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A singular integral operator related to block spaces

AbdelNaser J. AL-HASAN* and Dashan FAN
(Received November 10, 1997; Revised July 3, 1998)

Abstract. Let h(t) be an L® function on (0, 00), Q(y’) be a B,?’O function on the unit
sphere satisfying the mean zero property (1.1) and Py (t) be a real polynomial on R of
degree N satisfying Py (0) = 0. We prove that the singular integral operator

(Tey nf) (z) = po. / (YU )y ™" f(z — Pn(ly)y')dy
R’n
is bounded in LP(R™) for 1 < p < oo, and the bound is independent of the coeflicients
of PN(t).
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1. Introduction

Let R", n > 2, be the n-dimensional Euclidean space and S™! be
the unit sphere in R™ equipped with the normalized Lebesque measure

do = do(z'). Let Q(z) be a homogenous function of degree zero, with
Qe LY(S" 1) and

/ Q(z)do(z') = 0, (1.1)
S’n—l

where ' = a1 for any z # 0.

Suppose that h(t) € L*(0,00). Let Py(t) be a polynomial of degree N
satisfying Py (0) = 0.
The singular integral operator Tp, p f is defined by

(Trynf) @) = po. [ K(w)f(@— Pu(ly)y)dy
R~

where ' = % € 8"71, K(y) = h(|y))Qy/)|y| ™ and f € S(R™).
We denote Tpy 5 by Ty, if Py(t) = t; and we denote Tp,, j, by T7 if
Pn(t) =t and h(t) = 1.
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The investigation of such operators began with Calderén-Zygmund’s
pioneering papers [3]. By introducing the rotation method, Calderén
and Zygmund proved that the operator Tt is bounded in LP(R™), 1 <
p < oo, provided Q € LLog"L. However, Calderén-Zygmund’s method
fails in studying the general operator 17 5, whose kernel has the additional
roughness in the radial direction due to the presence of h. This phenomenon
was first observed and studied by R. Fefferman [6] and subsequently was
studied by many other authors ([1], [4], [5], [7], [8], [9], [10], [14], et al.).
Readers may see these references for backgrounds and further extensions.
Among these papers, the following theorem can be found in [4] (see also

or [T4]).

Theorem A Suppose n > 2, that Q is a homogeneous function of degree
zero satisfying (1.1), h satisfies suppsq & fOR \h(t)|?dt < C. Then the op-
erator Ty p, is bounded in LP(R™), 1 < p < oo, provided ) € LI(S™ 1) for
some q > 1.

In order to weaken the condition € L?(S™!), Yiang and Lu in-
troduced certain block spaces B on S"~!. Below we briefly review the
definition of the spaces BA"”. More details can be found in [11].

A g¢-block on S" ! is an L7 (1 < q < 0o) function b(.) that satisfies

supp(b) C @ for some Q, (1.2)

where Q = S" !N {y e R" : |y —¢| < p for some ¢ € " ! and p € (0,1]};
1_

I8lly < Q1. (13)

For p > 0 and v € R, define a non-negative function ®,, by

I

1 1
P, .(1) / u 1" log¥ —du 0<t<I;
t U
®,.(t) =0 if t>1.
The block spaces B on S™~! are defined by

BEY(S™ ) = {re L}(S" ) ZC bm

each by, is a g-block supported in Qyn, and Mf"*({Cn}) < 0o} where

({Cn}) = Z Crnl{1 + @0 (|Qm])}-
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The “norm” M"(Q) of Q € B is defined by M!(Q) = inf
{M¥({Cn})}, where the infimum is taken over all g-block decompositions
of Q.

The method of block decomposition of functions was originated by M.H.
Taibleson and G. Weiss in the study of the convergence of the Fourier series
(see [16]). Later on, many applications of the block decomposition to har-
monic analysis were discovered. For the details, readers may see the survey
book [11], which is a good reference in this topic. Particularly, one can find

in (see also [13]) that

Li(S™ 1) C BE¥(S™ ) C BM(S™!) for v>e, peR;
and

Be(s") € BIA(S™) € BY (8™

for 0 < § < p and any real numbers «, 3, 7.
In [9], [10], Jiang and Lu proved the following theorem.

Theorem B Suppose n > 2, Q is a homogeneous function of degree zero
satisfying (1.1). If h is a bounded radial function, then Ty, is bounded in
LP(R™), 1 < p < oo, provided Q) € B{I"O for some ¢ > 1 and u > 0.

It was noted by Keitoku and Sato in that Theorem B is essentially
the same of Theorem A, since for any ¢ > 1 and p > 0, B#O(S§"1) C
U,>1 L"(8"71). But Keitoku and Sato pointed out that |, L"(S"!) is
properly contained in B*(S™!) for any ¢ > 1. The relationship between
BX(8™!) and Llog™ L(S™!) remains open. Now we state the main result
in this paper.

Theorem 1 Suppose that () is a homogeneous function of degree zero sat-
isfying (1.1), and that h is an L>(0,00) function. Then, the operator Tp,, p,
is bounded in LP(R™) if Q € BYO(S"™1) for some q > 1, and the bound is
independent of the coefficients of the polynomial Py .

Remarks.

1. For the reason of simplicity, in Theorem 1, we assume h €
L*°(0,00). Actually, this condition can be weakened to the condition
SUPR>( & fOR |h(t)]?dt < co. Readers can find this easy treatment in [8].
Thus, even in the case P(t) = t, our theorem is an improvement of Theo-
rem A and B.
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2. By the definition, Q € BS’O(S"_I) has the block decomposition
=Y Cnbm(y) (1.4)

where each b,, is a g-block, supported in Q,, and

Z|Cm|{1+log (lQm|)} < 00.

Throughout this paper, we always use the letter C' to denote a posi-
tive constant that may vary at each occurrence but is independent of the
essential variables.

2. Some Lemmas

Lemma A (Van der Corput [15]) Suppose ¢ and f are smooth functions
on [a,b] and ¢ is real-valued. If |¢*) ()| > 1 for x € [a,b] then

|/ irp(t) dt’ < CRAF [||f||oo + “flnl}

holds when
i) k=>2
(ii) or k=1, if in addition it is assumed that ¢'(t) is monotonic.

Let h and Q(y') = Y- Cpby (') be as in [Theorem 1. For the polynomial
Py(t) = Y3, Bat?, we denote Pn(t) = Sio1 Bt for r = 1,2,...,N.
Define the following functions and operators:

Buur (£)(@) = [ (yDlyl b (0 (x — Pu(lyl)y) )y

R~

G k(&) = / h(ly) |yl "y )e P16 gy,
2k <Jy|<2k+1

[ ,r(§) = / ™" |h(|y)) b (i) |e " (WD W6) gy
2k<|y|<2k+1

Ak (&) = / I~ Ry Qy")|e B (WD 8 gy,

2k <Jy|<2k+1
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A (€) = / ly| Q) [e =P WD) gy
2k<y|<2k+!

T 1) = SUD s F@)s 05, (2) = sup s + £ (@)

?2,rf(93) = Sllip |AQ,k,r * f(w)L
Clearly, we have

Teyn () =) _oapn* f
k

Also, for each r = 1,2,..., N, we can write
TPr,h (f) = Z Z Cm Ob k,r * f
m

where

by ke, (§) = / Ay |y bm (y' e (18DEY") gy
2k<|y|<2k+1

It is easy to see that ||Go i n|lw < C, ||,k N|loo < C uniformly for k
and m.

Lemma 2.1 For 1 < p < oo and h € L*°(0,00), there is a constant C

such that [log . (f)lp < Clifllp and |log,fllp < CllAg, ()1l < Clifllp,
where the constant C is independent of the block b,,(.) and the coefficients
of the polynomial P, (it may depend on r).

Proof.  Clearly, we only need to prove the first inequality.
Now

o # 5@ = [ DIyl b1 (@ = Prlly)y)dy.

2k <Jy|<2k+1

Write P-(ly))y' = (Ta(ly]),M2(|yl), ..., Ha(ly|)), where each II; is a
polynomial of |y| whose coefficients depend on y'.

We denote P(ly|) = (L (ly|) Ta(|yl), - - -, Tn(ly])), then

onhr ¥ F@ = [ IR(yDIy (w1 — Pllyl))dy.
2k<yl<okt
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Thus

SUp |4tp, ke ¥ f ()]
keZz

< sup [|Al 02 / b (¥') f (= — P([y]))ldy
keZz

2k <|y|<2k+1

<oswp2® [ [ ()15 — P(e)ldo(y)de

keZ
|tls2k+1 Sn—-1

Noting ||bm[|1(gn-1y < C, where C is independent of b,,, by Hélder’s
inequality we have

Y4
(sup b f(w)|>
keZz

<c [ (suws / £ = PO)Idt) om)ldo ()
s

Therefore, we have

p
Sup |Up,, kr * ()]
keZz

LP(Rn)
<C / |bm (y') sup /If Idt do(y').
Sn—1 LP(R")
It was shown that
sup /|f |dt” < Ol pn) for 1< p<oo
>0 S LP(R™)

with C' independent of the coefficients of P (thus independent of y') (see
pages 476-478). So we have

< ([ 1m0 )17
Sn—1

SUD |Hp i * f(2))]
kez LP(R"™)

Now we prove a key estimate in this paper:
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Lemma 2.2 Let h € L*>°(0,00). For q > 1, suppose that by, is a g-block
with support in Qn,. Denote 6qro(€) =0, then forr=1,2,...,N

1) 60k (€) = Gapr—1(6)] < C27%B:¢];

(1) 160 (€)] < CI2HEB, | FTT if |Qu| < ™7 and B, # 0;

(iii) 16,0 r] < CI27%6r€1™ if |Qm| > €T and S #0
where C' and w are positive constants independent of k € Z, £ € R", the
block b,,, and the coefficients of the polynomzials P;.

Proof.

|6k (§) — 0akr—1(£)]

B 1 / h(Jy))ly| ="y )eFrOW 8 gy

2k <yl <2kHt
-/ h(|y|)|y|_"Q(y’)e—iPr_1(t)<y',£)dy‘
2k <y|<2kt1
9k+1
<¢ [ [ aw)er P Om e B0 —1ydo(y) i
92k Sn—1
2k+1
<o [ [ 10014, Oldo ()it
2k Sn—1
2k+1
=0 [ 1l [ 0wy, eldot)ar
2k Sn—1

2lc—+—1

< Ol sendie] [ ¢t
2k
< C|6£|12%  and (i) is proved.
q_
If |Qm| < €T3, let pp, = log |Qm|/{1 + log |Qm|}, then 1 < pp,.

By Holder’s inequality we have

k+1
2 2

I&bm,k,r(€)|2gc /‘ / bm(y’)e—ipr(t)(yla§>do—(y/) t_ldt.
2k Sn-1
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Now

/ [ bl (e POV oy o (o),

Sn—-1yxSn—1

and by the Van der Corput lemma (Lemma A), if r > 1,

2k+1

2
/ e PO~ &) -1 _ /eiPr(2’°t)<y’—w’,§)t—1dt
9k 1

< C(2°67 Iy — o, &)}) !

By the easy fact | f22:+1 e_ipr(t)@"”””{)t‘ldtl < log2, we have

S

2k+l

l / e PO =T =1 g < C2M B () — 2! €)|F
k

for any 0 < § < 1.
Let § = 5}—, we have

(Gt er (6)] < Cl27* B o

A [ @~ o) do (o)

Sn-lXSn—l

where £’ = £/|¢|. Thus by Hoélder’s inequality

-1
|6bm,k,r(§)| < CIZTkBTflﬁ"_I”bm”LPm(Sn~1)
[[ et =T aoty)ao)]
Sn—1yQn—1

By the choice of p,,, and Holder’s inequality, we have

1

a1
[bm | Lem (8n-1) < Cllbm|| La(gn-1)|Qm|Pm

1 1
< ClQm|Pm ! < C|Qm|FeemT < C.

2p,,
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So, by recalling p!, = —log|Q@m|, we obtain

1
163, k. (€)] < C|27* B,.£| 78 TOmT

For r = 1, note the easy fact

2
iPy(250) (3 —a' £) -1 . : { 1 }
e t7 dt| < min\ log2,

\[ B SP A NOEE

where the first inequality can be obtained by bringing the absolute value
inside the integral and the second inequality can be obtained by integration
by parts.

So we have

DO

2
l/eiP1(2kt)(y'——a:’,£)t—1dt < C
| 12561(¢, (v — 2'))]

Thus, using the same argument as in r > 1, we have
1
|G o1 (€)] < C|25 1| 7oE QT

This proves (ii).
To prove (iii), we take a A > 1 such that A < min{g,2}. Following the
proof in (ii), we have

. v =3
(68, ()] < CI12™B,E| 7 [[bial| (571

x (I€".(y' — 2')[7) ™ do(y/)do (z")
WL }

1
237

for any & € (0,1].
Since ||bm ||px(gn-1y < C, letting § < & We obtain
g T =4
|66, 6. (€)] < C|27°6,8| 27 .
O

We now choose and fix a function ¢ € C§°(R) such that ¢(t) = 1 for
lt| <1 and ¢(t) = 0 for |t| > 2.
Let (t) = ¢(t?). In order to use an induction argument, we define the
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measures {7q n-x} and {7, k. N-x} by

Tarn-A(€) = Garna(€) ]  «(2%*Bn-rE])

N-A<I<N
—darn-a1(6) [T e(2%Bn-rgl),
N-A-1<I<N
TomdN-A() = o en-a(€) [  @(12%Bn-r¢)
N-X<I<N
b n-a-1(6)  J] e(12%Bn-xE])
N—-X—1<I<N
for k € Zand A =0,1,...,N — 1, where we use the convention [] a; = 1.
j€e0
Since dq ko = 0, we find that
N-1
oQkN = Z TQk,N—\- (2.4)
A=0
Note that
00 N—-1 oo
Teyn ()= Y carn*f=> Y Torn-r*f,
so we have

N—-1 00
1 Tpyn (F) lr@ey < D | Y. Tapn-r*f :

A=0""k=—00 LP(R™)

Thus, to prove the theorem, it suffices to show

oo
> TagN-a*f

k=—o0

’ < Ol fllr @y
Lr(R™)

for A=0,1,2,...,N — 1. (2.5)
It is easy to see that Tq ny—x = 0 if By_x = 0. Thus, without loss of

generality we assume Oy_) #0for A=0,1,...,N — 1.
By Lemma (2.2) (i) we find

1Tk, N-AE)] < [l rN-2r(§) — Farn-2r-1(&)]
+ 160k N-A=1 (O] — (|28 5By _5€])]]
x IT  le(12%By-xE))]

N—-A<I<N
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< G2V By g (2:6)
By Lemma (2.2) (ii) and (iii) we find that if supp(bm) C Qm with
|Qm| < eT7 then
N-\)k 1
[Pk N2 (E)] < CI2NVE By ¢ |Z=0108TamT (2.7)
and if supp(by,) C Qm with |Qm| > ™3 then

| Tom ke, N-2(§)| < C|2 B k’ﬁN_Afl_“’ for some w > 0. (2.7

Also, by Lemma (2.1), it is easy to see that

[sup Ira el % £ < Clfl (2.8)
keZ P

and
|50 17 01 £, < CI1 (2.9)
keZ

and the bounds are independent of b,,, and the coefficients of the polyno-
mials.

By applying [2.9), we can obtain the following modified lemma in [4].

Lemma 2.3 For arbitrary functions g,

1 1
3 3
H <Z [ Tb kN - * gkl2> < CH (Z ngl2>
k Po k Po

for 1 < pg < oo, where C' is independent of b,,, and the coefficients of the
polynomials.

Proof.  The proof is a minor modification of those in Lemma of [4]. In
fact, it suffices to consider the case py > 2 so that g = (£2).
There exist u € Li of unit norm such that

3
H (Z | T e, N= A * gk|2>
k

2

po

/ (Z| Toym e, N—A * G (T )|2)u(x)da:
Z/ ( bm,k7N—A|*|9k($)I2) u(z)dz
k

IA
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<Y [ 190@) S v )
k keZ
| 1
2
<|(= |gk<x>|2)
k p
By we obtain

1
{ (Z inm,k,r *lez)

kecZ

SUp |7p,, &, N—A| * ©

o lkeZ q

< Cpo

(Z lgkl2>

po Po

3. Proof of main theorem

As we discussed in Section 2, to prove the theorem, it suffices to prove

:5). By 2 in Remarks, we write Q(y') = 3, Cubn(y). By [2.7] and
.7'), without loss of generality, we may assume that the support @, of

m arc uniformly small such that |Q,,| < eTo7.
Let {®;}> be a smooth partition of unity in (0,00) adapted to the
interval (2“(N“"\)Jﬁj’\‘,£w2"(N_’\)J+lﬂ;,1_>‘). To be precise, we require the

(2
(2
b

following:

;eC™, 0<9; <1, > ¥(t)>=1
j
supp(®;) C (2~ N"NITIgil | o= (N-Nitlgot

Define the multiplier operators S; in R™ by

(Si)" (&) = A (&)2;(l¢)).

We have

Z Tk N-A* f = ZTQkN ,\*(ZSJ+kS]+kf)

k=—o00
= Z (Z Sitk(Tak,N-x * Sj+kf))
i Nk
=Y Lif.
J
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Thus

<ID.Lf

320

+ID_Lf

J<0

k=—oc p p

From classical Littlewood-Paley theory and Lemma (2.3), we know that

I Zi fllp < C||fll, with C independent of j. (3.1)
By the Plancherel theorem
ILAE<ON [ 1FOP ey
Ejtk,N- A
where
Eijikn-x

{5 9—(N=X)(j+k) lﬂN L < e < 9= (N=A)(j+k) Hﬁ“ }

Thus by [2.6) we have

ILfE < 0% [ Fasna@FIf©ras

j+k,N—X

SOX [, NPl

J+k N-X
< 02" 2(N MG (3.2)
Using interpolation between (3.1) and [3.2), we obtain
Y Lif
320

On the other hand

YL <D fll < SN (0wl fllp

j<o P j<0 j<0 m

< C| fllp- (3.3)

p

where

Limf = Sisk(Tom N * Sisf)-
k

By Lemma (2.3) and the Littlewood-Paley theorem, one has
mfllpo < Clifllpe for 1<pp < oo (34)
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where C' is independent of by, and j. By the Plancherel theorem and (ii) in
Lemma (2.2), we have

ILimf 1 < O3 |, a2 ()

k+] N-— )\7

< CZ/ £)|2 2NNk gy ¢| W= TioxTam dg

k+JN)\

< O WEEEE Y [ fe)Pag

< Ol NV wv=eera | 2
Therefore we obtain
1Ll 22 < C2ETom. (3.5)

Using interpolation again we obtain

—30
1L mfllp < Qo8 1G] | fllp for some 6 > 0. (3.6)

This shows that

S ULifly < €YY (Crl2meiant | £,

J7<0 Jj<0 m

< Cllly X ICn (108

| le|> | (3.7)

Clearly, the constant C' above is independent of the essential variables.
(3.3) and [3.7)] now imply

<C

Z TQ,k,N— ,\*f

k=—00

forall 1 <p< o0,

and A=0,1,...,N—-1. (3.8)
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