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Abstract. We give a simple characterization of invariant projectively flat affine connec-
tions, and classify all irreducible Riemannian symmetric spaces with invariant projectively
flat affine connections, and classify all simple Lie groups with left invariant projectively
flat affine connections with some exceptions. These works accomplish an early Agaoka’s
work (cf. [1]) which gave many examples of the classical cases.
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Introduction

Recently, Shima (cf. ) characterized invariant projectively flat affine
connections in terms of affine representations of Lie algebras, and showed
that a homogeneous space admits an invariant projectively flat affine con-
nection if and only if it has an equivariant centro-affine hypersurface im-
mersion.

Let M = G/K be a homogeneous space with a connected Lie group G
and a closed subgroup K, and let g, ¢ the corresponding Lie algebras. A
finite dimensional real representation (f, 17) of the Lie algebra g is called to
be spherical relative to a pair (g, ) if there exists a non-zero vector vy € V
satisfying

f(X)’U() =0, VXet

Then our first main theorem is

Theorem A (cf. Theorem 1.3) A homogeneous space M = G/K admits
a G-invariant projectively flat affine connection if and only if there exists a
real representation (f,V) of g of dimension dim M + 1, which is spherical
relative to (g,t) and satisfies
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V = f(g)vo ® Ruy. (#)

As its application, we obtain the following classification theorems:

Theorem B (cf. Theorem 2.2) Let M = G/K be an irreducible simply
connected Riemannian symmetric space. Then M = G/K admits a G-
invariant projectively flat affine connection if and only if M = G /K is one
of the following:

(1) SO(n+1)/S0(n), n > 2,

(2) SL(n+1,R)/SO(n+1),n > 2,

(3) SU*(2n)/Sp(n), n >3,

(4) SO,(n,1)/SO(n), n > 2,

(6) SL(n+1,C)/SU(n+1),n > 1,

(6) Es/Fy (non-compact type of EIV).

Moreover, we obtain:

Theorem C (cf. Theorem 3.1) Let G be a real simple Lie group. If G
admits a left invariant projectively flat affine connection, then g is one of
the following:
(a) o(3) = su(2),
(b) slln+1,R),n>1,
(c) su*(2n), n > 2,
(d) su(r,s) (r+s = even, r+s > 4); 0(3,4); 0(1,9), 0(5,5); o(3, 11),
o(7,7).

We remark in Theorem C that in the cases (a)~(c), G admits a left
invariant projectively flat affine connection, but for the case (d), we do not
know whether or not G' admits such a connection.

1. Invariant projectively flat affine connections

We first describe Shima’s theorem characterizing projectively flat affine
connections following [13], and [12].

Let D be an affine connection on an n-dimensional C* manifold M.
We always assume that D is C°°, torsion-free and Ricci-symmetric (cf. [11]).

The connection D is called to be projectively flat if in a neighborhood
of each point in M, D is projectively equivalent to an affine connection
D which is flat, that is, the curvature tensor R is identically zero. It is
well-known that D is projectively flat if and only if
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(i) the curvature tensor R of D satisfies
1
R(X,Y)Z = ———I{Ric(Y, Z)X —Ric(X,2)Y},
n p—

where Ric is the Ricci tensor, and
(ii) Ric satisfies the Codazzi equation, that is,

(DxRic)(Y, Z) = (DyRic)(X, Z),

Let M = G/K be a homogeneous space of a connected Lie group G
and a connected closed subgroup K of G. We assume G acts effectively on
G/K and M = G/K is simply connected. We denote by g and ¢, the Lie
algebras of G and K, respectively. We enlarge g to g as follows:

{EZQ@RE
5 Bl = {0}

Then Shima (cf. [13]) obtained the following theorem:

for all tangent vectors X, Y, Z (see or [12]).

Theorem 1.1 A homogeneous space M = G/K admits a G-invariant
projectively flat affine connection if and only if g has an affine representa-
tion (f,c}) on a real affine space 17, that is,

(i) (f,V) is a real representation,

(ii) § is an R-linear mapping from § into V such that

(X, Y) = f(X)aY) - f(V)q(X), for X, ¥ €3,
with the following properties:
(ili) dimV =dim M + 1,

(iv) q is surjective and the kernel is ¢
(v) f(E) is the identity mapping of V and G(E) # 0.

Remark 1.2 In[Theorem 1.1, we need not the assumption of simply con-
nectedness of G itself. Indeed, we take G the universal covering Lie group
of G with the projection 7 : G —s G, and K be the identity component of
7 1(K). Then we have M = G/K = G/K because of simply connectedness
of é/ K and M. Moreover, since a translation by each element in G coin-
cides with some translation by an element in C~}’, a G-invariant projectively
flat affine connection on M guaranteed by the original Shima’s theorem is
also G-invariant.
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Now [I’heorem 1.1 can be restated as follows:

Theorem 1.3 A homogeneous space M = G/K admits a G-invariant
projectively flat affine connection if and only if there exists a real represen-
tation (f,V) of g of dimension dim M + 1, which is spherical relative to
(g,%) and satisfies

V= f(g)’l)o @ Ruyp. (#)

Proof.  [I'heorem 1.3 can be obtained from [Theorem 1.1. Substituting
X = E in the equation in (ii) of Theorem 1.1, we have

qY) = f(Y)4q(E), Y €5, (1.4)

since [E, }N’] = 0 and f(NE) is the identity mapping of XN/N Let vo = q(F) be
a non-zero element in V' by (v). By (iv) and [1.4), for Y € &,

f(Y)vo = 0. (1.5)

We denote by f the restricted representation to g of f. Then implies
that (f,V) is a spherical representation of g relative to (g, ). By (iii) and
(iv), we have

V = f(g)vo ® Ry, (1.6)

thus we obtain the desired spherical representation (f, 17)

Conversely, assume that (g, ) admits a real representation (f, V) satis-
fying the conditions of [Theorem 1.3. We first enlarge g to g = g® RE with
[E,g] = {0} and enlarge f to a representation of g by

{ f(X)=f(X), Xeg,

where I is the identity mapping of V. Define a linear mapping § : § — V
by

{ q(Y)=f(Y)w, Yeg,
q(E) = v # 0.

Then §(Y) = f(Y)vg, ¥ € § and we have a real representation (f,V) of g,
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which satisfies that, for X , Y € g,

By the condition (#) and definition of g,

~

Im((]) = f(g)vo éRyy=V.

Since ( fLV) is spherical, Ker(qg) D £. Moreover, for the linear mapping
g:g—V,

dim Ker(q) + dimIm(g) = dimg = dimg + 1,
and

dimV = dimG/K + 1.
Thus, we have

dimKer(q) = dimg+ 1 — dim Im(qg)
= dimg+1—dimV

= dim &,

which implies Ker(g) = . Therefore, (f,§) is the desired one. O

Definition 1.7 Let M = G/K be a homogeneous space. A finite dimen-
sional real representation (f, 17) of a Lie algebra g is called to be admissible
if (f, 17) is spherical relative to (g, €) and V contains no trivial representation
of g, that is, V contains no element v # 0 satisfying that

f(g)v = {0}.

Proposition 1.8 Let M = G/K be a homogeneous space of dimension
> 2 whose isotropy representation is irreducible, that is, decomposing g into
sum of ad(®) invariant subspaces

g=tdm,
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and m s irreducible under ad(t). Then

min {dim 17; (f, 17) 15 an admissible representation of g}
> dim M + 1.

In particular, if (f, 17) is an admissible real completely reducible represen-
tation of g of dimension dim M + 1, (f,V) is irreducible.

Proof.  Let (f, 17) tle an admissible representation of g. Let vy € V be a
non-zero element of V' satisfying f(X)vy = 0 for all X € &.
Now let m’ be a subspace of m defined by

m' = {X € m; f(X)vo = 0}.
Then it is ad(¥) invariant, because
FIX,YT)wo = [f(X), f(Y)]vo

= f(X)f(Y)vo — f(Y)f(X)vo
=0,

for all X € tand Y € m'. Since m is irreducible under ad(t), m’ = {0}
or m' = m. In the case m" = m, f(g)vg = {0}. Hence Ruy is the trivial

representation of g which contradicts an admissibility of (f, ‘N/) Therefore,
m’ = {0}, i.e.,

(X €g; f(X)vy=0} =t

Then the mapping m 3 X — f(X)yy € Vis injective and dimm < dim V.
Furthermore, we obtain

dimm+1< dim V.
Otherwise, since

V = f(m)vg

and vy € 17, it should hold that, for some X; € m, vg = f(X1)vo. For all
Y et [Y,X1] €mand

F(IY, Xa))vo = F(Y)f(X1)vo — f(X1)f(Y)vo
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Therefore, we have
Y, X1] € tnm = {0}.

Thus, RX; C m is ad(t) invariant. By irreducibility of m under ad(), it
must hold that m = R X3, which contradicts that dim M > 2. ]

Proposition 1.9 Let M = G/K be a homogeneous space with dim M > 2
whose 1isotropy representation is irreducible. Let (f, 17) be a real spherical
representation of (g,¥), that is, there exists a non-zero element v in V
satisfying f(&)vg = {0}. If (f,V) is of dimension dim M + 1 and satisfies
the condition:

V = f(g)vo ® Ruy, (#)
then (f, ‘7) admits no trivial representation.
Proof. Let

m’ = {X € m; f(X)vo = 0}.

Then by the same way as the proof of [Proposition 1.8, we have m’ = {0}
or m’ =m. If m" = m, then f(g)vg = {0}, which contradicts the condition
(#). We have m’ = {0} and then

t={X €g; f(X)vo = 0}. (1.10)

Now assume that (f, 17) admits a trivial representation. Then there
exists a non-zero element v € V satisfying that f(X)v = 0 for all X € g.
By the condition (#), it can be expressed that

v = f(X1)vo + avo
for some non-zero element X; € m and real number a. We have then

f([&, X1])vo = {0}. (1.11)
Indeed, for all Y € g,

FY, Xa])vo = f(Y)f(X1)vo — F(X1)F(Y)wo

= f(Y)v
= (.

Therefore, and imply that [¢, X;] C ¢. Since m is invariant
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under ad(®), we have
[E, Xl] ctnm= {0}

In particular, RX; is an ad(¥)-invariant subspace of m. By means of irre-
ducibility of m under ad(¢), m must be RX, that is, dim M = 1, which
contradicts the assumption dim M > 2. l

By Propositions and [.9, we obtain:

Theorem 1.12 Let M = G/K be a homogeneous space of dimension > 2
whose isotropy representaton is irreducible. Let (f, 17) be a real spherical
completely reducible representation of (g,%) of dimension dim M + 1 satis-
fying the condition (#), that is, there exists a non-zero element in V such
that f(€)vo = {0} and V = f(g)vo & Rvg. Then (f,V) is irreducible.

Furthermore, we obtain:

Theorem 1.13  Assume that M = G/K is an irreducible Riemannian
symmetric space of dimension > 2. Then the irreducible representation
(f, 17) in Theorem 1.12 is of the first kind, that is, the complexification
(f€,VC) is also irreducible.

Remark 1.14 [Theorem 1.13 was obtained by Agaoka in [1, p. 161], for
his (NV)-homomorphism f.

Proof. It is well-known that m€ is either (i) irreducible or (ii) decomposed
into sum of two ad(¥€)-irreducible subspaces my of the same dimension.
Assume that (f€,VC) is reducible, i.e., VC is decomposed into

Ve=viaV,

where V; are non-zero invariant subspaces under f€(g€).
In the case (i), we have a decomposition of VC

V€ = f€(mC)vy ® Cuy,

where f€(mC)uyy and Cuy are inequivalent, irreducible as f€(¥€)-modules
because m€ is an irreducible ad (¥€)-module by the assumption. Thus, one
of V;, say V1, must be equal to f€(m€)vy and V4 = Cuy, respectively. But
since V3 is f€(gC)-invariant, VC must satisfy

VE = fC(g)u @ Cup C V3,
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which is a contradiction.
In the case (ii), we have two fC(¢€)-invariant decompositions of VC:

Ve = fC(my)vo @ f€(m_)ug ® Cvp = V1 @ Vs

Note that the first decomposition of VC is an irreducible decomposition as
fC(¢C)-modules. Therefore, Vi and V5 are isomorphic to either £€(m vy,
FE(m_)vy ® Cuyp, respectively, or £C(m, vy @ f€(m_)vg, Cuvg, respectively.
In any case, V, contains a 1-dimensional representation of g, say U. Since g
is semisimple because of irreducibility of G/ K, U is a trivial representation.
Thus, 1% itself, must contain a 1-dimensional trivial representaion, which
contradicts the irreducibility of V. We obtain [Theorem 1.13. [

2. Affine connections on symmetric spaces

In this section, we assume M = G/K is an irreducible Riemannian sym-
metric space of dim M > 2. All simply connected irreducible Riemannian
symmetric spaces are classified and divided into four types (cf. [4, p. 439)).
The compact case is Types (I) and (IT). The non-compact case is as follows:

(i) Type (III): These are (g, €), where the Lie algebra g is simple and
its complexification g€ is also simple and ¢ is a maximal compact subalgebra
of g. One can see the table of all irreducible symmetric spaces in [4, p. 518].

(ii) Type (IV): These are (g, %), where g = Ggr is the scalar field re-
striction to R of a complex simple Lie algebra G and € is a maximal compact
subalgebras of g. One can see the classification in [4, p. 516].

Now we give examples of Riemannian symmetric spaces admitting the
desired representation (f, 17) Examples 2, 3, 4 and 6 are of type (III)
and Examples 1, 2, 3, and 4 have been already known (cf. [1] or [13]) and
Example 6 is new and Example 5 is of type (IV) and quite new.

Ezample 1 (cf. [1], [13]). SO(n+1)/SO(n). In this case,

g=on+1)={X€gl(n+1LR); X +'X =0},

{3 s
o eer)

o
|
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Let us consider a real representation of g, (f, 17) given by V= R"t! the
space of n + 1-column real vectors, and

f(X)u=Xu, Xeg, eR"

Let vop = (1,0,...,0) € R, Then this representation (f, V) satisfies
{X € g; f(X)vO—O}-{’, V = f(g)vo ® Rup, and dimV = dimm + 1 =
n+ 1.

Ezample 2 (cf. [1], [13]). SL(n+1,R)/SO(n+1). Let

g = sl(n+1,R) = {X € gl(n+1,R); Tr(X) = 0},
t=o(n+1), m={Acg; A=A}

~

Let us consider an 3(n + 1)(n + 2)-dimensional representation (f, V)ofg
given by

V ={A€cgl(n+1,R);'A= A4},
F(X)A=XA+A'X, Xeg, AcV.

Let vg = I € V be the identity matrix. Then we have
{X €g f(X)wo =0} =t V= f(g)vo®Ru,

and dimV = dimm + 1 = (n+1)(n+2).

Ezample 3 (cf. [1]). SU*(2n)/Sp(n). Let

g = su"(2n) = sl(n, H) = {X € sl(2n,C); J,X = XJ,}

_ {(_/; i) A, B €gi(n,C), Tr(A + A) =0

Then we have
g=tom,

where
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A B\
= _ _|:"A=A Te(A)=0.'B=—-B\.
{(_B A), ’ () , }

Here J, is the matrix given by

o -1,
Jn = )
where I,, is the identity matrix of degree n. Let us define a mapping J of
A2 C?" into itself by
J(wi Awg) = Jun A Jws, J(w) = J, W, w, we, w € C?".
Define V by

2
V = {UE /\CQ"; Jv:v}
n —
= {’U = Z (aijei A €n+j + bijei Nej+ bij6n+i N 6n+j);
i,j=1
aij = @i, bij + bj; = 0, a;j, by € C},

where ¢;, 1 < i < 2n, is the standard basis of C2". The space V is a real

2
( 2n > = n(2n — 1) dimensional space and g acts on it naturally. Let us

take
Vo =€ Nepy1+eaNeppa+ -+ e, Aeg,,
and for X € g,
f(X)vo = Xy

= zn: {(Aij + Zji)ei Aenyj+ Bjie; Aej — Bijenti A en+j} :
ij=1
Thus, we have
{X €9 f(X)vo=0} =%, V = f(g)vo ® Ru,
and dimV = dimm + 1 = n(2n —1).
Ezample 4 (cf. [1], [13]). SO,(n,1)/SO(n). Let
g=o(n1)={Xeglln+1,R);'XJ +J'X =0},
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where J' is the matrix of degree n + 1 given by

!/ . _1 O
J = ( 0 1)
Then we have

g=tdm,

e = o(n):{<8 g);Aeo(m},

0 ‘la n
m = {(a 0>,aER }

Let us consider a real representation (f, 17) of g given by V =R and

where

f(X)u=Xu, Xeg, ueR".
Let us take vg = 4(1,0,...,0) € R**!. Then we have
{X €g; f(X)vp =0} =¢, V= f(g)vo & Ruy,
and dim V = dimm + 1 =n + 1.
Example 5. SL(n+1,C)/SU(n+1). Let
g=0r =slln+1,C)={X € gl(n+1,C); Tr(X) = 0}.
Then we have
g=tdm,
where

t =su(n+1)={Aecgln+1,C);"A=—A, Tr(A) = 0},
m = {A€gl(n+1,C); “A= A, Tr(A) = 0},

and dimm = (n +1)? — 1 = n? + 2n. Let us consider a real representation
(f,V) of g given by

V={Aegi(n+1,C); A=A},

which is the space of hermitian matrices of degree n+1, is of real dimension
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(n +1)2. The action of g on it is given by
fFIX)A=XA+A'X, Xecg, AcV.

Let us take vy = I,41 € V the identity matrix of degree n + 1. Then we
obtain

{X €g; f(X)vo =0} =&,V = f(g)vo ® R,
and dimV = dimm + 1 = (n+1)2,

Ezample 6. Eg/Fy (of non-compact type). This is the EIV type symmet-
ric space of non-compact type. By [10, p. 298], there exists a complex
irreducible representation (f, Vy,) of g€ of complex dimension 27 such that,
considered as an f(¥€)-module,

V)\e =W & Cuw, (*)

where W is a complex irreducible representation of €€ and f(¥C)w = {0}.
Here A; (i = 1,...,6) are the fundamental weights corresponding to the
fundamental roots {o;} (i = 1,...,6) of g©. By the table in [14, p. 14], and
Theorem 10.4 in [14, p. 113], it turns out that (f,V)) is of the first kind,
that is, there exists a real irreducible representation (f, V) of g of dimension
27 such that VC = Vis- This representation (f, V) is the desired one.

Indeed, putting w = vy + /—1v! vy, wWhere v, vj € V we may assume
v # 0 taking /—1w instead if necessary. We have

f(®)vo ={0} and Cuvy= Cuw.

In fact, if Cvg # Cw, Cuvp + Cw is a 2 dimensional trivial f (¢©)-module
of V), which contradicts the condition (x). Since f(g€)vy is a non-zero
f(¥€)-module and since W and Cuy are irreducible as £(¢©)-modules and
inequivalent to each other, f (gc)vo must be one of VC W or Cuy.

Here the kernel of the mapping ® : g€ 3 X — f(X)vy € VC contains

tC. Thus, we have
dim Im(®) < dim g€ — dim €€ = dim M = 26.

Therefore, ® is not surjective, that is, f(g€)v # VC. Moreover, f(g€)ug #
Cuvg. Because, if so, f(g€)uvp is an f(g€)-invariant subspace of VC, which
contradicts the irreducibility of V€. Thus, we obtain f(@©)vg = W and

VE = £(g%)vo ® Cuy,
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which implies dimc f(g€)vg = 26. Moreover, since Ker(®) > €€ and
dimc f(g€)vy = 26, we have Ker(®) = ¥C and then the kernel of the re-
striction of ® to g is equal to €. Therefore, dimg f(g)vo = 26 = dim M
and

V = f(g)U() ) R’Uo.

Lemma 2.1 Let M = G/K be a compact simply connected homogeneous
space admitting a real representation (f,V) of g of dimension dim M + 1,
which is spherical relative to (g,t) and satisfies

V= f(8)vo & Ruy. (#)

Then M 1is a unit sphere.

Proof.  We may assume G is a simply connected compact Lie group and K
is a closed subgroup. Since G is compact, V admits an f (G)-invariant inner
product (, ) in such a way |jvg|]| = 1. Then f(G)vy C S" = {v € V; ||v| =
1}, where n = dim M. By the assumption dim M = dimV —1 = n, f(Q)vo
is an open and closed subset in S™. Therefore, M = f(G)vy = S™. []

Main result in this section is the following:

Theorem 2.2 Let M = G/K be an irreducible simply connected Rieman-
nian symmetric space. Then M = G/K admits a G-invariant projectively
flat affine connection if and only if M = G/K is one of the following:

(1) SO(n+1)/SO(n), n > 2,

(2) SL(n+1,R)/SO(n+1),n>2,
(3) SU*(2n)/Sp(n), n =3,

(4) SO,(n,1)/SO(n), n > 2,

(5) SL(n+1,C)/SU(n+1),n>1,
(6) Eg/Fy (non-compact type of EIV).

Proof. By Lemma 2.1, we may assume M is non-compact. Due to Theo-
rem 1.13, we only have to find a complex irreducible representation (p, W)
of g of the first kind, i.e., W is the complexification of a real irreducible one
f/, and of complex dimension dim¢ W = dim M + 1.

Type (III). Let (g,%) be a pair of real simple Lie algebras such that
the complexification g€ is simple, and ¢ is a maximal compact Lie subalge-
bra. In the exceptional case, we can see a list of dimensions of M = G/K
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in [4, p. 518], and a list of the complex irreducible representation of the
exceptional Lie algebras g€ of dimension < dimM + 1 in 110]. It turns
out that the only exceptional symmetric space M = G/K of type (III)
admitting the complex irreducible represenatations (p, W) of g€ of dimen-
sion dimc W = dimM + 1 is non-compact type of EIV, M = Eg/Fy
(dim M = 26). But this is the case, Example 6. Together with Agaoka’s
classification (cf. [1]) of all classical symmetric spaces of type (III) admit-
ting the desired representations, we have accomplished the classification in
case of type (III).

Type (IV). This case is a pair (g, ), where g is the restriction to the
real field of a complex simple Lie algebra G and ¢ is a maximal compact
Lie subalgebra of g. In this case, it is known (cf. [3] or [14]) that every
irreducible real representation of the first kind of g is realized as (p, H(W)),
where

H(W)={Ae M,(C); "A = A},
PX)A=p(X)A+A'p(X), Xeg, AcHW),

for a complex irreducible representation (p, W) of the complex Lie algebra
G. The real dimension dim H(W) is n?, where n = dimc W. This condition
excludes the exceptional cases for a complex Lie algebra G. Furthermore, if
G is one of o(2m + 1,C) (m > 3), sp(m,C) (m > 3), or o(2m,C) (m > 4),
the dimension n = dimg W satisfying the above condition

n? —1=dim M = dim G/K

is smaller than 2m. However, the least dimension of a non-trivial finite
complex representation of the above G is 2m + 1, 2m, or 2m, respectively
(cf. [10, p. 4, p. 52]). These cases do not occur. The case o(5,C) also
does not occur, because in this case, dim M + 1 = 11 which can not be
expressed as n? for some integer n. Therefore, one can see the only case
which dim H(W) = dim M + 1 holds is that (5) SL(n + 1,C)/SU(n + 1)
and the desired representation is

V={Aegl(n+1,C); "4 = A},

for the complex representation of sl(n + 1,C), W = C"*!. Therefore, we
have [Theorem 2.2. 0
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3. Left invariant affine connections on simple Lie groups

In this section, we classify all left invariant projectively flat affine con-
nections on simple Lie groups. Existence of such connections on simply
connected Lie groups G is equivalent to the existence of a real representa-
tion (f, V) of the Lie algebra g of dimension dim g + 1 such that

~

V = f(g)vo @ Ruy, (#)

for some non-zero element vy € V.
Our main theorem is

Theorem 3.1 Let G be a real simple Lie group. If G admits a left in-

vartant projectively flat affine connection, then g is one of the following:
(a) o(3) = su(2),

(b) sl(n+1,R),n>1,

(c) su*(2n), n> 2,

(d) su(r,s) (r+s = even, r+s > 4); 0(3,4); 0(1,9), o(5,5); 0(3,11),
0(7,7).

To show [T’heorem 3.1|, we need the following lemma which was obtained
by Agaoka [1]:

Lemma 3.2 Assume that (f, 17) 15 a real representation of a real semisim-
ple Lie algebra g of dimension dimg + 1 satisfying the condition (#) :

V= f(8)vo ® Ruy, (#)

for some non-zero element vy € V. Then (f, 17) contains no trivial repre-
sentation of g.

Outline of Proof. For completeness, we give a proof of Lemma 3.2. Let
(f, 17) be a real representation of a real semisimple Lie algebra g satisfying
the condition (#) and of dimension dim g+1. By theorem 1.3, there exists a
left invariant projectively flat connection D on G with no torsion. Assume
that (f, 17) contains a trivial representation of g. Since g is semisimple,
there exists an f(g)-submodule W and a nonzero vector v of V satisfying
that

V=W®oRv and f(g)v={0}.

Agaoka (cf. Theorem 3.7 in [1]) showed that D is affinely flat due to this
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condition. However, by a non-existence theorem of left invariant flat affine
connection on a real semisimple Lie group due to Matsushima-Okamoto

(cf. [9]), we obtain Lemma 3.2. [

Now all real simple Lie algebras are classified as follows:
(I) compact simple Lie algebras g,
(I) g = Gr, where G is a complex simple Lie algebra,
(III) anon-compact real simple Lie algebra g of which complexification
g€ is simple.
For the case (I), the only compact simple Lie algebra admitting a left
invariant projectively flat connection is su(2) = 0(3) due to Lemma 2.1l.
For the case (II), we have

Lemma 3.3 There is no real simple Lie algebra of type (I1) which admits
left invariant projectively flat affine connections.

Proof.  Let g be a real simple Lie algebra of type (II). It is known (cf. [3],
[14]) that all real irreducible representations of g are exhausted by
(i) (pa,H(V)), where

H(V):={A € M,(C);"A = A}, pa(X)A :=p(X)A+ A'p(X)

for X €cg=0Gr, A€ H(V), and

(i) (pr,VR), the representation restricted to the real field of (p, V),
for a complex irreducible representation (p, V) of G.

Note that dim H(V) = n?, and dim Vg = 2n, where n = dimc V.

On the other hand, all complex simple Lie algebras G are classified
in [4. By Lemma 3.2, V must be the direct sum of a finite number of
representations of the above (i) or (i), say V = Y. H(V;) & > Vi'r, with
dim H(V;) > 1. Then it holds that

2dimcG +1 = dimV
= Znﬁ%—QZn/,

where n; = dimV, and nj' = dim Vj' > 2. Comparing the dimensions of
complex irreducible representations of G which may appear in the above
equation and making use of Weyl’s dimension formula for the classical cases
and the tables in for the exceptional cases, it turns out there is no
representation V satisfying the above equality. For example, if G = sl(n +
1,C), (n > 1), the possible dimensions of irreducible representations are
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n+1, 3n(n + 1), %(n + 1)(n + 2). But there exists no integral solution z,
y, z and w satisfying that
(n+1)’z+2(n+Dy+nn+1)z+(n+1)(n+ 2)w
=2(n’ 4 2n) +1,

since the right hand side can not be divided by n + 1. The similar hold for
the remains. L]

To prove [Theorem 3.1 for the case of a real simple Lie algebra g of type
(IIT), let us recall representation theory of g. Classification of real simple
Lie algebras g of type (III) is by Satake diagram and classification of real
irreducible representations of g is given in [3], [5] and [14].

Let II be a o fundamental system corresponding to a real simple Lie
algebra g whose complexification g€ is simple. Let C (g) be the set of equiv-
alence classes of complex irreducible representations of g (also g€). Then
C(g) corresponds bijectively to the set D of dominant integral forms of g€
relative to II. Namely, the correspondence D 3 X — (py,V)) € C(g) is
bijective, where (py, V)) € C(g) is the complex irreducible representation of
g whose highest weight is .

Two complex irreducible representations p and ¢ are said to be =-
equivalent, denoted by p ~ o, if the complex conjugation 5 or p itself, is
equivalent to 0. Let C (g) be the set of ~-equivalence classes of complex ir-
reducible representations of g. A complex irreducible representation (p,V)
is of the first kind (resp. second kind) if (pr,VR) is reducible (resp. irre-
ducible). A real irreducible (r, E) is of the first kind (resp. second kind) if
the complexification (rC, EC) is irreducible (resp. reducible). Let us denote
by R(g) the set of equivalence classes of real irreducible representations of
g. Let us denote by R!(g) the set of elements in R(g) of the first kind,
R (g) the one of the second kind, C'(g) the set of elements in C(g) of the
first kind, C!(g), the one of the second kind, and én(g), the =-equivalence
classes of complex representations of the second kind, respectively. Cartan’s
fundamental theorem says that

Theorem 3.4 (1) We have the disjoint unions:
R(g) = R'(g) UR"(g), C(g) =C'(g)uC(g).

(2) The coefficient field extension induces a bijection of RY(g) onto
Cl(g).
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(3) The coefficient field restriction induces a bijection of C(g) onto
R%(g).

We show [Theorem 3.1 by a case by case checking.
We first show two examples of real simple Lie groups admitting left
invariant projectively flat affine connections:

Ezample 7 (cf. [1]). Let g = sl(n + 1,R) be of type AL, (n > 1), G =
SL(n + 1,R). Let us consider a real representation V = gl(n + 1,R) of
dimension (n + 1)2. The Lie algebra g = sl(n + 1,R) acts on it by

f(X)Y =XY, Xe€g, Yegl(n+1,R).

Taking vo = I, the identity matrix in gl(n+1, R), we have V = f(g)vo®Ruy.
Since dimV = dim g + 1, this representation satisfies all the conditions of
Theorem 1.3. Note that V = gl(n + 1,R) = R"*! @ --. @ R"*!, which is
reducible.

Ezample 8 (cf.[1]). Let g = su*(2n) be a simple Lie algebra of type AII,
(n > 2) of dimension 4n? — 1 given by

A B _
g = {<_§ Z);A,BEQ[(TL,C), Tr(A+A):0}.

Let us consider the following representation f ) of dimension 4n?:

~ A B
V= — ; A, B € gl(n,C)
-B A

and the action of g on it is

F(X)Y:=XY, Xeg YeV.

(I 0
UO“‘OI7

it turns out that (f, V) satisfies the conditions of Theorem 1.3 and SU*(2n)
admits a left invariant projectively flat affine connection.

Taking

Now we have to show all the other simple Lie groups have no left invari-
ant projectively flat affine connections except the case (d) in [Theorem 3.1.
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In the following, we denote by pe, the representation in C(g) of which high-
est weight is the fundamental weight w; corresponding to the fundamental
roots «; € II. Numbering of IT will be followed from [2] and [14].

We show

Lemma 3.5 Let g be a real simple Lie algebra of exceptional type with

simple g€. Then G admits no left invariant projectively flat affine connec-
tion.

Proof.  Let g be a real simple Lie algebra in Lemma 3.5. We first determine
low dimensional real representations of g. By [Theorem 3.4, we only have
to determine which complex irreducible representations (py, V)) are of the
first kind or the second kind using Cartan’s criterion (cf. [4]):

g = EI dimg=178, pg,,pw, first kind,
dimgc pw, = dimg pr, = 27,
EIl dimg="78, pg,,pw,; second kind,
dimg pw, = dimc prg = 27,
EIIl dimg=78, pw,,pws second kind,
dimg pp, = dimg pr = 27,
EIV dimg=178, pw,,pw, first kind,
dimg pw, = dimc pry = 27,
EV dimg=133, pg, first kind, dimc Pror = 56,
EVI dimg =133, pg, second kind, dimc pg, = 56,
EVII dimg=133, pg, first kind, dimc P, = D6,
EVIII dimg =248, none
EIX dimg =248, none
FI dimg=52, pg, first kind, dimc P, = 26,
FII dimg =52, pg, firstkind, dimc py, = 26,
GI dimg=14, pg, first kind, dimgpy, = 7.

Thus, all real non-trivial irreducible representations of g of dimension less
than dim g are determined as follows:

g = EI) Pwys Pws dlmR Pw; = dlmR Pwg — 27,
EII? pwl R? pWGRa dlmR pw1R = dlmR pw(;R = 547
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EIll, poip;Posr, MR po, g = dIMR pre, = 54,
EIV  pm, pws, diMR pp, = dimg pw, = 27,

EV, pg,, dimgpg, =56,

EVL, pw,r, dimgpe,, =112,

EVII, pg,, dimg pg, =56,

EVIII, none

EIX, none

FI, pw,, dimg pg, = 26,

FII, pg,, dimgpg, =26,

Gl, pw,, dimgpg, =7.

Comparing the dimensions of the representations of this table, it turns out
that any real representation V' of dimension dim g+ 1 must contain a trivial

representation, which contradicts [Lemma 3.2. We have Lemma 3.5. O

Lemma 3.6 Let g be a real simple Lie algebra of type AIII s (1 <r <
s,7+8 = odd, r+s > 3), dimg = (r + 5)2 — 1. Then there is no left
wnvariant projectively flat affine connection on G.

Proof.  All non-trivial complex irreducible representations of g of dimen-
sion less than (r + s)2 — 1 are as follows:

Pwiy Pwzy Pwrys_zy Pwrys—1y P2w1r P2wrys ) and

Pwss Pwry,_3 Only when 6 <r+s<8.

Here their dimensions are dimgpp, = (T:—S> and dimg p2e, =

dime p2w,,,_; = 5(r +8)(r + s +1). Among them, Pw, With 4+ s = 2k,
k + r = even, are of the first kind, and the remains are of the second
kind. Therefore, all non-trivial real irreducible representations of g of de-
gree < (r + s)2 — 1 are as follows:

(i) If (r,s) # (2,2),(1,5),(3,3),

Pwi R> Pw,ys_1R; dimR Pw R = dimg Pw,is 1R = 2(7‘ + 8)’
PwsR; Pwrys o R;  dIMR pm, R = diMR pw, ., ,R
=(r+s)(r+s-1).
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(i) If (r,s) =(2,2),

Pwi Ry PwsR; dIMR po R = diMR pryr = 2(r + 8) = 8,
pr; dimR pr — 6.

(i) If (r,s) = (1,5), (3,3),

Po1 R, PosR; IR po, R = dIMR poyr = 2(r + 5) = 12,
Pw:R, Py R; JIMR Py R = diMR poyr = (7 + 5)(r + 5 — 1)
= 30,
P} dimg pm, = 20.
Assume that V is the desired representation of degree (r + s)2. Then

it is a direct sum of the above representations with multiplicities. But
comparing their dimensions, it turns out that the case r + s = 2k (even)

may only occur, and we have [Lemma 3.6l. (]

Remark 3.7 We remark here the case of real simple Lie algebra of type
AIII, ; with r 4+ s = 2k (even). In this case, it may only occur that

V:pwiR@"'@pij (k—times)'l
where (4, j) = (1,1), (1,2k — 1), (2k — 1,2k — 1). Then,
V:pwiReB---EBpij =C*g...9C%", (k-times),
where g = su(r, s) acts on C?* by

P (X)v=Xv, o pgy,_ (X)v=—-Xv

for X € su(r,s) and v € C*, and C?* is regarded as a real vector space of
dimension 4k. We do not know whether this V satisfies (#).

Lemma 3.8 Let g be a real simple Lie algebra of type B, (1 <r<
s, T+ s 2> 5, odd) except (r,s) = (3,4). Then there does not exist a left
wnvariant projectively flat affine connection on G.

Proof. Let{ = —%—(r+s— 1). The fundamental complex irreducible represen-
tations pg,, 1 =1,...,£ — 1, are of the first kind and of complex dimension

(T ;L 5 ), and py, is the spin representation of dimension 2¢, which is the

first kind if and only if [%(ﬁ —r+ 1)] is even, where [z] is the integral part
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of a real number z. Note that dim g = £(2¢+1). The proof goes in a similar
way as except (r,s) = (3,4) due to Theorem 3.4l O

Remark 3.9 In the case (r,s) = (3,4), pw, and pw, are of the first kind
and dimR pw, = 7, dimgR pw, = 8. It may occur that V' = pm, @ pw; © pws-

Lemma 3.10 Let g be a real simple Lie algebra of type DI, 5, (1 < r <
s, 7+s > 8, even). Then there does not ezxist a left invariant projectively flat
affine connection on G exept the cases (r,s) = (1,9), (5,5), (3,11), (7,7).

Proof. Let £ = 1(r +s). The fundamental representations pg,, i =
1,...,£ — 2, are of the first kind of complex dimension (2756)’ and pg,_,

and p, are half spin representations of complex dimension 2°~!. pg, | and
pw, are both of the first kind if and only if either r < s —4 and s — 7 = 4k
with even k, or r = s > 4. The proof goes in a similar way as
except 0(1,9), 0(5,5) (£ =5), and 0(3,11), o(7,7) (£ =T7). L]

Remark 3.11 In the exceptional cases, pw,, pws are of the first kind for
0(1,9), 0(5,5), and peyg, pw, are of the first kind for o(3,11), o(7,7). It may
occur that V = Pw; D P,y D Pw; O Pw,y, OF ‘7 = Pwy D pw, @ Pw; O Pws
for 0(1,9), 0(5,5), and V = pm, ® pw; ® Pws, O V = p; @ pw, ® pw, for
0(3,11), o(7,7).

Lemma 3.12 Let g be a real simple Lie algebra of type D111y, ¢ = 2r +1
(r >2), or £ =2r (r > 3). Then there exists no left invariant projectively
flat affine connection on G.

Proof.  In the case £ = 2r + 1, pw,, Pw,, and pg,, ., are of the second
kind. In the case £ = 2r, pp, and pg,,._, are of the second kind, and pg,,
is of the first kind. Note that dimg = ¢(2¢ —1). The proof goes in a similar
way as Lemma 3.6 ]

The proof of the cases CI,. and CII,  is given in [1, p. 157]. Thus, we
have [[heorem 3.1.
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