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A note on the Schiffer conjecture

Robert DALMASSO
(Received April 6, 1998)

Abstract. A domain @ C R™ (n > 2) with smooth connected boundary is said to have
the Schiffer property if there is no A > 0 such that the overdetermined boundary value
problem Au+4Au+1=0in 2, u = 2% = 0 on 9 where v is the exterior normal to oQ,

% =
has a solution. We prove integral identities for the exterior normal to the boundary of a
domain €2 lacking the Schiffer property.
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1. Introduction

The Schiffer conjecture (cf. Yau [15, problem 80]) is that balls are the
only domains €2 C R™ (n > 2) with smooth connected boundaries such that
the overdetermined boundary value problem

Au+du+1=0 in Q,A>0, (1.1)
Ou
U—%—O on 01, (1.2)

where v is the exterior normal to 0f2, has a solution. 2 is said to have the
Schiffer property if there is no A > 0 such that (1.1)-(1.2) has a solution.
It is well known that balls do not have the Schiffer property. Indeed let J,,
denote the y-th Bessel function and let A > 0 be such that J,,/5(VA) = 0.
Then the function

1 Jg—l(\/x|$|)
=3 (J%—x(\/x)lwlg‘1 B 1)’ red

satisfies (1.1)—(1.2) when 2 is the unit ball. The Schiffer problem consists of
deciding which sets 2 (with smooth connected boundaries) have the Schiffer
property.

The Schiffer property is related to the Pompeiu property. A nonempty
bounded open set 2 C R” (n > 2) is said to have the Pompeiu property if
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and only if the only continuous function f on R” for which the integral of
[ over o(Q) is zero for all rigid motions o of R® is f = 0. The Pompeiu
problem asks: which sets {2 have the Pompeiu property?

Now we assume that (2 is a nonempty bounded open set with Lipschitz
boundary 0f2, and that the complement of € is connected. When  is
rotationally symmetric this implies that @ = B(a, R), the closed ball of
center a and radius R for some a € R®, 0 < R < oco. Then Williams
proved that the possession of the Pompeiu property is equivalent to the
possession of the Schiffer property (see also Berenstein [1] when 89 € C2+¢ ).
Williams in proved that the existence of a solution to (1.1), (1.2) implies
that O€! is real analytic.

References and information about various aspects of the Pompeiu prob-
lem can be found in the surveys by Zalcman [16], and in the paper of
Berenstein [2]. Let us mention also the remarkable results proved by Garo-
falo and Segala [9-11] and Ebenfelt [6-8] in the 2-dimensional case.

To explain our result we first recall a theorem obtained in [5].

Theorem 1.1 [5] Let Q C R™ n > 2, be a nonempty bounded open set
such that O € C*. Assume that problem (1.1), (1.2) has a solution u €
C?%(Q). Then, for any y € R", we have

/ 1/]2(.2:)(:1: —y).v(x)do
o0

— /M2 VA (o) (@ —y)w(z)do, jke{l,...,n}, (1.3)
and
| vi@ma) @ - vz do =0, £k, (1.4)
where v = (v1,...,1,) is the exterior normal to OS).

From [L'heorem 1.1 we deduced using elementary calculations that ellip-
soids and certain solid tori in R™ have the Pompeiu property. We also gave
examples of domains in R” (n > 2) having the Pompeiu property.

Very little was known before about the Pompeiu problem in R” for n >
3. It was proved in that proper ellipsoids have the Pompeiu property
(see [4] when n = 2 and also Johnsson when n > 2). Finally Berenstein
and Khavinson |3] proved that certain tori in R* have the Pompeiu property.

In this note we first prove the following theorem in Section 2.



A note on the Schiffer conjecture 375

Theorem 1.2 Let Q C R", n > 2, be a nonempty bounded open set such
that 0 € C2. Assume that problem (1.1), (1.2) has a solution u € C*(Q).
Then, for any y € R™, we have

| tl@w@)(@; ~ y3)(a) ~ (o — s (@) do =0, (15)
o0

for p,q € {1,...,n} and j # k, where v = (v1,...,v,) is the exterior
normal to Of).

Then in Sections 3 and 4 we show that ellipsoids and certain tori in R”
have the Schiffer property. The proofs are simpler than in [6]. Finally in
Section 5 we examine the case of planar domains: We show that conditions

(1.3)}-{1.4) are equivalent to condition [L.5).

2. Proof of Theorem 1.2

Let u € C*(Q) be a solution of the overdetermined problem (1.1), (1.2).
Since v = 0u/0v = 0 on 0N, we can write!

822;3:]- = gjj;uiuj on 90 for i,j€{1,...,n}.
The following functions
z= 32)25% and v = (zp — yk)% — (x5 - yj)aa—;;
satisfy
Az+Xz=0 in Q, z=-py, on 09,
and

Av+dv=0 in Q, v=0,
ov
E (zj — yj)vi — (Tk — ye)v; on OQ.

Using Green’s formula we can write

)\/ vedr = —/ vAzdzx
Q Q

'See Pucci P. and Serrin J.: A general variational identity, Indiana University Mathe-
matics Journal, 35-3 (1986), p. 699.
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0z ov
= -—/SlpAvd:v—/é)Q(v%—zé;)do

= [ vde— | v - y)l)
— (x — y)vj(2)) do

which gives (1.5).

3. Ellipsoids in R" (n > 2)

Theorem 3.1 Let a; > 0,5 =1,...,n and assume that a; # ay for some
J # k. Then the ellipsoid

n £L’2
Q=SzeR" ) <1
=1 %

has the Schiffer property.

Proof.  Using [Theorem 1.2 it is enough to show that does not hold.
Let a, = min{a;; j = 1,...,n} and a; = max{a;; 5 = 1,...,n}. Our

assumption implies that r # s.
We denote by = (p1,. .., tn) the exterior normal to dB(0, R). Using
polar coordinates we can write
p1 = cosfcosby---cosb,_ocosb,_1
o = cosfycosby---cosb,_ssinb,_1

p3 = cosficosfy---cosb,_3sinf,_ o

Hn—1 = COS 01 sin 92

[ = Sin by
where -5 < 01,...,60,0 < Z (if n > 3) and —7 < 6,1 < . We can
parametrize 0€) by
Tl = A1ft1,- .-, Tp = Qpfin.
Then the exterior normal to 02 is given by v = (v1,...,vy):

a1 Qj—1Q541 " Anfly
2 2,2 2 2 211/2°
(0 aipi +- oo+ ag e an )Y

vy =
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for j=1,...,n. Let

I= vp(z)vs(z)(zrvs(2) — 2507 () do.
onN

We have
do = (a3p? 4 a2u2)V%d0, if n =2,

do = cos" 26 ---cosb,_s
X (a%...a%u%_*_...+a%...a%_lui)l/2d01...d0n_l
if n> 3.

When n = 2 we have

2
I = a,as(a; — a;

™ 2 0 ain2
2)/ cos“ 0 sin“ 0 d6 £ 0.

—n a}cos? 0 + a?sin? 6
If n > 3 we can assume that r < s and we easily obtain

v
3 3 3 3 3 30,2 _ 2
I = ay--a; 10r0; - 0 10505, - ay(a, — af) b1
—T

/2 n/2 202 cos™ 20, ... 7]
[ (L5 COS 1°++C08l, 9
/ dOn_g---/ db, 5 3 # 0.

5.2 2. .2
—7/2 —m/2 Q- Appytccctaycc-an gy

The proof of the theorem is complete. ]

4. Solid Tori in R™

We consider a special kind of tori in R®, n > 3. Let a > R > 0 and
let D(a, R) denote the disk of center (a,0,...,0) and radius R in the plane
Ty = -+ = Tp-1 = 0 of R"®. By rotating this disk about the z,-axis in R®
we obtain a torus 2 of equation

2
( x%+---+x%_1~a> +z2 < R2. (4.1)

Theorem 4.1 Let a > R > 0 and let Q be the solid torus in R™ defined
by (4.1), then Q2 has the Schiffer property.

Proof.  We can parametrize Q) by

1 = (a+ RcosB,_1)cosby - cosbp,_3cosb,_o



378 R. Dalmasso
zy = (a+ Rcosb,_1)cosby ---cosb,_3sinb,_o

Tn—2 = (a+ Rcosb,_1)cosb sin by
Tpn—1 = (a+ Rcosb,_1)sinb,

T, = Rsin6,_;

where —% <6,...,0bL_3< % (ifn>4) and -7 < 6,_9,0,_1 < 7. Then
the exterior normal to 0Q is given by v = (v, ..., v,):

v = c0S0p_1co86;cosby---cosb,_3cos0,_9

vy = cosb,_1cosbcosby---cosb,_3sinb, o

Up—9 = €0s#,_1cosbsin b,
Vp—1 = €0s6,_1sinfy

Using [T’heorem 1.2 it is enough to show that

Ip = /BQ v1(2)vn(z)(z1vn(x) — 2ov1(z)) do # 0.
We have

do = R(a+ Rcosby)db1df; if n =3,

do = R(a+ Rcos On_l)"”Q cos” 360 - - cosbp_3dhy -+ db,_1
if n>4.

Clearly
J3 = aR/ / (a+ Rcosbs) cos? 01 cos 0 sin? Oy df1db-

= aR? / / cos? 1 cos? 6, sin? 0, d6,dby

aR27?
= 1 # 0.
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Now if n > 4, we write

/2
J. = aR de,, 1/ 6., 2/ b, -
—7/2

/ db1[(a + RcosB,_1)" 2
—7/2

X €08 Op_1 sin 0,1 cos™ 16y - - - cos? On—o)

= Ap / (a + Rcos6)™ 2 cos fsin? 0 db,

where A, > 0. We have

— . . Tr .
JIn = Z (277, 21) a"_3~23R23+1/ cos? T2 0sin®0db > 0.
0<2j+1<n—2 J+ -
The proof of the theorem is complete. [

Remark 1. Notice that, as in [5, Section 6], we can extend the example of
the present Section to domains bounded by hypersurfaces of revolution.

5. Planar domains

In this Section we consider the case of planar domains. We shall prove
that conditions [1.3)-{1.4) are equivalent to condition [1.5).

Let = z(s) = (z1(s),z2(s)), s € [0, L], be a parametrization of 9
by arc length. Now we denote by v = v(s) = (v1(s),va(s)), s € [0, L] the
outward normal to 92 at z(s). We have

vi(s) = z5(s),  va(s) = —21(s),

where k = k(s) denotes the curvature.

1) Assume first that [1.3) and [1.4) hold for all y € R?. Taking y = 0
we obtain

Lo Lo
/ 1" (217 — zox)) ds = / zy” (12 — Tox)) ds, (5.1)
0 0
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and
L
/ 125 (T17h — 292)) ds = 0. (5.2)
0
Therefore, for any y € R? we have
Lo, Ot
T (yv)ds= | z°(y.v)ds, (5.3)
0 0
and
L
/ 1 xh(y.v)ds = 0. (5.4)
0
Taking y = (1,0) and y = (0,1) in we get
Lo, Loy -
Ty xTyds = | zixh ds = 0. (5.5)
0 0
Then, taking y = (1,0) and y = (0,1) in and using we obtain
L s L3
/ Ty ds = / Ty ds = 0. (5.6)
0 0

From and we deduce that for all y € R? we have
L
/0 2,0, ((x1 — Y1)z} + (T2 — y2)xh) ds
L
:/0 T, T (12 + Toxh) ds, (5.7)

for p,q € {1,2}. Then it is enough to show that and imply that
the right hand side in 1s equal to zero.

Lemma 5.1 We have:
L
/0 T, T (€12] + 2xh)ds =0 for p,q € {1,2}
18 equivalent to
L 2 2\ 02 12
/ k(z] +23) (27" — 25" )ds =0 (5.8)
0
and

L
/ k(zt 4 22)z|zh ds = 0. (5.9)
0
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Proof. Integrating by parts we can write

I L
2 2
0= /0 x;x;(xlm’l + 3323)’2) ds = /0 (331 + $2>($g$:1 + m;,atg) ds

for p,q € {1,2}. Using the Frenet formulas and takingp = ¢ =1and p = 1,
q = 2, the lemma follows.

Now from we deduce that
L2//2 2\ 12 L2/// 2.1 1
0= 0 ((z1)'y" — (x3) r1")ds = ) (5519”2372 — 3T T) ) ds
L
= /0 k(x? + 2)zhxl ds

which proves (5.9). Writing
Lo
/ o) (z129 — To2)) ds
0

L AW 13
:/0 (—2-(.'131):61.’172—:(72:131 ) ds

1, ., L 3
=5 A a:l(a:’llm2+a:1xg)ds—/0 Tz ds

1k 2 2 L 3
=3/, kai(x)” — b )ds—/0 Tz} ds,

and in the same way
L 1 rL L
/ x’22(m1:l:'2 — 192}) ds = 5/ kod () — z)®) ds +/ :1312:'23 ds,
0 0 0
and then using we get

Ll o a2 2 L s 13y,
5 k(x] +33)(x1" — 257 )ds + | (@12 + 222" ) ds = 0.
0 0
(5.10)
We have

L 3 L 2
/ T179° ds = —/ zo(zhxh” + 2z17h2h) ds
0 0
L
[
0

2
:1:’1:1:’2 + 2n:1:1x'1:1:'2) ds,
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and in the same way

L 3 L 2
/ Tor| ds = ——/ z1(zh7)” — 2kz9x)2h) ds.
0 0

Therefore we have
L 13 L 2 /12
/ (:zzlxz + 917" )ds = —/ (zox)zh” + T12h! ") ds
0 0
L [ !/ /
= —/ T1To(T12] + xoxh) ds
n_/

= / (23 + xd) (22l + 2l ds

= 5/ K,(m% +:c%)(a:'12 — x§2)ds.
0

Now using (5.10) we deduce [5.8). Then by we have proved that

and {14) imply (L5].

2) To prove that implies (1.3}-{1.4), the arguments are analo-
gous. [

Remark 2. We refer the reader to [5, Section 5] for a detailed discussion
of the case of planar domains.
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