] that the idea (analogue) of algebras of spherical functions in rcpre-
sentation theory was very useful in determining (post)liminality of crossed
product algebras. We shall see in this section that this idea is equally effec-
tive also in the case of a compact Kac algebra action. In fact, Corollary 2.9
will be a key step towards our final goal.

Throughout the rest of this paper, we fix a Kac algebra K=(\mathcal{M}, \Gamma . \kappa ,
\varphi) and an action \alpha of K on a von Neumann algebra A.

We believe that the next result is widely known to specialists. The
author, however, cannot find a literature that actually contains its proof in
the case of a Kac algebra action. So we provide a proof below for readers’
convenience.

Lemma 2.1 (c.f. [LPRS]) Let K be a general (not necessarily compact)
Kac algebra. Then the crossed product A>\triangleleft_{\alpha}K is the \sigma -strong* closure of
the linear span of the set \{\alpha(a)(1\otimes\lambda^{\sigma}(\omega)) : a\in A, \omega\in \mathcal{M}_{*}\} . Here \lambda^{\sigma}

stands for the regular reprepsentation of the opposite Kac algebra K^{\sigma} that
has W(\hat{K}’) as its generator.

Proof. Let \overline{A}_{0} be the linear span of the set { \alpha(a)(1\otimes\lambda^{\sigma}(\omega)) : a\in A ,
\omega\in \mathcal{M}_{*}\} . By the definition of a crossed product, it suffices to show that
the algebra alg \overline{A}_{0} generated by \overline{A}_{0} is contained in the \sigma-strong* closure
of \overline{A}_{0} . And for this, it suffices to prove that every element of the form
(1\otimes\lambda^{\sigma}(\omega))\alpha(a)(a\in A, \omega\in \mathcal{M}_{*}) lies in the \sigma-strong* closure of \overline{A}_{0} . So,
let a\in A and \omega\in \mathcal{M}_{*} . Then we have

(1\otimes\lambda^{\sigma}(\omega))\alpha(a)

=(id\otimes\omega 0\kappa\otimes id)(W(K^{\sigma})_{23})\alpha(a)

=(id\otimes\omega 0\kappa\otimes id)(W(K^{\sigma})_{23}\alpha(a)_{13})

=(id\otimes\omega\circ\kappa\otimes id)((id\otimes\sigma)((id\otimes\Gamma)\circ\alpha(a))W(K^{\sigma})_{23})

=(id\otimes\omega\circ\kappa\otimes id)((id\otimes\sigma)((\alpha\otimes id)\circ\alpha(a))W(K^{\sigma})_{23}) ,
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which is approximately in the sense of \sigma-strong* topology

\sum_{i}(id\otimes\omega 0\kappa\otimes id)((id\otimes\sigma)(\alpha(a_{i})\otimes x_{i})W(K^{\sigma})_{23})

= \sum_{i}(id\otimes id\otimes\omega 0\kappa)((\alpha(a_{i})\otimes x_{i})(\Sigma W(K^{\sigma})\Sigma)_{23})

= \sum_{i}\alpha(a_{i})(id\otimes(\kappa(x_{i})\omega)\circ\kappa\otimes id)(W(K^{\sigma})_{23})

= \sum_{i}\alpha(a_{i})(1\otimes\lambda^{\sigma}((\kappa(x_{i})\omega))) .

This completes the proof. \square

Throughout the remainder of this paper, we always assume that K is
a compact Kac algebra. We shall freely use the notation introduced in
Section 1. In particular, for each \pi\in Irr(K) , we fix an orthonormal basis
\{\epsilon_{i}^{\pi}\}_{i=1}^{d(\pi)} of the representation space H_{\pi} and the corresponding matrix units
\{e_{i,j}^{\pi}\} once and for all. Thus, for example, the generator V(\pi) of \pi is
expressed in the form

V( \pi)=\sum_{i,j}^{d(\pi)}e_{i,j}^{\pi}\otimes V(\pi)_{i,j} . (2.2)

We will often drop the index \pi and simply write \epsilon_{i} , e_{i,j} for \epsilon_{i}^{\pi} , e_{i,j}^{\pi} if no
confusion ocurrs.

Let \pi be in Irr(K). It is easily verified that the unitary V(\pi)^{*} satisfies
(id\otimes\Gamma^{\sigma})(V(\pi)^{*})=V(\pi)_{12}^{*}V(\pi)_{13}^{*} , where \Gamma^{\sigma} of course denotes the coprod-
uct of the opposite Kac algebra K^{\sigma} of K. So it defines a (nondegenerate)
representation \pi^{\sigma} of K^{\sigma} on \mathcal{H}_{\pi} with V(\pi)^{*} as its generator. With this n0-
tation, following the idea of [L], we define a linear map \Psi_{\pi} from Q^{\beta_{\pi}} into
A-\otimes \mathcal{L}(L^{2}(\varphi)) by

\Psi_{\pi}(X)=d(\pi)(id\otimes id\otimes R)((\alpha\otimes id_{\mathcal{L}(H_{\pi})})(X)(1\otimes(\lambda^{\sigma}\cross\pi^{\sigma})(\varphi)))

(X\in Q^{\beta_{\pi}}) .

By Lemma 3.2.1 of [ES], we have \Sigma(\lambda^{\sigma}\cross\pi^{\sigma})(\varphi)\Sigma=V(\pi)^{*}(1\otimes\lambda^{\sigma}(\varphi))V(\pi) .
From this and a simple calculation, it follows that the map \Psi_{\pi} can be
transformed as follows:

\Psi_{\pi}(X)=d(\pi)(id\otimes H\otimes id)(V(\pi)_{23}^{*}(X\otimes\lambda^{\sigma}(\varphi))V(\pi)_{23}) , (2.3)
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where \lambda^{\sigma}\cross\pi^{\sigma} indicates the Kronecker product of \lambda^{\sigma} and \pi^{\sigma} (see [ES,
Theorem 1.4.3]). We find from this that \Psi_{\pi} is *-preserving. Note that,
since (\lambda^{\sigma}\cross\pi^{\sigma})(\mathcal{M}_{*})\subseteq\hat{\mathcal{M}}’\otimes \mathcal{L}(\mathcal{H}_{\pi}) , the range of the map \Psi_{\pi} is contained
in the crossed product A x_{\alpha} K. We want to identify the range of \Psi_{\pi} more
precisely. To do so, we need some preparatory results.

For the next lemma, we fix the following notation. For a pair (\xi, \eta)

of vectors in a Hilbert space, we let t_{\xi,\eta} denote the operator of rank one
defined by t_{\xi,\eta}\zeta=(\zeta|\eta)\xi .

Lemma 2.4 Let \pi be in Irr(K). We have

\sum_{j=1}^{d(\pi)}V(\pi)_{i,j}^{*}\lambda(\varphi)V(\pi)_{k,j}=\sum_{j=1}^{d(\pi)}t_{\Lambda_{\varphi}(V(\pi)_{i,j}^{*}),\Lambda_{\varphi}(V(\pi)_{k,j}^{*})}=\lambda(V(\pi)_{i,k}^{*}\varphi)

for any i , k=1,2 , \ldots , d(\pi) .

Proof. The first identity is straightforward, since \lambda(\varphi)\Lambda_{\varphi}(x)=\varphi(x)\Lambda_{\varphi}(1) .
For the second identity, we first note that V(\pi)_{i,k}^{*}\varphi=\omega_{\Lambda_{\varphi}(V(\pi)_{i,k}^{*}),\Lambda_{\varphi}(1)} .

Hence, by Lemma 6.1.1 and 6.2.3 of [ES], one has

(\lambda(V(\pi)_{i,k}^{*}\varphi)\Lambda_{\varphi}(x)|\Lambda_{\varphi}(y))=(I\Lambda_{\varphi}(V(\pi)_{i,k}^{*})|\Lambda_{\varphi}(y)\otimes\hat{J}\Lambda_{\varphi}(x)) ,

where I stands for the isometry defined in Lemma 6.2.3 of [ES]. By the
definition of I, for any x , y\in \mathcal{M} , we have

(\lambda(V(\pi)_{i,k}^{*}\varphi)\Lambda_{\varphi}(x)|\Lambda_{\varphi}(y))

=(\Lambda_{\varphi\otimes\varphi}(\Gamma(V(\pi)_{i,k}^{*}))|\Lambda_{\varphi}(y)\otimes\Lambda_{\varphi}(\kappa(x)^{*}))

= \sum_{j=1}^{d(\pi)}(\Lambda_{\varphi}(V(\pi)_{i,j}^{*})\otimes\Lambda_{\varphi}(V(\pi)_{j,k}^{*}))|\Lambda_{\varphi}(y)\otimes\Lambda_{\varphi}(\kappa(x)^{*}))

= \sum_{j=1}^{d(\pi)}(\Lambda_{\varphi}(x)|\Lambda_{\varphi}(V(\pi)_{k,j}^{*}))(\Lambda_{\varphi}(V(\pi)_{i,j}^{*})|\Lambda_{\varphi}(y))

= \sum_{j=1}^{d(\pi)}(t_{\Lambda_{\varphi}(V(\pi)_{i,j}^{*}),\Lambda_{\varphi}(V(\pi)_{k,j}^{*})}\Lambda_{\varphi}(x)|\Lambda_{\varphi}(y)) .

This completes the proof. \square
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Corollary 2.5 We have

\lambda^{\sigma}(V(\pi)_{i,j}^{*}\varphi)=\sum_{k=1}^{d(\pi)}t_{\Lambda_{\varphi}(V(\pi)_{k,j}^{*}),\Lambda_{\varphi}(V(\pi)_{k,i}^{*})}

for any i , j=1,2, \ldots , d(\pi) . Hence, if we set E_{i,j}^{\pi}=d(\pi)\lambda^{\sigma}(V(\pi)_{j,i}^{*}\varphi) , then
\{E_{i,j}^{\pi}\} forms a set of d(\pi)\cross d(\pi) matrix units with \sum_{i=1}^{d(\pi)}E_{i,i}^{\pi}=\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) .

Proof. The first identity follows from the fact that \lambda^{\sigma}(\omega)=\hat{J}\lambda(\omega)^{*}\hat{J} for
any \omega\in \mathcal{M}_{*} , where \hat{J} is the modular conjugation of the Haar measure \hat{\varphi}

given by \hat{J}\Lambda_{\varphi}(x)=\Lambda_{\varphi}(\kappa(x)^{*}) . The second statement results immediately
from the first one. \square

Let X\in Q^{\beta_{\pi}} With (2.3) and the expression

X= \sum_{i,j=1}^{d(\pi)}X_{i,j}\otimes e_{i,j}^{\pi} ,

we find from a direct computation that

\Psi_{\pi}(X)=d(\pi)\sum_{i,j,k=1}^{d(\pi)}X_{i,j}\otimes V(\pi)_{i,k}^{*}\lambda^{\sigma}(\varphi)V(\pi)_{j,k} .

From this and Lemma 2.4, it follows that

\Psi_{\pi}(X)=d(\pi)\sum_{i.j}^{d(\pi)}X_{i,j}\otimes\lambda(V(\pi)_{i,j}^{*}\varphi) . (2.6)

Since \{d(\pi)\lambda(V(\pi)_{i,j}^{*}\varphi)\} forms a set of d(\pi)\cross d(\pi) matrix units by Lemma
2.4, one can easily verify by (2.6) that \Psi_{\pi} is a homomorphism. Next,
note that \Psi_{\pi}(1)=d(\pi)(1\otimes(id\otimes R)\circ(\lambda^{\sigma}\cross\pi^{\sigma})(\varphi)) . Since \lambda^{\sigma}\cross\pi^{\sigma} has
W(\hat{K}’)_{13}V(\pi)_{23}^{*} as its generator, we have

d(\pi)(id\otimes H)\circ(\lambda^{\sigma}\cross\pi^{\sigma})(\varphi)

=d(\pi)(id\otimes H\otimes\varphi)(W(\hat{K}’)_{13}V(\pi)_{23}^{*})

=d( \pi)\sum_{i,j=1}^{d(\pi)}Tr(e_{j,i})(id\otimes\varphi)(W(\hat{K}’)(1\otimes V(\pi)_{i,j}^{*}))=\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) .

Hence we obtain \Psi_{\pi}(1)=1\otimes\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) . Finally, suppose that \Psi_{\pi}(X)=0 .
Then, by (2.3), we have (id\otimes n\otimes\varphi)(V(\pi)_{23}^{*}(X^{*}X\otimes\lambda^{\sigma}(\varphi))V(\pi)_{23})=0 .
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Since V(\pi)(H\otimes\varphi)V(\pi)^{*} is faithful, it follows that X=0 . As \Psi_{\pi} is certainly
normal, we conclude that \Psi_{\pi} is a normal injective *-homomorphism from
Q^{\beta_{\pi}} into the reduced von Neumann algebra q_{\pi}(A>\triangleleft_{\alpha}K)q_{\pi} , where q_{\pi}=

1\otimes\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) . In particular, the range of \Psi_{\pi} is a von Neumann subalgebra
of q_{\pi} (A \lambda_{\alpha}K) q_{\pi} .

We set p_{\pi}=\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) . Inside the von Neumann algebra q_{\pi} (A x_{\alpha}K ) q_{\pi} ,
we have a factor C\otimes\hat{\mathcal{M}}’p_{\pi} of type I_{d(\pi)} , which we denote by \mathcal{F}_{\pi} . By
Corollary 2.5, we may take \{1\otimes E_{i,j}^{\pi}\} for a system of matrix units for \mathcal{F}_{\pi} .
Let \mathcal{F}_{\pi}^{c} be the relative commutant of \mathcal{F}_{\pi} in q_{\pi} (A x_{\alpha}K) q_{\pi} . Note that the
range of \Psi_{\pi} is then contained in \mathcal{F}_{\pi}^{c} from (2.6). Now the equation

F_{\pi}(T)= \frac{1}{d(\pi)}\sum_{i,j=1}^{d(\pi)}(1\otimes E_{j,i}^{\pi})T(1\otimes E_{i,j}^{\pi}) (T\in q_{\pi} (A \lambda_{\alpha}K) q_{\pi} )

defines a faithful normal conditional expectation F_{\pi} from q_{\pi}(A>\triangleleft_{\alpha}K)q_{\pi}

onto \mathcal{F}_{\pi}^{c} (see [St, pp. 126-127] for example). Let \overline{A}_{0} be the strongly dense
subspace of the crossed product A x_{\alpha}K introduced in the proof of Lemma 1.
Then, from normality of F_{\pi} , the set F_{\pi}(q_{\pi}\overline{A}_{0}q_{\pi}) forms a \sigma-weakly dense
subspace of \mathcal{F}_{\pi}^{c} .

Let T be in q_{\pi}\overline{A}_{0}q_{\pi} . By definition, T has the form T= \sum_{i,j=1}^{d(\pi)}q_{\pi}\alpha(a_{i,j})

q_{\pi}(1\otimes E_{i,j}^{\pi}) , where a_{i,j}\in A . With this expression, we have

F_{\pi}(T)=d( \pi)\sum_{i,j,k=1}^{d(\pi)}(1\otimes\lambda^{\sigma}(V(\pi)_{j,k}^{*}\varphi))\alpha(a_{i,j})(1\otimes\lambda^{\sigma}(V(\pi)_{k,i}^{*}\varphi)) .

To continue this calculation, we need the following lemma.

Lemma 2.7 We have

\sum_{k=1}^{d(\pi)}\lambda^{\sigma}(V(\pi)_{j,k}^{*}\varphi)z\lambda^{\sigma}(V(\pi)_{k,i}^{*}\varphi)

= \sum_{m,n=1}^{d(\pi)}\varphi(V(\pi)_{n,j}zV(\pi)_{m,i}^{*})\lambda(V(\pi)_{n,m}^{*}\varphi)

for any z\in \mathcal{M} .

Proof. This follows from Corollary 2.5 by a direct computation. So it is
left to readers. \square
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By Lemma 2.7, we have

F_{\pi}(T)=d( \pi)\sum_{m,n=1}^{d(\pi)}(\sum_{i,j=1}^{d(\pi)}(id\otimes V(\pi)_{m,i}^{*}\varphi V(\pi)_{n,j})\circ\alpha(a_{i,j}))

\otimes\lambda(V(\pi)_{n,m}^{*}\varphi) . (2.8)

With X_{n,m}= \sum_{i,j=1}^{d(\pi)}(id\otimes V(\pi)_{m,i}^{*}\varphi V(\pi)_{n,j})\circ\alpha(a_{i,j}) , we define

X= \sum_{m,n=1}^{d(\pi)}X_{n,m}\otimes e_{n,m}^{\pi}\in A\otimes \mathcal{L}(H_{\pi})=Q .

We assert that X belongs to Q^{\beta_{\pi}} . To prove this, let us note first that the
identity (\alpha\otimes id)0\alpha=(id\otimes\Gamma)0\alpha implies \alpha(X_{n,m})=\sum_{i,j=1}^{d(\pi)}(id\otimes(id\otimes

V(\pi)_{m,i}^{*}\varphi V(\pi)_{n,j})\circ\Gamma)\circ\alpha(a_{i,j}) . From this and (2.2), it follows that

\beta_{\pi}(X)=V(\pi)_{23}\overline{\alpha}(X)V(\pi)_{23}^{*}

= \sum_{i,j,k,\ell,m,n=1}^{d(\pi)}(id\otimes\sigma)

o((1\otimes V(\pi)_{k,\ell}(id\otimes V(\pi)_{m,i}^{*}\varphi V(\pi)_{\ell,j})\circ\Gamma)(\alpha(a_{i,j}))V(\pi)_{n,m}^{*}\otimes e_{k,n}^{\pi}) .

Since

\sum_{\ell,m=1}^{d(\pi)}V(\pi)_{k,\ell}(id\otimes V(\pi)_{m,i}^{*}\varphi V(\pi)_{\ell,j})\circ\Gamma)(a\otimes x)V(\pi)_{n,m}^{*}

= \sum_{\ell,m=1}^{d(\pi)}a\otimes V(\pi)_{k,\ell}(id\otimes V(\pi)_{m,i}^{*}\varphi V(\pi)_{\ell,j})\circ\Gamma(x)V(\pi)_{n,m}^{*}

= \sum_{\ell,m=1}^{d(\pi)}a\otimes(id\otimes\varphi)((V(\pi)_{k,\ell}\otimes V(\pi)_{\ell,j})\Gamma(x)(V(\pi)_{n,m}^{*}\otimes V(\pi)_{m,i}^{*}))

=a\otimes(id\otimes\varphi)0\Gamma(V(\pi)_{k,j}xV(\pi)_{n,i}^{*})

=a\otimes\varphi(V(\pi)_{k,j}xV(\pi)_{n,i}^{*}) 1
=(id\otimes V(\pi)_{n,i}^{*}\varphi V(\pi)_{k,j}\otimes id)(a\otimes x\otimes 1)
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for any a\in A and x\in \mathcal{M} , we have

\beta_{\pi}(X)=\sum_{i,j,k,n=1}^{d(\pi)}(id\otimes\sigma)

\circ((id\otimes V(\pi)_{n,i}^{*}\varphi V(\pi)_{k,j}\otimes id)(\alpha(a_{i,j})\otimes 1)\otimes e_{k,n}^{\pi})

= \sum_{i,j,k,n=1}^{d(\pi)}(id\otimes V(\pi)_{n,i}^{*}\varphi V(\pi)_{k,j})(\alpha(a_{i,j}))\otimes e_{k,n}^{\pi}\otimes 1=X_{12}

Hence X belongs to Q^{\beta_{\pi}} as asserted. By comparing (2.6) with (2.8), we find
that F_{\pi}(T)=\Psi_{\pi}(X) . This shows that the range of \Psi_{\pi} contains a \sigma-weakly
dense subspace F_{\pi}(q_{\pi}\overline{A}_{0}q_{\pi}) of \mathcal{F}_{\pi}^{c} . Since the ragne is contained in \mathcal{F}_{\pi}^{c} as
noted before, we conclude that \Psi_{\pi}(Q^{\beta_{\pi}}) is precisely \mathcal{F}_{\pi}^{c} .

We summarize the results obtained in the above discussion in the next
theorem.

Theorem 2.9 For each \pi in Irr(K), the map \Psi_{\pi} defined in (2.3) is a*-
isomorphism from the fixed-point algebra Q^{\beta_{\pi}}=(A\otimes \mathcal{L}(H_{\pi}))^{\beta_{\pi}} onto the
relative commutant \mathcal{F}_{\pi}^{c} of \mathcal{F}_{\pi} in q_{\pi} (A x_{\alpha}K) q_{\pi} .

Corollary 2.10 For each \pi\in Irr(K) , the following are equivalent:
(1) q_{\pi} (A x_{\alpha}K) q_{\pi} is a factor;
(2) \mathcal{F}_{\pi}^{c} is a factor;
(3) Q^{\beta_{\pi}}=(A\otimes \mathcal{L}(H_{\pi}))^{\beta_{\pi}} is a factor.

Proof Since \mathcal{F}_{\pi} is a type I_{d(\pi)} subfactor of q_{\pi} (A \lambda_{\alpha}K) q_{\pi} , we have a
canonical tensor product deomposition q_{\pi} (A x_{\alpha}K) q_{\pi}\cong \mathcal{F}_{\pi}^{c}\otimes \mathcal{F}_{\pi} (see [St,
pp. 126-127]). The assertion now follows immediately from Theorem 2.9.

\square

3. Connes spectrum and factoriality

In this section, we first introduce the (Arveson) spectrum and the
Connes spectrum of an action of a compact Kac algebra. After we do that,
we shall devote ourselves to proving the mian theorem of this paper that
characterizes factoriality of the crossed product by a compact Kac algebra
action, in terms of the Connes spectrum.

We will retain the notation established in the previous sections.
Before we give the next definition, note that X^{*}Y always belongs to
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Q^{\beta_{\pi}} for any X, Y\in A^{\alpha}(\pi) .

Definition 3.1 (see [GLP]) We denote by Sp(a) the set of all [\pi](\pi\in

Irr(K) ) in the unitary dual \mathfrak{D}(K) of K such that A^{\alpha}(\pi)^{*}A^{\alpha}(\pi) is \sigma-weakly
dense in Q^{\beta_{\pi}}=(A\otimes \mathcal{L}(H_{\pi}))^{\beta_{\pi}} . We call this set the (Arveson) spectrum
of \alpha .

In the next definition, note that, for each projection e in A^{\alpha} , the map
\alpha^{e} : A_{e} – A_{e}-\otimes \mathcal{M} defined by \alpha^{e}(exe)=(e\otimes 1)\alpha(x)(e\otimes 1) is an action of
K on the reduced von Neumann algebra A_{e} .

Definition 3.2 (see [GLP]) We set \Gamma(\alpha)=\cap\{Sp(\alpha^{e}) : e is a non-zero
projection in A^{\alpha} }. We call this set the Connes spectrum of \alpha .

Lemma 3.3 We have

\Gamma(\alpha)=\cap { Sp(\alpha^{e}) : e is a non-zero central projection in A^{\alpha} }.

In particular, if A^{\alpha} is a factor, then \Gamma(\alpha)=Sp(\alpha) .

Proof It suffices to prove that Sp(\alpha^{e})\supseteq Sp(\alpha^{z(e)}) for any non-zero
projection e in A^{\alpha} , where z(e) is the central support of e in A^{\alpha} . So let
us take a non-zero projection e in A^{\alpha} , and set f=z(e) . For an operator
a in A, we denote by \tilde{a} the operator given by \tilde{a}=a\otimes 1\in Q . Before we
proceed to a proof, note first that, since A^{\alpha^{e}}(\pi)=\tilde{e}A^{\alpha}(\pi)\tilde{e} , one always has
A^{\alpha^{e}}(\pi)^{*}A^{\alpha^{e}}(\pi)=\tilde{e}A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi)\tilde{e} . Notice also that Q^{\beta_{\pi}^{e}}=\tilde{e}Q^{\beta_{\pi}}\tilde{e} .

Now we suppose that [\pi] belongs to Sp(\alpha^{f}) . So we have

\overline{\tilde{f}A^{\alpha}(\pi)^{*}\tilde{f}A^{\alpha}(\pi)\tilde{f}}=\tilde{f}Q_{b}^{\beta_{\pi}}\tilde{f}\sigma- w .

Since \tilde{e}\leq\tilde{f}, one immediately sees that

\overline{\tilde{e}A^{\alpha}(\pi)^{*}\tilde{f}A^{\alpha}(\pi)\tilde{e}}=\tilde{e}Q^{\beta_{\pi}}\tilde{e}\sigma- w .

Hence it remains to show that

\overline{A^{\alpha}(\pi)^{*}\tilde{f}A^{\alpha}(\pi)}\sigma- w=\overline{A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi)}\sigma- w

For this end, set \mathcal{F}=A^{\alpha}(\pi)^{*}\tilde{f}A^{\alpha}(\pi) and \mathcal{E}=A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi) . Since A^{\alpha}(\pi)

is a right Q^{\beta_{\pi}} -module, both \mathcal{E} and \mathcal{F} are *-algebras, and \mathcal{E} is a tw0-sided
ideal of \mathcal{F} . Thus \overline{\mathcal{E}}^{\sigma- w} and \overline{\mathcal{F}}^{\sigma- w} are \sigma-weakly closed*-algebras. Moreover,
since \tilde{a}A^{\alpha}(\pi)\subseteq A^{\alpha}(\pi) for any a\in A^{\alpha} and fL^{2}(A)=[A^{\alpha}eL^{2}(A)](=the
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closed subspace generated by the set A^{\alpha}eL^{2}(A)) , we have

[\overline{\mathcal{E}}^{\sigma- w}(L^{2}(A)\otimes H_{\pi})]=[\overline{\mathcal{F}}^{\sigma- w}(L^{2}(A)\otimes H_{\pi})] .

This means that the projection onto this closed subspace is the identity for
both \overline{\mathcal{E}}^{\sigma- w} and \overline{\mathcal{F}}^{\sigma- w} Since \overline{\mathcal{E}}^{\sigma- w} also is a tw0-sided ideal of \overline{\mathcal{F}}^{\sigma- w} , they
must coincide with each other. This completes the proof. \square

As in Section 2, we set q_{\pi}=1\otimes\lambda^{\sigma}(\chi_{\pi}^{*}\varphi) .

Lemma 3.4 Let \pi be in Irr(K). Then we have q_{\overline{\pi}}\alpha(a)q_{\iota}=\alpha(E_{\pi}(a))q_{\iota} for
all a\in A . Here \iota denotes the trivial representation. (So q_{\iota}=1\otimes\lambda^{\sigma}(\varphi) ).

Proof. Let a\in A and \omega\in \mathcal{M}_{*} . Then, by the proof of Lemma 2.1,
(1\otimes\lambda^{\sigma}(\omega))\alpha(a) is approximately equal to \sum_{i}\alpha(a_{i})(1\otimes\lambda^{\sigma}((\kappa(x_{i})\omega))) in the
sense of \sigma-strong* topology. But we have

\sum_{i}\alpha(a_{i})(1\otimes\lambda^{\sigma}((\kappa(x_{i})\omega)))(1\otimes\lambda^{\sigma}(\varphi))

= \sum_{i}\omega(\kappa(x_{i}))\alpha(a_{i})(1\otimes\lambda^{\sigma}(\varphi))

= \alpha((id\otimes\omega 0\kappa)(\sum_{i}a_{i}\otimes x_{i}))(1\otimes\lambda^{\sigma}(\varphi)) .

From this, it follows that

(1\otimes\lambda^{\sigma}(\omega))\alpha(a)(1\otimes\lambda^{\sigma}(\varphi))=\alpha((id\otimes\omega 0\kappa)0\alpha(a))(1\otimes\lambda^{\sigma}(\varphi)) .

(3.5)

Therefore, to obtain the assertion of this lemma, one has only to put \omega=

\chi_{\pi}\varphi in the above identity. \square

Lemma 3.6 For any \pi\in Irr(K) , A_{\pi}\neq\{0\} if and only if q_{\overline{\pi}} (A x_{\alpha}K) q_{\iota}\neq

\{0\} .

Proof. Let \pi be in Irr(K).
Suppose first that A_{\pi}=\{0\} . Then, by definition, E_{\pi}=0 , so that

q_{\overline{\pi}}\alpha(a)q_{\iota}=0 for any a\in A by Lemma 3.4. From this, it follows that
q_{\overline{\pi}}\alpha(a)(1\otimes\lambda^{\sigma}(\omega))q_{\iota}=0 for any a\in A and \omega\in \mathcal{M}_{*} . Then, by Lemma 2.1,
we have q_{\overline{\pi}} (A x_{\alpha}K) q_{\iota}=\{0\} .

Conversely, if there exixts a non-zero a\in A_{\pi} , then, by Lemma 3.4, we
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have q_{\overline{\pi}}\alpha(a)q_{\iota}=\alpha(a)q_{\iota} . From this, we have

(q_{\overline{\pi}}\alpha(a)q_{\iota})^{*}(q_{\overline{\pi}}\alpha(a)q_{\iota})=q_{\iota}\alpha(a^{*}a)q_{\iota}=E_{\alpha}(a^{*}a)\otimes\lambda^{\sigma}(\varphi) .

Since E_{\alpha} is faithful, q_{\overline{\pi}}\alpha(a)q_{\iota} must be non-zero. \square

The first part of the next lemma is obtained in Remark of [S]. We,
however, exhibit its proof for the sake of completeness of our argument.

Lemma 3.7 If the central support z(q_{\iota}) of the projection q_{\iota}=1\otimes\lambda^{\sigma}(\varphi)

in the crossed product A x_{\alpha}K equals 1, then the linear span of the set
\{(\omega\otimes id)\circ\alpha(a) : a\in A, \omega\in A_{*}\} is \sigma -weakly dense in \mathcal{M} . Moreover, if this
is the case, we have A^{\alpha}(\pi)\neq\{0\} for any \pi\in Irr(K) .

Proof. Let us suppose that the central support z(q_{\iota}) is 1, and that some
\rho\in \mathcal{M}_{*} satisfies \rho((\omega\otimes id)\circ\alpha(a))=0 for all a\in A and \omega\in A_{*} . We show
in due course that \rho=0 . From this condition, we have (id\otimes\rho)\circ\alpha(a)=0

for any a\in A . From this and (3.5), it follows that

(1\otimes\lambda^{\sigma}(\rho 0\kappa))\alpha(a)(1\otimes\lambda^{\sigma}(\varphi))=\alpha((id\otimes\rho)0\alpha(a))(1\otimes\lambda^{\sigma}(\varphi))

=0.

This, together with Lemma 2.1, implies that (1\otimes\lambda^{\sigma}(\rho\circ\kappa))(Ax_{\alpha}K)q_{\iota}=0 .
By assumption, we get 1\otimes\lambda^{\sigma}(\rho 0\kappa)=0 . Since the regular representation
\lambda^{\sigma} is faithful, it follows that \rho=0 .

The last assertion follows from the preceding paragraph and Lemma
2.13 of [Y2]. \square

The next theorem can be regarded as an extension of the result of
Peligrad [Pel, Corollary 3.7].

Theorem 3.8 The following are equivalent:
(1) The crossed product A \lambda_{\alpha}K is a factor;
(2) For each \pi\in Irr(K) , A^{\alpha}(\pi)\neq\{0\} and Q^{\beta_{\pi}} is a factor;
(3) For each \pi\in Irr(K) , A^{\alpha}(\pi)\neq\{0\} and \mathcal{F}_{\pi}^{c} is a factor.

Proof. Due to Corollary 2.10, equivalence of (2) and (3) is clear. Thus
we prove below that the condition (1) is equivalent to (3).

Suppose first that the crossed product A x_{\alpha}K is a factor. By Corol-
lary 2.10, \mathcal{F}_{\pi}^{c} is a factor. Moreover, since the central support z(q_{\iota}) is 1,
A^{\alpha}(\pi)\neq\{0\} for any \pi\in Irr(K) by Lemma 3.7.

Conversely, assume that the condition (3) holds. Then, by Lemma 2.6
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and Proposition A.I of [Y2], we have A_{\pi}\neq\{0\} for all \pi\in Irr(K) . From
this and Lemma 3.6, it follows that q_{\overline{\pi}} (A x_{\alpha}K) q_{\iota}\neq\{0\} . Hence q_{\overline{\pi}} (A x_{\alpha}

K)q_{\iota} (A \lambda_{\alpha}K) q- is a non-zero tw0-sided ideal of the reduced von Neumann
algebra q_{\overline{\pi}} (A x_{\alpha}K) q-. But, from Corollary 2.10, this reduced algebra is
a factor. Accordingly, the ideal q_{\overline{\pi}}(A>\triangleleft_{\alpha}K)q_{\iota} (A \lambda_{\alpha}K) q- is \sigma-strongly*
dense. Thus we have

q_{\overline{\pi}}z(q_{\iota})(L^{2}(A)\otimes L^{2}(\varphi))= [ q_{\overline{\pi}} (A x_{\alpha}K)q_{\iota}(L^{2}(A)\otimes L^{2}(\varphi)) ]
\supseteq [ q_{\overline{\pi}} (A x_{\alpha}K) q_{\iota} (A x_{\alpha}K)q_{\overline{\pi}}(L^{2}(A)\otimes L^{2}(\varphi)) ]
= [ q_{\overline{\pi}} (A \lambda_{\alpha}K) q_{\overline{\pi}}(L^{2}(A)\otimes L^{2}(\varphi)) ]
=q_{\overline{\pi}}(L^{2}(A)\otimes L^{2}(\varphi))

Here, in general, [A] stands for the closed linear space generated by a subset
A of a Hilbert space. This shows that q- z(q_{\iota})\geq q-, which is q- z(q_{\iota})=q-.

Since \sum_{\pi\in Irr(K)}q_{\pi}=1 , it follows that z(q_{\iota})=1 . This means that the
induction (A x_{\alpha}K)’arrow(An_{\alpha}K)’q_{\iota} is a*-isomorphism. But, since

(A x_{\alpha}K)’q_{\iota}=\{q_{\iota}(A x_{\alpha}K)q_{\iota}\}’

=\{\mathcal{F}_{\iota}^{c}\otimes\lambda^{\sigma}(\varphi)\}’(=\{A^{\alpha}\otimes\lambda^{\sigma}(\varphi)\}’) ,

(A x_{\alpha}K)’q_{\iota} is a factor. Therefore, the crossed product A \lambda_{\alpha}K also is a
factor. \square

The corollary that follows can be considered as a generalization of Corol-
lary 3.2 of [P] to the case of actions of compact Kac algebras. The author
was informed by Dr. Sekine that he had obtained exactly the same result.
But we emphasize that our argument is different from his.

Corollary 3.9 The crossed product A x_{\alpha}K is a factor if and only if
the fixed-point algebra A^{\alpha} is a factor and the central support z(q_{\iota}) of the
projection q_{\iota} is 1.

Proof. If the crossed product is a factor, then, by Theorem 3.8, the
condition (3) of the theorem holds. In particular, \mathcal{F}_{\iota}^{c} is a factor. This
means that A^{\alpha} is factor. Since the crossed product is a factor, z(q_{p}) equals
the identity.

Suppose next that A^{\alpha} is a factor and that the central support z(q_{\iota}) is
1. In this case again, by the argument set out in the second paragraph of
the proof of Theorem 3.8, the crossed product must be a factor. \square
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Corollary 3.10 The action \alpha is mimimal in the sense of [ILP] if and
only if the fixed-point algebra A^{\alpha} has trivial relative commutant in A and
the crossed product A x_{\alpha}K is a factor.
Proof Suppose first that \alpha is minimal, i.e., the fixed-point algebra A^{\alpha} has
trivial relative commutant in A and the linear span of the set { (\omega\otimes id)0\alpha(a) :
a\in A , \omega\in A_{*}\} is \sigma-weakly dense in \mathcal{M} . By tensoring the countably
decomposable type I_{\infty} factor with A if necessary, we may and do assume
that A^{\alpha} is properly infinite. Then, by [Y2] (or see [ILP, Section 4]), \alpha

is a dominant action in the sense of [Y2]. Hence it is dual in particular.
So, by the Takesaki duality, the crossed product A x_{\alpha}K is isomorphic to
A^{\alpha}-\otimes \mathcal{L}(L^{2}(\varphi)) . Therefore, it is a factor.

The other implication follows immediately from Lemma 3.7 and Corol-
lary 3.9. \square

We shall use Theorem 3.8 in order to give a necessary and sufficient
condition for the crossed product A x_{\alpha}K to be a factor in terms of the
Connes spectrum \Gamma(\alpha) . To achieve this goal, we require several preparatory
results.

Let us fix a \pi in Irr(K). To state the next proposition, we set x_{\pi}=

A^{\alpha}(\pi) . By definition, it is easy to check that x_{\pi} is a left Q^{\overline{\alpha}} , right Q^{\beta_{\pi}}

bimodule. Moreover, on x_{\pi} , there are a Q^{\overline{\alpha}}-valued inner product \langle\cdot, \cdot\rangle_{Q}
-

and a Q^{\beta_{\pi}} -valued inner product \langle\cdot, \cdot\rangle_{Q^{\beta_{\pi}}} defined by

\langle X, Y\rangle_{Q^{\overline{\alpha}}}=XY^{*}’. \langle X, Y\rangle_{Q^{\beta\pi}}=X^{*}Y (X, Y\in X_{\pi}) .

Clearly, we have

\langle X, Y\rangle_{Q}
-

Z=X\langle Y, Z\rangle_{Q^{\beta_{\pi}}}

for any X, Y, Z\in x_{\pi} . Hence we obtain the following proposition, which we
believe are well known.

Proposition 3.11 If the sets X_{\pi}\mathfrak{X}_{\pi}^{*} and \mathfrak{X}_{\pi}^{*}X_{\pi} are \sigma -weakly dense in Q^{\overline{\alpha}}

and Q^{\beta_{\pi}} . respectively, then x_{\pi} is a Q^{\overline{\alpha}}

-
Q^{\beta_{\pi}} -equivalence bimodule in the

sense of [R]. Therefore, if this is the case, then Q^{\overline{\alpha}} is Morita equivalent to
Q^{\beta_{\pi}}

Proof The first part is just the definition of an equivalence bimodule
between two von Neumann algebras (see [R, Definition 7.5]). The second
part follows from Theorem 7.9 of [R]. \square
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For the next lemma, we first make a small observation.
Let a\in A be in the spectral subspace A_{\pi} . We set D_{a}=\{(id\otimes\omega)\circ\alpha(a) :

\omega\in \mathcal{M}_{*}\} . Then, as shown in Appendix of [Y2], D_{a} is a finite-dimensional
\alpha- invariantsubspaceofAwih_{C}his" e_{?^{uiva1entto\pi.Sothereisabasis}}\{v_{i}\}_{i=1}^{d(\pi)}forD_{a}suchthat\alpha(v_{j})=\sum_{i=1}^{d(\pi}v_{i}\otimes V(\pi)_{i,j}." Withthehelpofthis

expression, it can be verified that we have

\alpha(a)=\sum_{i,j=1}^{d(\pi)}P_{i,j}^{\pi}(a)\otimes V(\pi)_{i,j} , (3.12)

where P_{i,j}^{\pi} is a map from A into itself defined by P_{i,j}^{\pi}=d(\pi)(id\otimes V(\pi)_{i,j}^{*}\varphi)\circ

\alpha . By using the identity P_{i,j}^{\pi}\circ P_{k,\acute{\ell}}^{\pi}=\delta_{\pi,\pi’}\delta_{j},{}_{k}P_{i,\ell}^{\pi} , one can prove that, with
X_{a}= \sum_{i}^{d(\pi)},{}_{j=1}P_{j,i}^{\pi}(a)\otimes e_{i,j}^{\pi}\in Q=A\otimes \mathcal{L}(H_{\pi}) , we have \overline{\alpha}(X_{a})=(X_{a})_{12}V(\pi)_{23} .
Namely, X_{a} thus defined belongs to the eigenspace A^{\alpha}(\pi) . Conversely, if
X= \sum_{i,j=1}^{d(\pi)}X_{i,j}\otimes e_{i,j}^{\pi} is in A^{\alpha}(\pi) , then, as in the proof of Lemma 2.6 of
[Y2] (see [Y2, Equation (2.7)]), we have

\alpha(X_{j,k})=\sum_{i=1}^{d(\pi)}X_{j,i}\otimes V(\pi)_{i,k} .

From this, it follows easily that P_{m,n}^{\pi}(X_{j,k})=\delta_{k,n}X_{j,m} . With this identity,
one can prove by a direct computation that, if we set a= \sum_{j=1}^{d(\pi)}X_{j,j} , which
clearly belongs to A_{\pi} , then we get X_{a}= \sum_{i}^{d(\pi)},{}_{j=1}P_{j,i}^{\pi}(a)\otimes e_{i,j}^{\pi}=X . This
shows that the linear map a\in A_{\pi}-X_{a}\in A^{\alpha}(\pi) is bijective. We make
use of this fact in the lemma that follows.

Lemma 3.13 Let e be an element of the fixed-point algebra A^{\alpha} . Then we
have

(\overline{AeA}^{\sigma- w})^{\alpha}=\overline{span}^{\sigma- w}\{(id\otimes Tr)(A^{\alpha}(\pi)(e\otimes 1)A^{\alpha}(\pi)^{*}) _{:} _{\pi\in Irr(K)\}} .

Proof Let us denote by \mathfrak{U} the set on the right-hand side of the asserted
identity.

Let X, Y be in A^{\alpha}(\pi) . By expressing X and Y in the form X=
\sum_{i,j}X_{i,j}\otimes e_{i,j}^{\pi} , Y=\sum_{i,j}Y_{i,j}\otimes e_{i,j}^{\pi} , we obtain (id\otimes Ik)(X(e\otimes 1)Y^{*})=

\sum_{i,j=1}^{d(\pi)}X_{i,j}eY_{i,j}^{*} . Thus we have \mathfrak{U}\subseteq\overline{AeA}^{\sigma- w} Moreover, since

\alpha((id\otimes H)(X(e\otimes 1)Y^{*}))=(id\otimes id\otimes R)o(\alpha\otimes id)(X(e\otimes 1)Y^{*})
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=(id\otimes\ulcorner b\otimes id)\circ\overline{\alpha}(X(e\otimes 1)Y^{*})

=(id\otimes n\otimes id)(X_{12}(e\otimes 1\otimes 1)Y_{12}^{*})

=(id\otimes H)(X(e\otimes 1)Y^{*})_{12} ,

the element (id\otimes H)(X(e\otimes 1)Y^{*}) belongs to the fixed-point algebra A^{\alpha} .
Hence \mathfrak{U}\subseteq(\overline{AeA}^{\sigma- w})^{\alpha}

Conversely, if a\in A_{\pi} and b\in A_{\pi’} ( \pi , \pi’\in Irr(K)), then, by (3.12), we
have

E_{\alpha}(aeb^{*})

=(id\otimes\varphi)\circ\alpha(aeb^{*})

= \sum_{i,j=1}^{d(\pi)}\sum_{k,\ell=1}^{d(\pi’)}(id\otimes\varphi)((P_{i,j}^{\pi}(a)\otimes V(\pi)_{i,j})(e\otimes 1)(P_{k,\acute{\ell}}^{\pi}(b)^{*}\otimes V(\pi’)_{k,\ell}^{*}))

= \sum_{i,j=1}^{d(\pi)}\sum_{k,\ell=1}^{d(\pi’)}\varphi(V(\pi)_{i,j}V(\pi’)_{k,\ell}^{*})P_{i,j}^{\pi}(a)eP_{k,\acute{\ell}}^{\pi}(b)^{*}

= \frac{\delta_{\pi,\pi’}}{d(\pi)}\sum_{i,j=1}^{d(\pi)}P_{i,j}^{\pi}(a)eP_{i,j}^{\pi’}(b)^{*}

Hence, with the notation introduced in the discussion preceding this lemma,
we have E_{\alpha}(aeb^{*})= \frac{1}{d(\pi)}(id\otimes h)(X_{a}(e\otimes 1)Y_{b}^{*}) if \pi=\pi’ . Since the subspace
generated by \{A_{\pi}\}_{\pi} is \sigma-weakly dense in A, it follows from the discussion
just before this lemma that E_{\alpha}(\overline{AeA}^{\sigma- w}) is contained in \mathfrak{U} . But, since
E_{\alpha}(\overline{AeA}^{\sigma- w})=(\overline{AeA}^{\sigma- w})^{\alpha} , the assertion follows. \square

To characterize factoriality of crossed products in terms of the Connes
spectrum, we need to introduce a notion of central ergodicity of an action.
For this end, we prepare the following lemma, which may be a folklore.

Lemma 3.14 The \alpha -invariant \sigma -weakly closed twO-sided ideals of A are
in natural bijective correspondence with the projections in Z(A)\cap A^{\alpha} .

Proof. Let I be an \alpha-invariant \sigma-weakly closed tw0-sided ideal of A. Take
a unique central projection p in A with X =Ap. From the \alpha-invariance of
I, we have \alpha(xp)(p\otimes 1)=\alpha(xp) for all x\in A . By applying id\otimes\varphi to
both sides of this identity, we obtain E_{\alpha}(xp)p=E_{\alpha}(xp) . By taking x=1
in this identity, we have E_{\alpha}(p)p=E_{\alpha}(p) . From this, one has E_{\alpha}(p)^{2}=

E_{\alpha}(p) , which means that E_{\alpha}(p) is a projection satisfying E_{\alpha}(p)\leq p . Since
E_{\alpha}(p-E_{\alpha}(p))=0 , it follows from the faithfulness of E_{\alpha} that p=E_{\alpha}(p) .
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Thus p belongs to A^{\alpha} . The reverse correspondence is obvious. \square

Definition 3.15 We say that an action \gamma of a compact Kac algebra on
a von Neumann algebra P is centrally ergodic if Z(P)\cap P^{\gamma}=C . By
Lemma 3.14, this condition is equivalent to the one that there is no non-
trivial \gamma-invariant \sigma-weakly closed tw0-sided ideal in P .

Lemma 3.16 If the action \alpha is centrally ergodic with full Connes spec-
trum \Gamma(\alpha)=\mathfrak{D}(K) , then the fixed-point algebra A^{\alpha} is a factor.
Proof Let e be a central projection in A^{\alpha} . Set B=eAe . Note that
B^{\alpha^{e}}(\pi)=(e\otimes 1)A^{\alpha}(\pi)(e\otimes 1) for any \pi\in Irr(K) . Since Sp(\alpha^{e})=\mathfrak{D}(K) by
assumption, we have

\overline{\tilde{e}A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi)\tilde{e}}^{\sigma- w}=\overline{B^{\alpha^{e}}(\pi)^{*}B^{\alpha^{e}}(\pi)}^{\sigma- w}

=(B\otimes \mathcal{L}(\mathcal{H}_{\pi}))^{AdV(\pi)_{23}\circ\overline{\alpha^{e}}}=\tilde{e}Q^{\beta_{\pi}}\tilde{e}

for any \pi\in Irr(K) , where \tilde{e}=e\otimes 1 . From this, it follows that

\overline{A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}}=\overline{A^{\alpha}(\pi)\tilde{e}Q^{\beta_{\pi}}\tilde{e}A^{\alpha}(\pi)^{*}}\sigma- w\sigma- w

Since A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*} is contained in A^{\alpha}\otimes \mathcal{L}(\mathcal{H}_{\pi}) as noted in the discussion
preceding Proposition 3.11, it results that

A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}\tilde{e}A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}\subseteq A^{\alpha}e\otimes \mathcal{L}(\mathcal{H}_{\pi}) .

From this, we have A^{\alpha}(\pi)\tilde{e}Q^{\beta_{\pi}}\tilde{e}A^{\alpha}(\pi)^{*}\subseteq A^{\alpha}e\otimes \mathcal{L}(H_{\pi}) . In particular,
we have A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}\subseteq A^{\alpha}e\otimes \mathcal{L}(H_{\pi}) . Accordingly, we find that (id\otimes

R)(A^{\alpha}(\pi)\tilde{e}A^{\alpha}(\pi)^{*}) is contained in A^{\alpha}e for any \pi\in Irr(K) . By Lemma 3.13,
we then obtain (\overline{AeA}^{\sigma- w})^{\alpha}\subseteq A^{\alpha}e . But note that \overline{AeA}^{\sigma- w} is clearly an \alpha-

invariant \sigma-weakly closed tw0-sided ideal of A. Hence, from the central
ergodicity of \alpha , this ideal must be A itself. This implies that A^{\alpha}e contains
A^{\alpha} , which means that e=1 . Therefore, the fixed-point algebra A^{\alpha} must
be a factor. \square

Now we are in a position to prove our main theorem of this section on
factoriality of crossed products.

Theorem 3.17 The following are equivalent:
(1) The crossed product A x_{\alpha}K is a factor;
(2) The action \alpha is centrally ergodic and has full Connes spectrum

\Gamma(\alpha)=\mathfrak{D}(K) .
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Proof. (1)\Rightarrow(2) : By Corollary 3.9, A^{\alpha} is a factor. Hence \alpha is centrally
ergodic. Then, by Lemma 3.3, we have \Gamma(\alpha)=Sp(\alpha) . For each \pi\in Irr(K) ,
Theorem 3.8 guarantees that \overline{A^{\alpha}(\pi)^{*}A^{\alpha}(\pi)}^{\sigma- w} is a non-zero \sigma-weakly closed
tw0-sided ideal of a factor Q^{\beta_{\pi}} Thus we have \overline{A^{\alpha}(\pi)^{*}A^{\alpha}(\pi)}^{\sigma- w}=Q^{\beta_{\pi}} . This
shows that \alpha has full Connes spectrum.

(2)\Rightarrow(1) : By Lemma 3.16, A^{\alpha} is a factor. For any \pi\in Irr(K) , we have
\overline{A^{\alpha}(\pi)^{*}A^{\alpha}(\pi)}^{\sigma- w}=Q^{\beta_{\pi_{1}}} On the other hand, \overline{A^{\alpha}(\pi)A^{\alpha}(\pi)^{*}}\sigma- w is a non-zero
\sigma-weakly closed tw0-sided ideal of a factor Q^{\overline{\alpha}}=A^{\alpha}\otimes \mathcal{L}(\mathcal{H}_{\pi}) . Hence we
have \overline{A^{\alpha}(\pi)A^{\alpha}(\pi)^{*}}\sigma- w=Q^{\overline{\alpha}} . From this together with Proposition 3.11,
it follows that Q^{\beta_{\pi}} is Morita equivalent to Q^{\overline{\alpha}} . Since Morita equivalent
von Neumann algebras have isomorphic centers, Q^{\beta_{\pi}} is a factor. From
Theorem 3.8, the crossed product A x_{\alpha}K is a factor. \square

4. Examples and computation

In this section, we shall give several examples of actions of compact Kac
algebras, and discuss (or compute) thier (Connes) spectrum.

A. Actions of compact groups. We first treat the case of actions of
commutative compact Kac algebras, that is, actions \alpha of compact groups G
on von Neumann algebras A. In this case, to the best of author’s knowledge,
there have already been two (different) definitions of a spectrum; one was
introduced by Roberts in [Ro, Definition 6.3] (see [NT, p. 72] also); the other
was introduced by Evans and Sund in [EvS , p. 301]. Roberts’ spectrum
is called the monoidal spectrum and denoted by Msp(a). The monoidal
spectrum behaves well particularly for actions with properly infinite fixed-
point algebra, as seen in [Ro] and [AHKT]. It is defined as follows:

Msp(a) = { \pi\in\hat{G} : A^{\alpha}(\pi) contains a unitary}.
Thus it is obvious that Msp(a)Sp(a). The spectrum Sp_{ES}(\alpha) of Evans
Sund [EvS , p. 307] is given, in terms of our language, by

ESSp(\alpha)=\{\pi\in\hat{G} ^{:} ^{A^{\alpha}(\pi)}\neq\{0\}\} .

Thier \Gamma spectrum \Gamma_{ES}(\alpha) is then defined by \Gamma_{ES}(\alpha)=\cap\{Sp_{ES}(\alpha^{e}) :
e is a non-zero projection in A^{\alpha} }. Clearly, we have Sp(a) \subseteq Sp_{ES}(\alpha) ,
\Gamma(\alpha)\subseteq\Gamma_{ES}(\alpha) . There are results in [NT, Proposition 2.4-5, p. 72] (see
also [AHKT] ) which describe one relationship among these spectrums. For
readers’ reference, we state them in a single proposition that follows.
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Proposition Assume that A^{\alpha} is properly infinite. If there exists an
ergodic subgroup of Aut(A) commuting with \alpha_{t} , t\in G , then Msp(a) =

Sp(a)= Sp_{ES}(\alpha) . Moreover, if \alpha is faithful, then they equal \hat{G} .

It is easily verified also that \Gamma(\alpha) coincides with the original Connes
spectrum when G is a compact abelian group.

B. Coactions of discrete groups. In this subsection, we are con-
cerned with the symmetric (=cocommutative) Kac algebra K_{s}(G) c on-
ically associated with each discrete group G (see [ES, Theorem 3.7.5] for
the definition of K_{s}(G)) . Its underlying von Neumann algebra is the group
von Neumann algebra \mathcal{R}(G) generated by the left regular representation
\lambda_{G} of G on \ell^{2}(G) . Note that K_{s}(G) is a compact Kac algebra, since G is
discrete. Now we consider an (arbitrary) action \alpha of K_{s}(G) , in other words,
a coaction \alpha of G on a von Neumann algebra A. It is well-known that
the unitary dual \mathfrak{D}(K_{s}(G)) of K_{s}(G) (or the set Irr(K_{s}(G)) is canonically
identified with the original group G: each s\in G corresponds to the one-
dimensional representation \omega\in \mathcal{R}(G)_{*}-\omega(\lambda_{G}(s))\in C whose generator
is 1_{C}\otimes\lambda_{G}(s) . Thus each eigenspace of the action \alpha is in this case indexed
by elements of G like A^{\alpha}(s) , and one easily finds that it is the set defined
as follows:

A^{\alpha}(s)=\{a\in A : \alpha(a)=a\otimes\lambda_{G}(s)\} . (s\in G) (4.1)

From this observation, it follows for example that s\in G is in Sp(a) if and
only if \overline{A^{\alpha}(s)^{*}A^{\alpha}(s)}^{\sigma- w}=A^{\alpha} . Let us denote by Sp_{N}(\alpha) and \Gamma_{N}(\alpha) the
spectrum and the essential spectrum of \alpha , respectively, in the sense of [N ,
Section 3] or [NT, Chapter IV]. Since s\in G belongs to Sp_{N}(\alpha) if and only
if A^{\alpha}(s)\neq\{0\} by Lemma 1.2 (iv) in Chapter IV of [NT], we have Sp(a)
Sp_{N}(\alpha) . Hence we obtain \Gamma(\alpha)\subseteq\Gamma_{N}(\alpha) . In fact, one can show that \Gamma(\alpha)

equals \Gamma_{N}(\alpha) . We also remark here that, in [Q], Quigg made a systematic
study on coactions of discrete groups on C^{*} -algebras in connection with C^{*}-

algebraic bundles. In that paper, among others, he showed a C^{*} -algebraic
version of our main theorem in this case [Q , Theorem 2. 10-11].

Al. The case where \alpha is dual In this case, there exists an action
\gamma of G on a von Neumann algebra B ( *-isomorphic to A^{\alpha} ) such that
(A, K_{s}(G) , \alpha) is (conjugate to) the system (Bx_{\gamma}G, K_{s}(G),\hat{\gamma}) , where \hat{\gamma}

is the dual action of \gamma on the crossed product B\lambda_{\gamma}G . Following the con-
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vention, we denote by \pi_{\gamma} the embedding of B in Bx_{\gamma}G . Then we have
A^{\alpha}=\pi_{\gamma}(B) . Moreover, we have \alpha(1\otimes\lambda_{G}(t))=1\otimes\lambda_{G}(t)\otimes\lambda_{G}(t) for any
t\in G . Hence it follows that

A^{\alpha}(s)=\pi_{\gamma}(B)(1\otimes\lambda_{G}(s)) . (s\in G)

Let e be a central projection in A^{\alpha} . Since A^{\alpha}=\pi_{\gamma}(B) , there is a unique
central projection p in B such that e=\pi_{\gamma}(p) . With this notation, we have

A^{\alpha^{e}}(s)=eA^{\alpha}(s)e=\pi_{\gamma}(Bp\gamma_{s}(p))(1\otimes\lambda_{G}(s)) .

Therefore, we conclude that s\in Sp(\alpha^{e}) , i.e., \overline{A^{\alpha^{e}}(s)^{*}A^{\alpha^{e}}(s)}^{\sigma- w}=A^{\alpha}e if
and only if Bp\gamma_{s^{-1}}(p)=Bp if and only if p\gamma_{s^{-1}}(p)=p . From this, it
follows that s\in G belongs to the Connes spectrum \Gamma(\alpha) if and only if
p\gamma_{s^{-1}}(p)=p for any central projection p in B, which is in turn equivalent
to the condition that the restriction \gamma_{s^{-1}}|_{Z(B)} of \gamma_{s^{-1}} to the center Z(B) of
B equals the identity. So we have shown that

\Gamma(\alpha)=\{s\in G : \gamma_{s^{-1}}|_{Z(\mathcal{B})}=id_{Z(B)}\} .

By [N , Theorem 6.1] or [NT, Theorem 1.5, p. 66], we have \Gamma_{N}(\alpha)=\Gamma(\alpha)

in this case.

A2. An example considered by Sutherland and Takesaki (see [ST ,
Examples 5.6]). In this example, let K and G be discrete groups, and
\theta : Garrow Aut(K) be a homomorphism. We form a semi-direct product
group H=Kx_{\theta}G associated with \theta . Also consider a 2-cocycle \omega on G.
We lift \omega to a 2-cocycle on H and denote it by \omega again. Namely, the lifted
2-cocycle \omega on H is given by

\omega((k, s) , (k’, t))=\omega(s, t) (k, k’\in K, s, t\in G) .

Then we consider the twisted group von Neumann a lgebra \mathcal{R}(H, \omega) gener-
ated by the twisted left regular representation \lambda_{H}^{\omega} on \ell^{2}(H) defined by

\{\lambda_{H}^{\omega}(h)\xi\}(h’)=\omega(h, h^{-1}h’)\xi(h^{-1}h’) . (\xi\in\ell^{2}(H), h, h’\in H)

With h=(k, s) and h’=(k’, t) in the above expression, the identity can be
rewritten in the form:

\{\lambda_{H}^{\omega}(k, s)\xi\}(k’, t)=\omega(s, s^{-1}t)\xi(\theta_{s^{-1}}(k)^{-1}k’, s^{-1}t) .

For readers’ information, we exhibit the twisted convolution f*_{\alpha}, g of two
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functions f and g on H=Kx_{\theta}G in the following:

(f*_{\omega}g)(k, s)= \sum_{(k’,t)\in H}\omega(s, s^{-1}t)f(k’, t)g(\theta_{t^{-1}}(k’)^{-1}k, t^{-1}s)
. (4.2)

Next we define a unitary W_{\theta} on \ell^{2}(H)\otimes\ell^{2}(G)=\ell^{2}(H\cross G) by

\{W_{\theta}\eta\}((k, s) , t)=\eta((k, s), st) ((k, s)\in H, t\in G , \eta\in\ell^{2}(H\cross G)) .

A simple calculation shows that

W_{\theta}^{*}(\lambda_{H}^{\omega}(k, s)\otimes 1)W_{\theta}=\lambda_{H}^{\omega}(k, s)\otimes\lambda_{G}(s) . (4.3)

Hence the equation

\alpha(a)=W_{\theta}^{*}(a\otimes 1)W_{\theta} (a\in \mathcal{R}(H, \omega))

defines a coaction \alpha of G on A=\mathcal{R}(H, \omega) . It can be proven that the
fixed-point algebra A^{\alpha} consists of all operators of the form \lambda_{H}^{\omega}(f) , where
f\in\ell^{2}(H) is a function with support contained in the subset K\cross\{e\} of
Hr (Note that the canonical conditional expectation E_{\alpha} from A onto A^{\alpha} is
given by E_{\alpha}=(id\otimes\varphi_{G})0\alpha , where \varphi_{G} is the Plancherel weight (trace) of
G) . Moreover, one can show from (4.1) and (4.3) that

A^{\alpha}(s)=A^{\alpha} \lambda_{H}^{\omega}(e, s) . (s\in G) (4.4)

In particular, we get A^{\alpha}(s)^{*}A^{\alpha}(s)=A^{\alpha} .
Let p be a central projection in A^{\alpha} . With the aid of (4.2), it is verified

that p\lambda_{H}^{\omega}(e, s)p=\lambda_{H}^{\omega}(e, s)p for any s\in G . (As noted above, p is of the
form p=\lambda_{H}^{\omega}(f) for some f\in\ell^{2}(H)) . From this together with (4.4), we
have

A^{\alpha^{p}}(s)=pA^{\alpha}(s)p=A^{\alpha}(s)p .

Hence

\overline{A^{\alpha^{p}}(s)^{*}A^{\alpha^{p}}(s)}^{\sigma- w}=\overline{pA^{\alpha}(s)^{*}A^{\alpha}(s)p}^{\sigma- w}=A^{\alpha}p .

Therefore, every s\in G is in Sp(\alpha^{p}) . This means that this action \alpha has full
Connes spectrum \Gamma(\alpha)=G . In particular, we have \Gamma(\alpha)=\Gamma_{N}(\alpha) .

C. Other cases. In this subsection, we are mainly concerned with ac-
tions of not necessarily commutative or cocommutative compact Kac alge-
h as
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According to [U], every compact Kac algebra K admits a minimal action
\alpha on a full factor A of type II_{1} . By Corollary 3.10, the crossed product A x_{\alpha}

K of A by this minimal action \alpha is a factor. Hence, from Theorem 3.17, \alpha

has full Connes spectrum \Gamma(\alpha) .
For every compact Kac algebra K, its coproduct \Gamma can be regarded as

an action of K on \mathcal{M} itself. This action is well known to be ergodic. Thus
this example is at the opposite extreme of the preceeding example (i.e.,
minimal actions). Since the crossed product \mathcal{M}>\triangleleft_{\Gamma}K is *-isomorphic to
\mathcal{L}(L^{2}(\varphi)) by the Takesaki duality, it is a factor. So, by Theorem 3.17 again,
this action has full Connes spectrum. Not all ergodic actions, however, have
full Connes spectrum as we can see next.

Let G_{1} be a discrete group, G_{2} a compact group, and \alpha : G_{1}arrow Aut (G_{2})

be a homomorphism. (More generally, consider a modular matched pair
(G_{1}, G_{2}, \alpha, \beta) of groups in the sense of Majid [M] ) . We continue to denote
by \alpha the action of G_{1} on L^{\infty}(G_{2}) induced by \alpha . Then form the crossed
product L^{\infty}(G_{2})x_{\alpha}G_{1} . This algebra K turns out to have Kac algebra
structure and is called the bicrossproduct Kac algebra associated with the
system (G_{1}, G_{2}, \alpha) (see [DeC] or [M] for more details). From [Y1], this Kac
algebra K admits an action \delta_{\alpha} on L^{\infty}(G_{2}) which is ergodic. In particular,
the action is centrally ergodic. But, from Proposition 2.8 of [Y1], it is easily
seen that the crossed product L^{\infty}(G_{2})x_{\delta_{\alpha}}K is never a factor except for
trivial cases. Hence, by Theorem 3.17, the action \delta_{\alpha} cannot have full Connes
spectrum.

One can construct an ergodic action of a (noncommutative and nonc0-
commutative) finite-dimensional Kac algebra on a finite type I factor with-
out full Connes spectrum by the same spirit of [GLP, Example 5.2]. For
this, one may use for example the 8 dimensional Kac algebra constructed
by Kac-Paljutkin in [KP, 8.5] .
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