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On invariant projectively flat affine connections
(Dedicated to Professor Fuichi Uchida on the occasion of his sixtieth birthday)
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Abstract. We give a simple characterization of invariant projectively flat affine connec-
tions, and classify all irreducible Riemannian symmetric spaces with invariant 1)rojectively
flat affine connections, and classify all simple Lie groups with left invariant projectively
flat affine connections with some exceptions. These works accomplish an early Agaoka’s
work (cf. [1]) which gave many examples of the classical cases.
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Introduction

Recently, Shima (cf. [13]) characterized invariant projectively flat affine
connections in terms of affine representations of Lie algebras, and showed
that a homogeneous space admits an invariant projectively flat affine con-
nection if and only if it has an equivariant centr0-affine hypersurface im-
mersion.

Let M=G/K be a homogeneous space with a connected Lie group G
and a closed subgroup K, and let g , e the corresponding Lie algebras. A
finite dimensional real representation (f,\overline{V}) of the Lie algebra \mathfrak{g} is called to
be spherical relative to a pair (g, E) if there exists a non-zero vector v_{0}\in\overline{V}

satisfying

f(X)v_{0}=0 , \forall X\in g .

Then our first main theorem is

Theorem A (cf. Theorem 1.3) A homogeneous space M=G/K admits
a G invariant projectiv\underline{e}ly flat affiffiffine connection if and only if there exists a
real representation (/, V) of g of dimension dim M+1, which is spherical
relative to (\mathfrak{g}, E) and satisfifies
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\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} . (\#)

As its application, we obtain the following classification theorems:

Theorem B (cf. Theorem 2.2) Let M=G/K be an irreducible simply
connected Riemannian symmetric space. Then M=G/K admits a G-
invariant projectively flflat affiffiffine connection if and only if M=G/K is one
of the following:

(1) SO(n+l)/SO(n), n\geq 2 ,
(2) SL(n+1, R)/SO(n+1) , n\geq 2 ,
(3) SU^{*}(2n)/Sp(n) , n\geq 3 ,
(4) SO_{o}(n, 1)/SO(n) , n\geq 2 ,
(5) SL(n+1, C)/SU(n+1) , n\geq 1 ,
(6) E_{6}/F_{4} (non-compact type of EIV).

Moreover, we obtain:

Theorem C (cf. Theorem 3.1) Let G be a real simple Lie group. If G
admits a left invariant projectively flflat affiffiffine connection, then \mathfrak{g} is one of
the following:

(a) o(3)\cong\epsilon u(2) ,
(b) \epsilon\downarrow(n+1, R) , n\geq 1 ,
(c) \epsilon u^{*}(2n) , n\geq 2 ,
(d)

\epsilon u(r,s)0(7,7)

.
(r+s=even, r+s\geq 4);0(3,4);0(1,9) , o(5,5);0(3,11) ,

We remark in Theorem C that in the cases (a)\sim(c) , G admits a left
invariant projectively flat affine connection, but for the case (d), we do not
know whether or not G admits such a connection.

1. Invariant projectively flat affine connections

We first describe Shima’s theorem characterizing projectively flat affine
connections following [13], [11] and [12].

Let D be an affine connection on an n-dimensional C^{\infty} manifold M.
We always assume that D is C^{\infty} , torsion-free and Ricci-symmetric (cf. [11]).

The connection D is called to be projectively flflat if in a neighborhood
of each point in M, D is projectively equivalent to an affine connection
\overline{D} which is flat, that is, the curvature tensor \overline{R} is identically zero. It is
well-known that D is projectively flat if and only if
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(i) the curvature tensor R of D satisfies

R(X, Y)Z=\frac{1}{n-1}\{Ric(Y, Z) X-Ric(X, Z)Y\} ,

where Ric is the Ricci tensor, and
(ii) Ric satisfies the Codazzi equation, that is,

(D_{X}Ric)(Y, Z)=(D_{Y}Ric)(X, Z) ,

for all tangent vectors X , Y , Z (see [11] or [12]).
Let M=G/K be a homogeneous space of a connected Lie group G

and a connected closed subgroup K of G . We assume G acts effectively on
G/K and M=G/K is simply connected. We denote by g and e , the Lie
algebras of G and K, respectively. We enlarge \mathfrak{g} to \overline{\mathfrak{g}} as follows:

\{

\overline{g}=g\oplus RE ,

[\overline{g}, E]=\{0\} .

Then Shima (cf. [13]) obtained the following theorem:

Theorem 1.1 A homogeneous space M=G/K admits a G-invariant
projectively flflat affiffiffine connection_{-}if and only if \overline{\mathfrak{g}} has an affiffiffine representa-
tion (\overline{f},\overline{q}) on a real affiffiffine space V , that is,

(i) (\overline{f},\overline{V}) is a real representation,
(ii) \overline{q} is an R-linear mapping from \overline{\mathfrak{g}} into \overline{V} such that

\overline{q}([\overline{X},\overline{Y}])=\overline{f}(\overline{X})\overline{q}(\overline{Y})-\overline{f}(\overline{Y})\overline{q}(\overline{X}) , for \overline{X},\overline{Y}\in\overline{\mathfrak{g}} ,

with the following properties:
(iii) dim \overline{V}=\dim M+1 ,
(iv) \overline{q} is surjective and the kernel is e_{-},
(v) \overline{f}(E) is the identity mapping of V and \overline{q}(E)\neq 0 .

Remark 1.2 In Theorem 1.1, we need not the assumption of simply con-
nectedness of G itself. Indeed, we take \overline{G} the universal covering Lie group
of G with the projection \pi : Garrow G, and \overline{K} be the identity component of
\pi^{-1}\underline{(}K) . Then we have M=G/K=\overline{G}/\overline{K} because of simply connectedness
of G/K and M. Moreover, since a translation by each element in G coin-
cides with some translation by an element in \overline{G} , a \overline{G} invariant projectively
flat affine connection on M guaranteed by the original Shima’s theorem is
also G-invariant.
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Now Theorem 1.1 can be restated as follows:

Theorem 1.3 A homogeneous space M=G/K admits a G-invariant
projectively flflat affiffiffine connection if and only if there exists a real represen-
tation (f,\overline{V}) of \mathfrak{g} of dimension dim M+1, which is spherical relative to
( \mathfrak{g} , g) and satisfifies

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} . (\#)

Proof. Theorem 1.3 can be obtained from Theorem 1.1. Substituting
\overline{X}=E in the equation in (ii) of Theorem 1.1, we have

\overline{q}(\overline{Y})=\overline{f}(\overline{Y})\overline{q}(E) , \overline{Y}\in\overline{\mathfrak{g}} , (1.4)

since [E,\overline{Y}]=0 and \overline{f}\underline{(}E ) is the identity mapping of \overline{V} . Let v_{0}=\overline{q}(E) be
a non-zero element in V by (v). By (iv) and (1.4), for \overline{Y}\in e ,

\overline{f}(\overline{Y})v_{0}=0 . (1.5)

We denote by f the restricted representation to \mathfrak{g} of \overline{f}. Then (1.5) implies
that (f,\overline{V}) is a spherical representation of \mathfrak{g} relative to (\mathfrak{g}, f) . By (iii) and
(iv), we have

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} , (1.6)

thus we obtain the desired spherical representation (f,\overline{V}) .
Conversely, assume that (g, e) admits a real representation (f,\overline{V}) satis-

fying the conditions of Theorem 1.3. We first enlarge g to \overline{\mathfrak{g}}=\mathfrak{g}\oplus RE with
[E, \mathfrak{g}]=\{0\} and enlarge f to a representation of \overline{\mathfrak{g}} by

\{

\overline{f}(X)=f(X) , X\in \mathfrak{g} ,
\overline{f}(E)=I ,

where I is the identity mapping of \overline{V}

by

\{

\overline{q}(Y)=f(Y)v_{0} , Y\in g ,
\overline{q}(E)=v_{0}\neq 0 .

Define a linear mapping \overline{q} : \overline{\mathfrak{g}}arrow\overline{V}

Then \tilde{q}(\overline{Y})=\overline{f}(\overline{Y})v_{0},\overline{Y}\in\overline{\mathfrak{g}} and we have a real representation (\tilde{f},\overline{V}) of \overline{\mathfrak{g}} ,
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which satisfies that, for \overline{X},\overline{Y}\in\overline{\mathfrak{g}} ,

\overline{q}([\overline{X},\overline{Y}])=\overline{f}([\overline{X},\overline{Y}])\overline{q}(E)

=[\overline{f}(\overline{X}),\overline{f}(\overline{Y})]\overline{q}(E)

=\overline{f}(\overline{X})\overline{f}(\overline{Y})\overline{q}(E)-\overline{f}(\overline{Y})\overline{f}(\overline{X})\overline{q}(E)

=\overline{f}(\overline{X})\overline{q}(\overline{Y})-\overline{f}(\overline{Y})\overline{q}(\overline{X}) .

By the condition (\#) and definition of \overline{q},

{\rm Im}(\overline{q})=f(\mathfrak{g})v_{0}\oplus Rv_{0}=\overline{V}

Since (f_{-},\overline{V}) is spherical, Ker(\overline{q})\supset e . Moreover, for the linear mapping
\overline{q}:\overline{\mathfrak{g}}arrow V ,

dim Ker(\overline{q})+\dim{\rm Im}(\overline{q})=\dim\overline{\mathfrak{g}}=\dim \mathfrak{g}+1 ,

and

dim \overline{V}=\dim G/K+1 .

Thus, we have

dim Ker(\overline{q})=\dim \mathfrak{g}+1- dim {\rm Im}(\overline{q})

=\dim \mathfrak{g}+1- dim \overline{V}

=\dim f ,

which implies Ker(\overline{q})=e . Therefore, (\overline{f},\overline{q}) is the desired one. \square

Definition 1.7 Let M=G\underline{/}K be a homogeneous space. A finite dimen-
sional real representation (f, V) of a Lie \underline{a}lgebra \mathfrak{g} is called to be admissible
if (f,\overline{V}) is sph\underline{e}rical relative to (\mathfrak{g}, t) and V contains no trivial representation
of \mathfrak{g} , that is, V contains no element v\neq 0 satisfying that

f(\mathfrak{g})v=\{0\} .

Proposition 1.8 Let M=G/K be a homogeneous space of dimension
\geq 2 whose isotropy representation is irreducible, that is, decomposing \mathfrak{g} into
sum of ad(6) invariant subspaces

\mathfrak{g}=E\oplus \mathfrak{m} ,
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and \mathfrak{m} is irreducible under ad(E) . Then

min \{\dim\overline{V};(f,\overline{V}) is an admissible representation of \mathfrak{g}\}

\geq\dim M+1 .

In particular, if (f,\overline{V}) is an admissible real completely reducible represen-
tation of g of dimension dim M+1 , (f,\overline{V}) is irreducible.

Proof. Let (f,\overline{V}) be an admissible representation of \mathfrak{g} . Let v_{0}\in\overline{V} be a
non-zero element of \overline{V} satisfying f(X)v_{0}=0 for all X \in e .

Now let \mathfrak{m}’ be a subspace of \mathfrak{m} defined by

\mathfrak{m}’=\{X\in \mathfrak{m};f(X)v_{0}=0\} .

Then it is ad(t) invariant, because

f([X, Y])v_{0}=[f(X), f(Y)]v_{0}

=f(X)f(Y)v_{0}-f(Y)f(X)v_{0}

=0,

for all X \in e and Y\in \mathfrak{m}’ . Since \mathfrak{m} is irreducible under ad(f) , \mathfrak{m}’=\{0\}

or \mathfrak{m}’=\mathfrak{m} . In the case \mathfrak{m}’=\mathfrak{m} , f(\mathfrak{g})v_{0}=\{0\} . Hence Rv_{0} is the trivial
representation of g which contradicts an admissibihty of (f,\overline{V}) . Therefore,
\mathfrak{m}’=\{0\} , i.e. ,

\{X\in \mathfrak{g};f(X)v_{0}=0\}=t .

Then the mapping \mathfrak{m}\ni X – f(X)v_{0}\in\overline{V} is injective and dim \mathfrak{m}\leq\dim\overline{V}

Furthermore, we obtain

dim \mathfrak{m}+1\leq\dim\overline{V}

Otherwise, since

\overline{V}=f(\mathfrak{m})v_{0}

and v_{0}\in\overline{V} , it should hold that, for some X_{1}\in \mathfrak{m} , v_{0}=f(X_{1})v_{0} . For all
Y\in e , [Y, X_{1}]\in \mathfrak{m} and

f([Y, X_{1}])v_{0}=f(Y)f(X_{1})v_{0}-f(X_{1})f(Y)v_{0}

=f(Y)v_{0}

=0.
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Therefore, we have

[Y, X_{1}]\in E\cap \mathfrak{m}=\{0\} .

Thus, RX_{1}\subset \mathfrak{m} is ad(E) invariant. By irreducibility of \mathfrak{m} under ad(6) , it
must hold that \mathfrak{m}=RX_{1} , which contradicts that dim M\geq 2 . \square

Proposition 1.9 Let M=G/K be a homogeneous space with dim M\geq 2

whose isotropy representation is irreducible. Let (f,\overline{V}) be a real spherical
representation of (\mathfrak{g}, E) , that is, there exists a non-zero element v_{0} in \overline{V}

satisfying f(t)v_{0}=\{0\} . If (f,\overline{V}) is of dimension dim M+1 and satisfifies
the condition:

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} , (\#)

then (f,\overline{V}) admits no trivial representation.

Proof. Let

\mathfrak{m}’=\{X\in \mathfrak{m};f(X)v_{0}=0\} .

Then by the same way as the proof of Proposition 1.8, we have \mathfrak{m}’=\{0\}

or \mathfrak{m}’=\mathfrak{m} . If \mathfrak{m}’=\mathfrak{m} , then f(\mathfrak{g})v_{0}=\{0\} , which contradicts the condition
(\#) . We have \mathfrak{m}’=\{0\} and then

e =\{X\in \mathfrak{g};f(X)v_{0}=0\} . (1.10)

Now assume that (f,\overline{V}) admits a trivial representation. Then there
exists a non-zero element v\in\overline{V} satisfying that f(X)v=0 for all X\in \mathfrak{g} .
By the condition (\#) , it can be expressed that

v=f(X_{1})v_{0}+av_{0}

for some non-zero element X_{1}\in \mathfrak{m} and real number a . We have then

f([t, X_{1}])v_{0}=\{0\} . (1.11)

Indeed, for all Y\in e ,

f([Y, X_{1}])v_{0}=f(Y)f(X_{1})v_{0}-f(X_{1})f(Y)v_{0}

=f(Y)v
=0.

Therefore, (1.10) and (1.11) imply that [t, X_{1}]\subset e . Since \mathfrak{m} is invariant
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under ad(E) , we have

[E, X_{1}]\subset?\cap \mathfrak{m}=\{0\} .

In particular, RX_{1} is an ad(R) -invariant subspace of \mathfrak{m} . By means of irre-
ducibility of rn under ad(E) , nt must be RX_{1} , that is, dim M=1, which
contradicts the assumption dim M\geq 2 . \square

By Propositions 1.8 and 1.9, we obtain:

Theorem 1.12 Let M=G/K be a homogeneous space of dimension \geq 2

whose isotropy representaton is irreducible. Let (f,\overline{V}) be a real spherical
completely reducible representation of (\mathfrak{g}, E) of dimension dim M+1 satisfy
fying the condition (\#) , that is, there exists a non-zero element in \overline{V} such
that f(t)v_{0}=\{0\} and V=f(\mathfrak{g})v_{0}\oplus Rv_{0} . Then (f,\overline{V}) is irreducible.

Furthermore, we obtain:

Theorem 1.13 Assume that M=G/K is an irreducible Riemannian
symmetric space of dimension \geq 2 . Then the irreducible representation
(f,\overline{V}) in Theorem 1.12 is of the fifirst kind, that is, the complexifification
(f^{C},\overline{V}^{C}) is also irreducible.

Remark 1.14 Theorem 1.13 was obtained by Agaoka in [1, p. 161], for
his (AQ-homomorphism f.
Proof It is well-known that \mathfrak{m}^{C} is either (i) irreducible or (ii) decomposed
into sum of two ad(e^{C}) -irreducible subspaces \mathfrak{m}_{\pm} of the same dimension.
Assume that (f^{C},\overline{V}^{C}) is reducible, i.e., \overline{V}^{C} is decomposed into

\overline{V}^{C}=V_{1}\oplus V_{2} ,

where V_{i} are non-zero invariant subspaces under f^{C}(\mathfrak{g}^{C}) .
In the case (i), we have a decomposition of \overline{V}^{C}

\overline{V}^{C}=f^{C}(\mathfrak{m}^{C})v_{0}\oplus Cv_{0} ,

where f^{C}(\mathfrak{m}^{C})v_{0} and Cv_{0} are inequivalent, irreducible as f^{C}(f^{C}) -modules
because \mathfrak{m}^{C} is an irreducible ad(?^{C}) -module by the assumption. Thus, one
of V_{i} , say V_{1} , must be equal to f^{C}(\mathfrak{m}^{C})v_{0} and V_{2}=Cv_{0} , respectively. But
since V_{2} is f^{C}(\mathfrak{g}^{C}) invariant \overline{V}^{C} must satisfy

\overline{V}^{C}=f^{C}(\mathfrak{g}^{C})v_{0}\oplus Cv_{0}\subset V_{2} ,
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which is a contradiction.
In the case (ii), we have two f^{C}(f^{C})-invariant decompositions of \overline{V}^{C} :

\overline{V}^{C}=f^{C}(\mathfrak{m}_{+})v_{0}\oplus f^{C}(\mathfrak{m}_{-})v_{0}\oplus Cv_{0}=V_{1}\oplus V_{2} .

Note that the first decomposition of \overline{V}^{C} is an irreducible decomposition as
f^{C}(?^{C}) -modules. Therefore, V_{1} and V_{2} are isomorphic to either f^{C}(\mathfrak{m}_{+})v_{0} ,
f^{C}(\mathfrak{m}_{-})v_{0}\oplus Cv_{0} , respectively, or f^{C}(\mathfrak{m}_{+})v_{0}\oplus f^{C}(\mathfrak{m}_{-})v_{0} , Cv_{0} , respectively.
In any case, V_{2} contains a 1-dimensional representation of g , say U . Since \mathfrak{g}

is semisimple because of irreducibility of G/K, U is a trivial representation.
Thus, \overline{V} itself, must contain a 1-dimensional trivial representaion, which
contradicts the irreducibility of \overline{V} We obtain Theorem 1.13. \square

2. Affine connections on symmetric spaces

In this section, we assume M=G/K is an irreducible Riemannian sym-
metric space of dirn M\geq 2 . All simply connected irreducible Riemannian
symmetric spaces are classified and divided into four types (cf. [4, p. 439]).
The compact case is Types (I) and (II). The non-compact case is as follows:

(i) Type (III): These are (\mathfrak{g}, E) , where the Lie algebra g is simple and
its complexification \mathfrak{g}^{C} is also simple and e is a maximal compact subalgebra
of g . One can see the table of all irreducible symmetric spaces in [4, p. 518].

(ii) Type (IV): These are (\mathfrak{g}, k) , where \mathfrak{g}=\mathcal{G}_{R} is the scalar field re-
striction to R of a complex simple Lie algebra \mathcal{G} and e is a maximal compact
subalgebras of \mathfrak{g} . One can see the classification in [4, p. 516].

Now we give examples of Riemannian symmetric spaces admitting the
desired representation (f,\overline{V}) . Examples 2, 3, 4 and 6 are of type (III)
and Examples 1, 2, 3, and 4 have been already known (cf. [1] or [13]) and
Example 6 is new and Example 5 is of type (IV) and quite new.

Example 1 (cf. [1], [13]). SO(n+l)/SO(n). In this case,

g =o(n+1)=\{X\in \mathfrak{g}\mathfrak{l}(n+1, R);X+{}^{t}X=0\} ,

e=\{ (\begin{array}{ll}0 00 A\end{array}) ; A\in o(n)\} ,

\mathfrak{m}=\{ (\begin{array}{ll}0 -^{t}aa O\end{array}) ; a\in R^{n}\}
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Let us consider a real representation of \mathfrak{g} , (f,\overline{V}) given by \overline{V}=R^{n+1} , the
space of n+1-column real vectors, and

f(X)u=Xu, X\in \mathfrak{g} , \in R^{n+1}

Let v_{0}={}^{t}( 1, 0, . . ’
0)\in R^{n+1} . Then this representation (f,\overline{V}) satisfies

\{X\in \mathfrak{g};f(X)v_{0}=0\}=e,\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} , and dim \tilde{V}=\dim \mathfrak{m}+1=

n+1 .

Example 2 (cf. [1], [13]). SL(n+1, R)/SO(n+1) . Let

\mathfrak{g} =\epsilon \mathfrak{l}(n+1, R)=\{X\in \mathfrak{g}\mathfrak{l}(n+1, R);E(X)=0\} .
e =o(n+1) , \mathfrak{m}=\{A\in \mathfrak{g};{}^{t}A=A\} .

Let us consider an \frac{1}{2}(n+1)(n+2)-dimensional representation (f,\overline{V}) of \mathfrak{g}

given by

\overline{V}=\{A\in \mathfrak{g}\mathfrak{l}(n+1, R);{}^{t}A=A\} ,
f(X)A=XA+A{}^{t}X , X\in \mathfrak{g} , A\in\overline{V}

Let v_{0}=I\in\overline{V} be the identity matrix. Then we have

\{X\in \mathfrak{g};f(X)v_{0}=0\}=P , \overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} ,

and dim \overline{V}=\dim \mathfrak{m}+1=\frac{1}{2}(n+1)(n+2) .

Example 3 (cf. [1]). SU^{*}(2n)/Sp(n) . Let

\mathfrak{g} =\epsilon u^{*}(2n)=\epsilon 1(n, H)=\{X\in\epsilon \mathfrak{l}(2n, C);J_{n}\overline{X}=XJ_{n}\}

=\{ ( \frac{B}{A} ) ; A, B\in \mathfrak{g}\mathfrak{l}(n, C) , Tr(A+\overline{A})=0\}

Then we have

\mathfrak{g}

=e\oplus \mathfrak{m} ,

where

e =\{X\in \mathfrak{g};{}^{t}\overline{X}=-X\}=\{ ( \frac{B}{A} ) ; {}^{t}\overline{A}=-A,{}^{t}B=B\}!.

\mathfrak{m}=\{X\in \mathfrak{g};{}^{t}\overline{X}=X\}
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=\{ ( \frac{B}{A} ) ; {}^{t}\overline{A}=A , Tr(A)=0, r_{B=}-B\}

Here J_{n} is the matrix given by

J_{n}=(\begin{array}{ll}O -I_{n}I_{n} O\end{array}) ,

where I_{n} is the identity matrix of degree n . Let us define a mapping J of
\wedge^{2}C^{2n} into itself by

J(w_{1}\wedge w_{2})=Jw_{1}\wedge Jw_{2} , J(w)=J_{n}\overline{w} , w_{1} , w_{2} , w\in C^{2n}

Define \overline{V} by

\overline{V}=\{v\in\Lambda^{2}C^{2n} ; Jv=v\}

= \{v=\sum_{i,j=1}^{n}(a_{ij}e_{i}\wedge e_{n+j}+b_{ij}e_{i}\wedge e_{j}+\overline{b}_{ij}e_{n+i}\wedge e_{n+j}) ;

a_{ij}=\overline{a}_{ji} , b_{ij}+b_{ji}=0 , a_{ij} , b_{ij}\in C\} ,

where e_{i} , 1\leq i\leq 2n , is the standard basis of C^{2n} . The space \overline{V} is a real
(\begin{array}{l}2n2\end{array}) =n(2n-1) dimensional space and \mathfrak{g} acts on it naturally. Let us
take

v_{0}=e_{1}\wedge e_{n+1}+e_{2}\wedge e_{n+2}+)\cdot+e_{n}\wedge e_{2n} ,

and for X\in \mathfrak{g} ,

f(X)v_{0}=Xv_{0}

= \sum_{i,j=1}^{n}\{(A_{ij}+\overline{A}_{ji})e_{i}\wedge e_{n+j}+B_{ji}e_{i}\wedge e_{j}-\overline{B}_{ij}e_{n+i}\wedge e_{n+j\}}

Thus, we have

\{X\in \mathfrak{g};f(X)v_{0}=0\}=f , \overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} ,

and dim \overline{V}=\dim \mathfrak{m}+1=n(2n-1) .

Example 4 (cf. [1], [13]). SO_{o}(n, 1)/SO(n) . Let

\mathfrak{g}=0(n, 1)=\{X\in \mathfrak{g}\mathfrak{l}(n+1, R);{}^{t}XJ’+J’X=0\} ,
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whe^{1}1^{\cdot}G,J’ is the matrix of degree n+1 given by

.J’=(\begin{array}{ll}-1 00 I_{n}\end{array})

TIICII W(^{Y} have1

\mathfrak{g}

=\#\oplus \mathfrak{m} ,

w11C\Gamma C

e =o(n)=\{ (\begin{array}{ll}0 00 A\end{array}) ; A\in 0(n)\} ,

\mathfrak{n}\tau=\{ (\begin{array}{ll}0 {}^{t}aa (j)\end{array}) ; a\in R^{n}\}

Le t us (.()nsidcr a real representation (f,\overline{V}) of g given by \overline{V}=R^{n+1} and

f(X)u=Xu, X\in- \mathfrak{g} , u\in R^{n+1}

L( t1J_{-}S t he \iota)0={}^{t}(1, () , . . . , 0 ) \in R^{n+1} . Then we have

\{X\in \mathfrak{g};f(X)v_{0}=0\}=f,\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} ,

fll(n dilxl \overline{V}=di_{l}n\mathfrak{m}+1=n+1 .

Exarr’ plc^{J}, 5. SL(n-\vdash 1, C)/SU(n+1) . Let

\mathfrak{g} =\mathcal{G}_{R}=\epsilon 1(n+1, C)= { X\in \mathfrak{g}\mathfrak{l}(n+1, C) ; Tr(X) =0}.
T1_{1}c_{J}^{1}n wc have

\mathfrak{g}=P\oplus \mathfrak{m} ,

w11C^{Y}\Gamma(^{Y}

e =\epsilon u(n+1)= { A\in \mathfrak{g}1(\prime n+1, C);{}^{t}\overline{A}=-A , Tr(X) =0},
\mathfrak{m}= { A\in \mathfrak{g}\mathfrak{l} ( \prime n+1 , C ) ;{}^{t}\overline{A}=A , Tr(X) =0},

and c1iI11\mathfrak{m}=(n+1)^{2}-1=n^{2}+2n . Let us consider a real representation
(f,\overline{V}) of g given by

\overline{V}=\{A\in \mathfrak{g}\mathfrak{l}(n+1, C);{}^{t}\overline{A}=A\} ,

which is_{\iota}^{\urcorner} the space of hermitian matrices of degree n+1 , is of real dimension
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(n+1)^{2} . The action of g on it is given by

f(X)A=XA+A{}^{t}\overline{X} , X\in \mathfrak{g} , A\in\overline{V}

Let us take v_{0}=I_{n+1}\in\overline{V} the identity matrix of degree n+1 . Then we
obtain

\{X\in \mathfrak{g};f(X)v_{0}=0\}=k,\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} ,

and dim \overline{V}=\dim \mathfrak{m}+1=(n+1)^{2} .

Example 6. E_{6}/F_{4} (of non-compact type). This is the EIV type symmet-
ric space of non-compact type. By [10, p. 298], there exists a complex
irreducible representation (f, V_{\lambda_{6}}) of \mathfrak{g}^{C} of complex dimension 27 such that,
considered as an f(k^{C})-module,

V_{\lambda_{6}}=W\oplus Cw , (*)

where W is a complex irreducible representation of e^{C} and f(?^{C})w=\{0\} .
Here \lambda_{i} (i=1, \ldots , 6) are the fundamental weights corresponding to the
fundamental roots \{\alpha_{i}\} (i=1, \ldots , 6) of \mathfrak{g}^{C} . By the table in [14, p. 14], and
Theorem 10.4 in [14, p. 113], it turns out that (f, V_{\lambda_{6}})_{-}is of the first kind,
that is, there exists a real irreducible representation (/, V) of \mathfrak{g} of dimension
27 such that \overline{V}^{C}=V_{\lambda_{6}} . This representation (f,\overline{V}) is the desired one.

Indeed, putting w=v_{0}+\sqrt{-1}v_{0}’ , where v_{0} , v_{0}’\in\overline{V} , we may assume
v_{0}\neq 0 taking \sqrt{-1}w instead if necessary. We have

f(E)v_{0}=\{0\} and Cv_{0}=Cw .

In fact, if Cv_{0}\neq Cw , Cv_{0}+Cw is a 2 dimensional trivial f(f^{C}) -module
of V_{\lambda_{6}} , which contradicts the condition (*) . Since f(\mathfrak{g}^{C})v_{0} is a non-zero
f(E^{C}) -module and since W and Cv_{0} are irreducible as f(f^{C}) -modules and
inequivalent to each other, f(\mathfrak{g}^{C})v_{0} must be one of \overline{V}^{C} , W or Cv_{0} .

Here the kernel of the mapping \Phi : \mathfrak{g}^{C}\ni X\vdash\Rightarrow f(X)v_{0}\in\overline{V}^{C} contains
e^{C} . Thus, we have

dim {\rm Im}(\Phi)\leq\dim \mathfrak{g}^{C}- dim t^{C}=\dim M=26 .

Therefore, \Phi is not surjective, that is, f(\mathfrak{g}^{C})v_{0}\neq\overline{V}^{C} . Moreover, f(\mathfrak{g}^{C})v_{0}\neq

Cv_{0} . Because, if so, f(\mathfrak{g}^{C})v_{0} is an f(\mathfrak{g}^{C}) -invariant subspace of \overline{V}^{C} , which
contradicts the irreducibility of \overline{V}^{C} . Thus, we obtain f(\mathfrak{g}^{C})v_{0}=W and

\overline{V}^{C}=f(\mathfrak{g}^{C})v_{0}\oplus Cv_{0} ,
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which implies \dim_{C}f(\mathfrak{g}^{C})v_{0}=26 . Moreover, since Ker (\Phi)\supset k^{C} and
\dim_{C}f(\mathfrak{g}^{C})v_{0}=26 , we have Ker(\Phi)=P^{C} and then the kernel of the re-
striction of \Phi to g is equal to e . Therefore, \dim_{R}f(\mathfrak{g})v_{0}=26=\dim M

and

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} .

Lemma 2.1 Let M=G/K be a compact simply connected homogeneous
space admitting a real representation (f,\overline{V}) of g of dimension dim M+1,
which is spherical relative to (\mathfrak{g}, f) and satisfifies

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} . (\#)

Then M is a unit sphere.

Proof. We may assume G is a simply connected compact Lie group and K
is a closed subgroup. Since G is compact, \overline{V} admits an f(G)-invariant inner
product ( . ) in such a way ||v_{0}||=1 . Then f(G)v_{0}\subset S^{n}=\{v\in\overline{V};||v||=

1\} , where n=\dim M . By the assumption \dim M=\dim\overline{V}-1=n , f(G)v_{0}

is an open and closed subset in S^{n} . Therefore, M=f(G)v_{0}=S^{n} . \square

Main result in this section is the following:

Theorem 2.2 Let M=G/K be an irreducible simply connected Rieman-
nian symmetric space. Then M=G/K admits a G-invariant projectively
flflat affiffiffine connection if and only if M=G/K is one of the following:

(1) SO(n+1)/SO(n) , n\geq 2 ,
(2) SL(n+1, R)/SO(n+1) , n\geq 2 ,
(3) SU^{*}(2n)/Sp(n) , n\geq 3 ,
(4) SO_{o}(n, 1)/SO(n) , n\geq 2 ,
(5) SL(n+1, C)/SU(n+1) , n\geq 1 ,
(6) E_{6}/F_{4} (non-compact type of EIV).

Proof. By Lemma 2.1, we may assume M is non-compact. Due to TheO-
rem 1.13, we only have to find a complex irreducible representation (\rho, W)

of g of the first kind, i.e., W is the complexification of a real irreducible one
\overline{V} . and of complex dimension \dim_{C}W=\dim M+1 .

Type (III). Let (\mathfrak{g}, f) be a pair of real simple Lie algebras such that
the complexification \mathfrak{g}^{C} is simple, and e is a maximal compact Lie subalge-
bra. In the exceptional case, we can see a list of dimensions of M=G/K
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in [4, p. 518], and a list of the complex irreducible representation of the
exceptional Lie algebras 9^{C} of dimension \leq\dim M+1 in [10]. It turns
out that the only exceptional symmetric space M=G/K of type (III)
admitting the complex irreducible represenatations (\rho, W) of 9^{C} of dime
sion \dim_{C}W= dim M+1 is non-compact type of EIV, M=E_{6}/F_{4}

(dim M=26). But this is the case, Example 6. Together with Agaoka’s
classification (cf. [1]) of all classical symmetric spaces of type (III) admit-
ting the desired representations, we have accomplished the classification in
case of type (III).

Type (IV). This case is a pair (\mathfrak{g}, ?) , where g is the restriction to the
real field of a complex simple Lie algebra \mathcal{G} and e is a maximal compact
Lie subalgebra of \mathfrak{g} . In this case, it is known (cf. [3] or [14]) that every
irreducible real representation of the first kind of \mathfrak{g} is realized as (\overline{\rho}, H(W)) ,
where

H(W)=\{A\in M_{n}(C);{}^{t}\overline{A}=A\} ,
\overline{\rho}(X)A=\rho(X)A+A\overline{{}^{t}\rho(X)} , X\in \mathfrak{g} , A\in H(W) ,

for a complex irreducible representation (\rho, W) of the complex Lie algebra
\mathcal{G} . The real dimension dim H(W) is n^{2} , where n=\dim_{C}W This condition
excludes the exceptional cases for a complex Lie algebra \mathcal{G} . Furthermore, if
\mathcal{G} is one of o(2m+1, C)(m\geq 3) , \epsilon \mathfrak{p}(m, C)(m\geq 3) , or o(2m, C)(m\geq 4) ,
the dimension n=\dim_{C}W satisfying the above condition

n^{2}-1=\dim M=\dim G/K

is smaller than 2m . However, the least dimension of a non-trivial finite
complex representation of the above \mathcal{G} is 2m+1,2m, or 2m, respectively
(cf. [10, p. 4, p. 52]). These cases do not occur. The case 0(5, C) also
does not occur, because in this case, dim M+1=11 which can not be
expressed as n^{2} for some integer n . Therefore, one can see the only case
which dim H(W)=\dim M+1 holds is that (5) SL(n+1, C)/SU(n+1)
and the desired representation is

\overline{V}=\{A\in \mathfrak{g}\mathfrak{l}(n+1, C);{}^{t}\overline{A}=A\} ,

for the complex representation of \epsilon 1(n+1, C) , W=C^{n+1} . Therefore, we
have Theorem 2.2. \square
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3. Left invariant affine connections on simple Lie groups

In this section, we classify all left invariant projectively flat affine con-
nections on simple Lie groups. Existence of such connections on simply
connected Lie groups G is equivalent to the existence of a real representa-
tion (f,\overline{V}) of the Lie algebra \mathfrak{g} of dimension dim \mathfrak{g}+1 such that

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} , (\#)

for some non-zero element v_{0}\in\overline{V}

Our main theorem is

Theorem 3.1 Let G be a real simple Lie group. If G admits a left in-
variant projectively flflat affiffiffine connection, then g is one of the following:

(a) o(3)\cong\epsilon u(2) ,
(b) \epsilon \mathfrak{l}(n+1, R) , n\geq 1 ,
(c) \epsilon\iota\iota^{*}(2n) , n\geq 2 ,
(d)

\epsilon u(r,s)0(7,7)

.
(r+s=even, r+s\geq 4);0(3,4);0(1,9) , o(5,5);0(3,11) ,

To show Theorem 3.1, we need the following lemma which was obtained
by Agaoka [1]:

Lemma 3.2 Assume that (f,\overline{V}) is a real representation of a real semisim-
ple Lie algebra \mathfrak{g} of dimension dim \mathfrak{g}+1 satisfying the condition (\#) :

\overline{V}=f(\mathfrak{g})v_{0}\oplus Rv_{0} , (\#)

for some non-zero element v_{0}\in\overline{V} Then (f,\overline{V}) contains no trivial repre-
sentation of \mathfrak{g} .

Outline of Proof For completeness, we give a proof of Lemma 3.2. Let
(f,\overline{V}) be a real representation of a real semisimple Lie algebra g satisfying
the condition (\#) and of dimension dim \mathfrak{g}+1 . By theorem 1.3, there exists a
left invariant projectively flat connection D on G with no torsion. Assume
that (f,\overline{V}) contains a trivial representation of \mathfrak{g} . Since g is semisimple,
there exists an f(\mathfrak{g}) -submodule W and a nonzero vector v of \overline{V} satisfying
that

\overline{V}=W\oplus Rv and f(\mathfrak{g})v=\{0\} .

Agaoka (cf. Theorem 3.7 in [1]) showed that D is affinely flat due to this
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condition. However, by a non-existence theorem of left invariant flat affine
connection on a real semisimple Lie group due to Matsushima-Okamoto
(cf. [9]), we obtain Lemma 3.2. \square

Now all real simple Lie algebras are classified as follows:
(I) compact simple Lie algebras g ,

(II) \mathfrak{g}=\mathcal{G}_{R} , where \mathcal{G} is a complex simple Lie algebra,
(III) a non-compact real simple Lie algebra g of which complexification

\mathfrak{g}^{C} is simple.
For the case (I), the only compact simple Lie algebra admitting a left

invariant projectively flat connection is \epsilon u(2)\cong o(3) due to Lemma 2.1.
For the case (II), we have

Lemma 3.3 There is no real simple Lie algebra of type (II) which admits
left invariant projectively flflat affiffiffine connections.

Proof Let g be a real simple Lie algebra of type (II). It is known (cf. [3],
[14] ) that all real irreducible representations of 9 are exhausted by

(i) (\rho_{\Lambda}, H(V)) , where

H(V):=\{A\in M_{n}(C);{}^{t}\overline{A}=A\} , \rho_{\Lambda}(X)A:=\rho(X)A+A^{t}\overline{\rho(X)}

for X\in \mathfrak{g}=\mathcal{G}_{R} , A\in H(V) , and
(ii) (\rho_{R}, V_{R}) , the representation restricted to the real field of (\rho, V) ,

for a complex irreducible representation (\rho, V) of \mathcal{G} .
Note that dim H(V)=n^{2} , and dim V_{R}=2n , where n=\dim_{C}V

On the other hand,all- complex simple Lie algebras \mathcal{G} are classified
in [4]. By Lemma 3.2, V must be the direct sum of a finite number of
representations of the above (i) or (ii), say \overline{V}=\sum H(V_{i})\oplus\sum V_{j_{R}}’ , with
dim H(V_{i})>1 . Then it holds that

2 \dim_{C}\mathcal{G}+1=\dim\overline{V}

= \sum n_{i^{2}}+2\sum n_{j’} ,

where n_{i}=\dim V_{i} and n_{j’}= dim V_{j}’\geq 2 . Comparing the dimensions of
complex irreducible representations of \mathcal{G} which may appear in the above
equation and making use of Weyl’s dimension formula for the classical cases
and the tables in [10] for the exceptional cases, it turns out there is no
representation \overline{V} satisfying the above equality. For example, if \mathcal{G}=\epsilon \mathfrak{l}(n+

1 , C) , (n\geq 1) , the possible dimensions of irreducible representations are
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y,z andwsatisfyingthatn+1,\frac{1}{2}n(n+l),\frac{1}{2}(n+l)(n+2)
. But there exists no integral solution x ,

(n+1)^{2}x+2(n+1)y+n(n+1)z+(n+1)(n+2)w
=2(n^{2}+2n)+1 ,

since the right hand side can not be divided by n+1 . The similar hold for
the remains. \square

To prove Theorem 3.1 for the case of a real simple Lie algebra g of type
(III), let us recall representation theory of g . Classification of real simple
Lie algebras \mathfrak{g} of type (III) is by Satake diagram and classification of real
irreducible representations of \mathfrak{g} is given in [3], [5] and [14].

Let II be a \sigma fundamental system corresponding to a real simple Lie
algebra g whose complexification \mathfrak{g}^{C} is simple. Let C(\mathfrak{g}) be the set of equiv-
alence classes of complex irreducible representations of \mathfrak{g} (also 9^{C} ). Then
C(\mathfrak{g}) corresponds bijectively to the set D of dominant integral forms of \mathfrak{g}^{C}

relative to \Pi . Namely, the correspondence D\ni\lambda-*(\rho_{\lambda}, V_{\lambda})\in C(\mathfrak{g}) is
bijective, where (\rho_{\lambda}, V_{\lambda})\in C(\mathfrak{g}) is the complex irreducible representation of
\mathfrak{g} whose highest weight is \lambda .

Two complex irreducible representations \rho and \sigma are said to be\approx-

equivalent, denoted by \rho\approx\sigma , if the complex conjugation \overline{\rho} or \rho itself, is
equivalent to \sigma . Let \hat{C}(\mathfrak{g}) be the set of\approx equivalence classes of complex ir-
reducible representations of \mathfrak{g} . A complex irreducible representation (\rho, V)

is of the fifirst kind (resp. second kind) if (\rho_{R}, V_{R}) is reducible (resp. irre-
ducible). A real irreducible (r, E) is of the fifirst kind (resp. second kind) if
the complexification (r^{C}, E^{C}) is irreducible (resp. reducible). Let us denote
by \mathcal{R}(\mathfrak{g}) the set of equivalence classes of real irreducible representations of
g . Let us denote by \mathcal{R}^{I}(\mathfrak{g}) the set of elements in \mathcal{R}(\mathfrak{g}) of the first kind,
\mathcal{R}^{II}(\mathfrak{g}) the one of the second kind, C^{I}(\mathfrak{g}) the set of elements in C(\mathfrak{g}) of the
first kind, C^{II}(\mathfrak{g}) , the one of the second kind, and \hat{C}^{II}(\mathfrak{g}) , the\approx equivalence
classes of complex representations of the second kind, respectively. Cartan’s
fundamental theorem says that

Theorem 3.4 (1) We have the disjoint unions:

\mathcal{R}(\mathfrak{g})=\mathcal{R}^{I}(\mathfrak{g})\cup \mathcal{R}^{II}(\mathfrak{g}) , C(\mathfrak{g})=C^{I}(\mathfrak{g})\cup C^{II}(\mathfrak{g}) .

(2) The coeffiffifficient fifield extension induces a bijection of \mathcal{R}^{I}(\mathfrak{g}) onto
C^{I}(\mathfrak{g}) .
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(3) The coeffiffifficient fifield restriction induces a bijection of \hat{C}^{II}(\mathfrak{g}) onto
\mathcal{R}^{II}(\mathfrak{g}) .

We show Theorem 3.1 by a case by case checking.
We first show two examples of real simple Lie groups admitting left

invariant projectively flat affine connections:

Example 7 (cf. [1]). Let g =\epsilon \mathfrak{l}(n+1, R) be of typ\underline{e}AI_{n}(n\geq 1) , G=
SL(n+1, R) . Let us consider a real representation V=\mathfrak{g}\mathfrak{l}(n+1, R) of
dimension (n+1)^{2} . The Lie algebra \mathfrak{g}=\epsilon \mathfrak{l}(n+1, R) acts on it by

f(X)Y:=XY,\cdot X\in \mathfrak{g} , Y\in \mathfrak{g}\mathfrak{l}(n+1, R) .

Taking v_{0}=I , the identity matrix in \mathfrak{g}\mathfrak{l}(n+1, R) , we have \overline{V}=f(\mathfrak{g})vo\oplus Rv_{0} .
Since dim \overline{V}=\dim \mathfrak{g}+1 , this representation satisfies all the conditions of
Theorem 1.3. Note that V=\mathfrak{g}\mathfrak{l}(n+1, R)=R^{n+1}\oplus\cdot . \oplus R^{n+1} , which is
reducible.

Example 8 (cf. [1]). Let g =\epsilon u^{*}(2n) be a simple Lie algebra of type AII_{n}

(n\geq 2) of dimension 4n^{2}-1 given by

\mathfrak{g}=\{ ( \frac{B}{A} ) ; A , B\in \mathfrak{g}1(n, C) , H(A+\overline{A})=0\}

Let us consider the following representation (f,\overline{V}) of dimension 4n^{2} :

\overline{V}=\{ ( \frac{B}{A} ) ; A, B\in \mathfrak{g}\mathfrak{l}(n, C)\} ,

and the action of \mathfrak{g} on it is

f(X)Y:=XY, X\in \mathfrak{g} , Y\in\overline{V}

Taking

v_{0}=(\begin{array}{ll}I OO I\end{array}).
,

it turns out that (f,\overline{V}) satisfies the conditions of Theorem 1.3 and SU^{*}(2n)

admits a left invariant projectively flat affine connection.

Now we have to show all the other simple Lie groups have no left invari-
ant projectively flat affine connections except the case (d) in Theorem 3.1.
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In the following, we denote by \rho_{\varpi_{i}} the representation in C(\mathfrak{g}) of which high-
est weight is the fundamental weight \varpi_{i} corresponding to the fundamental
roots \alpha_{i}\in\Pi . Numbering of II will be followed from [2] and [14].

We show

Lemma 3.5 Let \mathfrak{g} be a real simple Lie algebra of exceptional type with
simple \mathfrak{g}^{C} . Then G admits no left invariant projectively flflat affiffiffine connec-
tion.

Proof. Let g be a real simple Lie algebra in Lemma 3.5. We first determine
low dimensional real representations of \mathfrak{g} . By Theorem 3.4, we only have
to determine which complex irreducible representations (\rho_{\lambda}, V_{\lambda}) are of the
first kind or the second kind using Cartan’s criterion (cf. [14]):

\mathfrak{g} =E I dim \mathfrak{g} =78, \rho_{\varpi_{1}} , \rho_{\varpi_{6}} first kind,
\dim_{C}\rho_{\varpi_{1}}=\dim_{C}\rho_{\varpi_{6}}=27 ,

E II \dim \mathfrak{g}=78 , \rho_{\varpi_{1}} , \rho_{\varpi_{6}} second kind,
\dim_{C}\rho_{\varpi_{1}}=\dim_{C}\rho_{\varpi_{6}}=27 ,

E III \dim \mathfrak{g} =78, \rho_{\varpi_{1}} , \rho_{\varpi_{6}} second kind,
\dim_{C}\rho_{\varpi_{1}}=\dim_{C}\rho_{\varpi_{6}}=27 ,

E IV \dim \mathfrak{g}=78 , \rho_{\varpi_{1}} , \rho_{\varpi_{6}} first kind,
\dim_{C}\rho_{\varpi_{1}}=\dim_{C}\rho_{\varpi_{6}}=27 ,

EV \dim \mathfrak{g}=133 , \rho_{\varpi_{7}} first kind, \dim_{C}\rho_{\varpi_{7}}=56 ,
E VI dimg =133 , \rho_{\varpi_{7}} second kind, \dim_{C}\rho_{\varpi_{7}}=56 ,
E VII \dim \mathfrak{g} =133 , \rho_{\varpi_{7}} first kind, \dim_{C}\rho_{\varpi_{7}}=56 ,
E VIII dimg =248 , none
E IX \dim \mathfrak{g} =248, none
F I \dim \mathfrak{g} =52 , \rho_{\varpi_{4}} first kind, \dim_{C}\rho_{\varpi_{4}}=26 ,
F II dimg =52 , \rho_{\varpi_{4}} first kind, \dim_{C}\rho_{\varpi_{4}}=26 ,
G I dim \mathfrak{g}=14 , \rho_{\varpi_{1}} first kind, \dim_{C}\rho_{\varpi_{1}}=7 .

Thus, all real non-trivial irreducible representations of \mathfrak{g} of dimension less
than dim \mathfrak{g} are determined as follows:

\mathfrak{g} =E I, \rho_{\varpi_{1}} , \rho_{\varpi_{6}} , \dim_{R}\rho_{\varpi_{1}}=\dim_{R}\rho_{\varpi_{6}}=27 ,
EII , \rho_{\varpi_{1R}} , \rho_{\varpi_{6R}} , \dim_{R}\rho_{\varpi_{1R}}=\dim_{R}\rho_{\varpi_{6R}}--54 ,
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E III, \rho_{\varpi_{1R}} , \rho_{\varpi_{6R}} , \dim_{R}\rho_{\varpi_{1R}}=\dim_{R}\rho_{\varpi_{6R}}=54 ,
E IV \rho_{\varpi_{1}} , \rho_{\varpi_{6}} , \dim_{R}\rho_{\varpi_{1}}=\dim_{R}\rho_{\varpi_{6}}=27 ,

EV, \rho_{\varpi_{7}} , \dim_{R}\rho_{\varpi_{7}}=56 ,
EVI, \rho_{\varpi_{7R}} , \dim_{R}\rho_{\varpi_{7R}}=112 ,

E VII, \rho_{\varpi_{7}} , \dim_{R}\rho_{\varpi_{7}}=56 ,
E III, none
EIX, none
FI, \rho_{\varpi_{4}} , \dim_{R}\rho_{\varpi_{4}}=26 ,

FII, \rho_{\varpi_{4}} , \dim_{R}\rho_{\varpi_{4}}=26 ,

GI , \rho_{\varpi_{1}} , \dim_{R}\rho_{\varpi_{1}}=7 .

Comparing the dimensions of the representations of this table, it turns out
that any real representation \overline{V} of dimension dim \mathfrak{g}+1 must contain a trivial
representation, which contradicts Lemma 3.2. We have Lemma 3.5. \square

Lemma 3.6 Let \mathfrak{g} be a real simple Lie algebra of type AIII_{r,s}(1\leq r\leq

s , r+s=odd, r+s\geq 3) , dim \mathfrak{g} =(r+s)^{2} –1. Then there is no left
invariant projectively flat affiffiffine connection on G .

Proof. All non-trivial complex irreducible representations of g of dimen-
sion less than (r+s)^{2}-1 are as follows:

\rho_{\varpi_{1}} , \rho_{\varpi_{2}} , \rho_{\varpi_{r+s-2}} , \rho_{\varpi_{r+s-1}} , \rho_{2\varpi_{1}} , \rho_{2\varpi_{r+s-1}} and
\rho_{\varpi_{3}} , \rho_{\varpi_{r+s-3}} only when 6\leq r+s\leq 8 .

Here their dimensions are \dim_{C}\rho_{\varpi_{i}} = (\begin{array}{l}r+si\end{array}) and \dim_{C}\rho_{2\varpi_{1}} =

\dim_{C}\rho_{2\varpi_{r+s-1}}=\frac{1}{2}(r+s)(r+s+1) . Among them, \rho_{\varpi_{k}} with r+s=2k,
k+r=even, are of the first kind, and the remains are of the second
kind. Therefore, all non-trivial real irreducible representations of \mathfrak{g} of de-
gree< (r+s)^{2}-1 are as follows:

(i) If (r, s)\neq(2,2) , (1, 5) , (3, 3) ,

\rho_{\varpi_{1}R} , \rho_{\varpi_{r+s-1}R;} \dim_{R}\rho_{\varpi_{1}R}=\dim_{R}\rho_{\varpi_{r+s-1}R}=2(r+s) ,
\rho_{\varpi_{2}R} , \rho_{\varpi_{r+s-2}R;} \dim_{R}\rho_{\varpi_{2}R}=\dim_{R}\rho_{\varpi_{r+s-2}R}

=(r+s)(r+s-1) .
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(ii) If (r, s)=(2,2) ,

\rho_{\varpi_{1}R} , \rho_{\varpi_{3}R;} \dim_{R}\rho_{\varpi_{1}R}=\dim_{R}\rho_{\varpi_{3}R}=2(r+s)=8 ,

\rho_{\varpi_{2}} ; \dim_{R}\rho_{\varpi_{2}}=6 .

(iii) If (r, s)=(1,5) , (3, 3) ,

\rho_{\varpi_{1}R)}\rho_{\varpi_{5}R;} \dim_{R}\rho_{\varpi_{1}R}=\dim_{R}\rho_{\varpi_{5}R}=2(r+s)=12 ,
\rho_{\varpi_{2}R} , \rho_{\varpi_{4}R;} \dim_{R}\rho_{\varpi_{2}R}=\dim_{R}\rho_{\varpi_{4}R}=(r+s)(r+s-1)

=30 ,
\rho_{\varpi_{3}} ; \dim_{R}\rho_{\varpi_{3}}=20 .

Assume that \overline{V} is the desired representation of degree (r+s)^{2} . Then
it is a direct sum of the above representations with multiplicities. But
comparing their dimensions, it turns out that the case r+s=2k (even)
may only occur, and we have Lemma 3.6. \square

Remark 3.7 We remark here the case of real simple Lie algebra of type
AIII_{r,s} with r+s=2k (even). In this case, it may only occur that

\overline{V}=\rho\varpi_{i}R\oplus\cdot\cdot\oplus\rho\varpi_{j}R ( k-times),

where (i, j)=(1,1) , (1, 2k-1) , (2k-1,2k-1) . Then,

\overline{V}=\rho\varpi_{i}R\oplus\cdots\oplus\rho\varpi_{j}R=C^{2k}\oplus\cdot\cdot\oplus C^{2k} , ( k-times),

where \mathfrak{g}=\epsilon u(r, s) acts on C^{2k} by

\rho_{\varpi_{1}}(X)v=Xv , or \rho_{\varpi_{2k-1}}(X)v=-^{t}Xv

for X\in\epsilon u(r, s) and v\in C^{2k} , and C^{2k} is regarded as a real vector space of
dimension 4k . We do not know whether this \overline{V} satisfies (\#) .

Lemma 3.8 Let g be a real simple Lie algebra of type BI_{r,s} , (1\leq r\leq

s , r+s\geq 5 , odd) except (r, s)=(3,4) . Then there does not exist a left
invariant projectively flflat affiffiffine connection on G .

tations\rho_{\varpi_{i}},i=Proof.Let\ell=\frac{1}{12},(.r.+.,s_{\ell-1,areofthefifirstkindandofcomplexdimension}-1).Thefundamentalcomplexirreduciblerepresen-

(\begin{array}{l}r+si\end{array}) , and \rho_{\varpi_{\ell}} is the spin representation of dimension 2^{\ell} , which is the

first kind if and only if [ \frac{1}{2}(\ell-r+1)] is even, where [x] is the integral part
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of a real number x . Note that dim \mathfrak{g}=\ell(2\ell+1) . The proof goes in a similar
way as Lemma 3.6 except (r, s)=(3,4) due to Theorem 3.4. \square

Remark 3.9 In the case (r,s)=(3, 4), \rho_{\varpi_{1}} and \rho_{\varpi_{\underline{3}}} are of the first kind
and \dim_{R}\rho_{\varpi_{1}}=7 , \dim_{R}\rho_{\varpi s}=8 . It may occur that V =\rho_{\varpi_{1}}\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi s} .

Lemma 3.10 Let \mathfrak{g} be a real simple Lie algebra of type DI_{r,s} , (1\leq r\leq

s , r+s\geq 8 , even). Then there does not exist a leffl invariant projectively flflat
affiffiffine connection on G exept the cases (r, s)=(1,9) , (5, 5) , (3, 11) , (7, 7) .

Proof. Let \ell=\frac{1}{2}(r+s) . The fundamental representations \rho_{\varpi_{i}} , i=
1 , . . ’

\ell-2 , are of the first kind of complex dimension (\begin{array}{l}2\ell i\end{array}) , and \rho_{\varpi_{\ell-1}}

and \rho_{\varpi_{\ell}} are half spin representations of complex dimension 2^{\ell-1} . \rho_{\varpi_{\ell-1}} and
\rho_{\varpi_{\ell}} are both of the first kind if and only if either r\leq s-4 and s-r=4k
with even k , or r=s\geq 4 . The proof goes in a similar way as Lemma 3.6
except o(1,9) , 0(5,5)(\ell=5) , and o(3,11) , 0(7,7)(\ell=7) . \square

Remark 3.11 In the exceptional cases, \rho_{\varpi_{4}} , \rho_{\varpi_{5}} are of the first kind for
0(1,9) , 0(5,\underline{5}) , and \rho_{\varpi_{6}} , \rho_{\varpi_{7}} are of the first kind for o(3,11) , 0(7,7) . It may
occur that V=\rho_{\varpi_{1}}\oplus\underline{\rho}_{\varpi_{1}}\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi_{4}} , or \overline{V}=\rho_{\varpi_{1}}-\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi_{5}}

for 0(1,9) , 0(5,5) , and V=\rho_{\varpi_{1}}\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi_{6}} , or V=\rho_{\varpi_{1}}\oplus\rho_{\varpi_{1}}\oplus\rho_{\varpi_{7}} for
0(3,11) , 0(7_{:}7) .

Lemma 3.12 Let \mathfrak{g} be a real simple Lie algebra of type DIII_{\ell} , \ell=2r+1
(r\geq 2) , or \ell=2r(r\geq 3) . Then there exists no leffl invariant projectively
flflat affiffiffine connection on G .

Proof. In the case \ell=2r+1 , \rho_{\varpi_{1}} , \rho_{\varpi_{2r}} and \rho_{\varpi_{2r+1}} are of the second
kind. In the case \ell=2r , \rho_{\varpi_{1}} and \rho_{\varpi_{2r-1}} are of the second kind, and \rho_{\varpi_{2r}}

is of the first kind. Note that dim \mathfrak{g} =\ell(2\ell-1) . The proof goes in a similar
way as Lemma 3.6. \square

The proof of the cases CI_{r} and CII_{r,s} is given in [1, p. 157]. Thus, we
have Theorem 3.1.
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