A singular integral operator related to block spaces

AbdelNaser J. Al-Hasan* and Dashan Fan (Received November 10, 1997; Revised July 3, 1998)

Abstract. Let h(t) be an L^{∞} function on $(0, \infty)$, $\Omega(y')$ be a $B_q^{0,0}$ function on the unit sphere satisfying the mean zero property (1.1) and $P_N(t)$ be a real polynomial on \mathbf{R} of degree N satisfying $P_N(0) = 0$. We prove that the singular integral operator

$$\left(T_{P_N,h}f\right)(x) = p.v.\int_{\mathbf{R}^n} h(|y|)\Omega(y')|y|^{-n}f(x - P_N(|y|)y')dy$$

is bounded in $L^p(\mathbf{R}^n)$ for $1 , and the bound is independent of the coefficients of <math>P_N(t)$.

Key words: singular integral, rough kernel, block spaces.

1. Introduction

Let \mathbf{R}^n , $n \geq 2$, be the *n*-dimensional Euclidean space and \mathbf{S}^{n-1} be the unit sphere in \mathbf{R}^n equipped with the normalized Lebesque measure $d\sigma = d\sigma(x')$. Let $\Omega(x)$ be a homogenous function of degree zero, with $\Omega \in L^1(S^{n-1})$ and

$$\int_{\mathbf{S}^{n-1}} \Omega(x') d\sigma(x') = 0, \tag{1.1}$$

where $x' = \frac{x}{|x|}$ for any $x \neq 0$.

Suppose that $h(t) \in L^{\infty}(0, \infty)$. Let $P_N(t)$ be a polynomial of degree N satisfying $P_N(0) = 0$.

The singular integral operator $T_{P_N,h}f$ is defined by

$$(T_{P_N,h}f)(x) = p.v.\int\limits_{\mathbf{R}^n} K(y)f(x - P_N(|y|)y')dy$$

where $y' = \frac{y}{|y|} \in \mathbf{S}^{n-1}$, $K(y) = h(|y|)\Omega(y')|y|^{-n}$ and $f \in S(\mathbb{R}^n)$.

We denote $T_{P_N,h}$ by $T_{I,h}$ if $P_N(t) = t$; and we denote $T_{P_N,h}$ by T_I if $P_N(t) = t$ and $h(t) \equiv 1$.

¹⁹⁹¹ Mathematics Subject Classification: 42B20.

^{*}Supported in part by a GAANN grant #P200A70522.

The investigation of such operators began with Calderón-Zygmund's pioneering papers [2] [3]. By introducing the rotation method, Calderón and Zygmund proved that the operator T_I is bounded in $L^p(\mathbf{R}^n)$, $1 , provided <math>\Omega \in L \operatorname{Log}^+ L$. However, Calderón-Zygmund's method fails in studying the general operator $T_{I,h}$, whose kernel has the additional roughness in the radial direction due to the presence of h. This phenomenon was first observed and studied by R. Fefferman [6] and subsequently was studied by many other authors ([1], [4], [5], [7], [8], [9], [10], [14], [17] et al.). Readers may see these references for backgrounds and further extensions. Among these papers, the following theorem can be found in [4] (see also [1] or [14]).

Theorem A Suppose $n \geq 2$, that Ω is a homogeneous function of degree zero satisfying (1.1), h satisfies $\sup_{R>0} \frac{1}{R} \int_0^R |h(t)|^2 dt \leq C$. Then the operator $T_{I,h}$ is bounded in $L^p(\mathbf{R}^n)$, $1 , provided <math>\Omega \in L^q(\mathbf{S}^{n-1})$ for some q > 1.

In order to weaken the condition $\Omega \in L^q(\mathbf{S}^{n-1})$, Yiang and Lu introduced certain block spaces $B_q^{\mu,\nu}$ on \mathbf{S}^{n-1} . Below we briefly review the definition of the spaces $B_q^{\mu,\nu}$. More details can be found in [11].

A q-block on \mathbf{S}^{n-1} is an L^q $(1 < q \le \infty)$ function b(.) that satisfies

$$supp(b) \subseteq Q \quad \text{for some} \quad Q, \tag{1.2}$$

where $Q = \mathbf{S}^{n-1} \cap \{y \in \mathbf{R}^n : |y - \varsigma| < \rho \text{ for some } \varsigma \in \mathbf{S}^{n-1} \text{ and } \rho \in (0, 1]\};$

$$||b||_q \le |Q|^{(\frac{1}{q}-1)}. (1.3)$$

For $\mu \geq 0$ and $\nu \in \mathbf{R}$, define a non-negative function $\Phi_{\mu,\nu}$ by

$$\Phi_{\mu,\nu}(t) = \int_{t}^{1} u^{-1-\mu} \log^{\nu} \frac{1}{u} du \qquad 0 < t < 1;
\Phi_{\mu,\nu}(t) = 0 \quad \text{if} \quad t \ge 1.$$

The block spaces $B_q^{\mu,\nu}$ on \mathbf{S}^{n-1} are defined by

$$B_q^{\mu,\nu}(\mathbf{S}^{n-1}) = \{\Omega \in L^1(\mathbf{S}^{n-1}) : \Omega(y') = \sum_m C_m b_m(y'),$$

each b_m is a q-block supported in Q_m , and $M_q^{\mu,\nu}(\{C_m\}) < \infty\}$ where

$$M_q^{\mu,\nu}(\{C_m\}) = \sum_m |C_m| \{1 + \Phi_{\mu,\nu}(|Q_m|)\}.$$

The "norm" $M_q^{\mu,\nu}(\Omega)$ of $\Omega \in B_q^{\mu,\nu}$ is defined by $M_q^{\mu,\nu}(\Omega) = \inf\{M_q^{\mu,\nu}(\{C_m\})\}$, where the infimum is taken over all q-block decompositions of Ω .

The method of block decomposition of functions was originated by M.H. Taibleson and G. Weiss in the study of the convergence of the Fourier series (see [16]). Later on, many applications of the block decomposition to harmonic analysis were discovered. For the details, readers may see the survey book [11], which is a good reference in this topic. Particularly, one can find in [11] (see also [13]) that

$$L^q(\mathbf{S}^{n-1}) \subseteq B_q^{\mu,\nu}(\mathbf{S}^{n-1}) \subseteq B_q^{\mu,\varepsilon}(\mathbf{S}^{n-1}) \quad \text{for } \nu > \varepsilon, \ \mu \in \mathbf{R};$$

and

$$B_q^{\mu,\alpha}(\mathbf{S}^{n-1}) \subseteq B_q^{\delta,\beta}(\mathbf{S}^{n-1}) \subseteq B_q^{0,\gamma}(\mathbf{S}^{n-1})$$

for $0 < \delta < \mu$ and any real numbers α , β , γ .

In [9], [10], Jiang and Lu proved the following theorem.

Theorem B Suppose $n \geq 2$, Ω is a homogeneous function of degree zero satisfying (1.1). If h is a bounded radial function, then $T_{I,h}$ is bounded in $L^p(\mathbf{R}^n)$, $1 , provided <math>\Omega \in B_q^{\mu,0}$ for some q > 1 and $\mu > 0$.

It was noted by Keitoku and Sato in [12] that Theorem B is essentially the same of Theorem A, since for any q>1 and $\mu>0$, $B_q^{\mu,0}(\mathbf{S}^{n-1})\subseteq \bigcup_{r>1} L^r(\mathbf{S}^{n-1})$. But Keitoku and Sato pointed out that $\bigcup_{r>1} L^r(\mathbf{S}^{n-1})$ is properly contained in $B_q^{0,0}(\mathbf{S}^{n-1})$ for any q>1. The relationship between $B_q^{0,0}(\mathbf{S}^{n-1})$ and $L\log^+L(\mathbf{S}^{n-1})$ remains open. Now we state the main result in this paper.

Theorem 1 Suppose that Ω is a homogeneous function of degree zero satisfying (1.1), and that h is an $L^{\infty}(0,\infty)$ function. Then, the operator $T_{P_N,h}$ is bounded in $L^p(\mathbf{R}^n)$ if $\Omega \in B_q^{0,0}(\mathbf{S}^{n-1})$ for some q > 1, and the bound is independent of the coefficients of the polynomial P_N .

Remarks.

1. For the reason of simplicity, in Theorem 1, we assume $h \in L^{\infty}(0,\infty)$. Actually, this condition can be weakened to the condition $\sup_{R>0} \frac{1}{R} \int_0^R |h(t)|^2 dt < \infty$. Readers can find this easy treatment in [8]. Thus, even in the case P(t) = t, our theorem is an improvement of Theorem A and B.

2. By the definition, $\Omega \in B_q^{0,0}(\mathbf{S}^{n-1})$ has the block decomposition

$$\Omega(y') = \sum_{m} C_m b_m(y') \tag{1.4}$$

where each b_m is a q-block, supported in Q_m and

$$\sum_{m} |C_m| \left\{ 1 + \log^+ \left(\frac{1}{|Q_m|} \right) \right\} < \infty.$$

Throughout this paper, we always use the letter C to denote a positive constant that may vary at each occurrence but is independent of the essential variables.

2. Some Lemmas

Lemma A (Van der Corput [15]) Suppose ϕ and f are smooth functions on [a,b] and ϕ is real-valued. If $|\phi^{(k)}(x)| \geq 1$ for $x \in [a,b]$ then

$$\left| \int_{a}^{b} e^{i\lambda\phi(t)} f(t) dt \right| \leq C_k |\lambda|^{\frac{-1}{k}} \left[||f||_{\infty} + ||f'||_{1} \right]$$

holds when

- (i) $k \geq 2$
- (ii) or k=1, if in addition it is assumed that $\phi'(t)$ is monotonic.

Let h and $\Omega(y') = \sum C_m b_m(y')$ be as in Theorem 1. For the polynomial $P_N(t) = \sum_{\lambda=1}^N \beta_{\lambda} t^{\lambda}$, we denote $P_r(t) = \sum_{\lambda=1}^r \beta_{\lambda} t^{\lambda}$ for r = 1, 2, ..., N. Define the following functions and operators:

$$B_{m,r}(f)(x) = \int_{\mathbf{R}^n} h(|y|)|y|^{-n}b_m(y')f(x - P_r(|y|)y')dy;$$

$$\hat{\sigma}_{\Omega,k,r}(\xi) = \int_{2^k \le |y| \le 2^{k+1}} h(|y|)|y|^{-n}\Omega(y')e^{-iP_r(|y|)\langle y',\xi\rangle}dy;$$

$$\hat{\mu}_{b_m,k,r}(\xi) = \int_{2^k \le |y| \le 2^{k+1}} |y|^{-n}|h(|y|)b_m(y')|e^{-iP_r(|y|)\langle y',\xi\rangle}dy;$$

$$\hat{\mu}_{\Omega,k,r}(\xi) = \int_{2^k \le |y| \le 2^{k+1}} |y|^{-n}|h(|y|)\Omega(y')|e^{-iP_r(|y|)\langle y',\xi\rangle}dy;$$

$$\hat{\Lambda}_{\Omega,k,r}(\xi) = \int_{2^k \le |y| \le 2^{k+1}} |y|^{-n} |\Omega(y')| e^{-iP_r(|y|)\langle y', \xi \rangle} dy;$$

$$\sigma_{b_m,r}^* f(x) = \sup_k |\mu_{b_m,k,r} * f(x)|; \quad \sigma_{\Omega,r}^* f(x) = \sup_k |\mu_{\Omega,k,r} * f(x)|;$$

$$\Lambda_{\Omega,r}^* f(x) = \sup_k |\Lambda_{\Omega,k,r} * f(x)|;$$

Clearly, we have

$$T_{P_{N},h}\left(f
ight)=\sum_{m{k}}\sigma_{\Omega,m{k},N}st f$$

Also, for each r = 1, 2, ..., N, we can write

$$T_{P_r,h}\left(f
ight) = \sum_{m} \sum_{k} C_m \ \sigma_{b_m,k,r} * f$$

where

$$\hat{\sigma}_{b_m,k,r}(\xi) = \int_{2^k \le |y| \le 2^{k+1}} h(|y|)|y|^{-n} b_m(y') e^{-iP_r(|y|)\langle \xi, y' \rangle} dy.$$

It is easy to see that $\|\hat{\sigma}_{\Omega,k,N}\|_{\infty} \leq C$, $\|\hat{\sigma}_{b_m,k,N}\|_{\infty} < C$ uniformly for k and m.

Lemma 2.1 For $1 and <math>h \in L^{\infty}(0, \infty)$, there is a constant C such that $\|\sigma_{b_m,r}^*(f)\|_p \le C\|f\|_p$ and $\|\sigma_{\Omega,r}^*f\|_p \le C\|\Lambda_{\Omega,r}^*(f)\|_p \le C\|f\|_p$, where the constant C is independent of the block $b_m(.)$ and the coefficients of the polynomial P_r (it may depend on r).

Proof. Clearly, we only need to prove the first inequality.

Now

$$\mu_{b_m,k,r} * f(x) = \int_{2^k \le |y| \le 2^{k+1}} |h(|y|)|y|^{-n} b_m(y') |f(x - P_r(|y|)y') dy.$$

Write $P_r(|y|)y' = (\Pi_1(|y|), \Pi_2(|y|), \dots, \Pi_n(|y|))$, where each Π_j is a polynomial of |y| whose coefficients depend on y'.

We denote $\tilde{P}(|y|) = (\Pi_1(|y|), \Pi_2(|y|), \dots, \Pi_n(|y|))$, then

$$\mu_{b_m,k,r} * f(x) = \int_{2^k \le |y| \le 2^{k+1}} |h(|y|)|y|^{-n} b_m(y') |f(x - \tilde{P}(|y|)) dy.$$

Thus

$$\sup_{k \in Z} |\mu_{b_m,k,r} * f(x)|
\leq \sup_{k \in Z} ||h||_{\infty} 2^{-nk} \int_{2^k \le |y| \le 2^{k+1}} |b_m(y')f(x - \tilde{P}(|y|))| dy
\leq C \sup_{k \in Z} 2^{-k} \int_{|t| < 2^{k+1}} \int_{\mathbf{S}^{n-1}} |b_m(y')| ||f(x - \tilde{P}(t))| d\sigma(y') dt.$$

Noting $||b_m||_{L^1(\mathbf{S}^{n-1})} \leq C$, where C is independent of b_m , by Hölder's inequality we have

$$\left(\sup_{k\in Z} |\mu_{b_m,k,r} * f(x)|\right)^p$$

$$\leq C \int_{\mathbf{S}^{n-1}} \left(\sup_{s>0} \frac{1}{s} \int_0^s |f(x-\tilde{P}(t))| dt\right)^p |b_m(y')| d\sigma(y').$$

Therefore, we have

$$\left\| \sup_{k \in \mathbb{Z}} |\mu_{b_m,k,r} * f(x)| \right\|_{L^p(\mathbb{R}^n)}^p$$

$$\leq C \int_{\mathbf{S}^{n-1}} |b_m(y')| \left\| \sup_{s>0} \frac{1}{s} \int_0^s |f(s-\tilde{P}(t))| dt \right\|_{L^p(\mathbb{R}^n)}^p d\sigma(y').$$

It was shown that

$$\left\| \sup_{s>0} \frac{1}{s} \int_{0}^{s} |f(s-\tilde{P}(t))| dt \right\|_{L^{p}(\mathbb{R}^{n})}^{p} \le C \|f\|_{L^{p}(\mathbb{R}^{n})}^{p} \quad \text{for } 1$$

with C independent of the coefficients of \tilde{P} (thus independent of y') (see [15] pages 476–478). So we have

$$\left\| \sup_{k \in \mathbb{Z}} |\mu_{b_m, k, r} * f(x)| \right\|_{L^p(\mathbb{R}^n)} \le C \left(\int_{\mathbf{S}^{n-1}} |b_m(y')| d\sigma(y') \right) \|f\|_{L^p(\mathbb{R}^n)}^p$$

$$\le C \|f\|_{L^p(\mathbb{R}^n)} \quad \text{for } 1$$

Now we prove a key estimate in this paper:

Lemma 2.2 Let $h \in L^{\infty}(0,\infty)$. For q > 1, suppose that b_m is a q-block with support in Q_m . Denote $\hat{\sigma}_{\Omega,k,0}(\xi) \equiv 0$, then for r = 1, 2, ..., N

- (i) $|\hat{\sigma}_{\Omega,k,r}(\xi) \hat{\sigma}_{\Omega,k,r-1}(\xi)| \le C|2^{rk}\beta_r\xi|;$
- (ii) $|\hat{\sigma}_{b_m,k,r}(\xi)| \le C|2^{rk}\xi\beta_r|^{\frac{1}{2r\log|Q_m|}} \text{ if } |Q_m| < e^{\frac{q}{1-q}} \text{ and } \beta_r \ne 0;$
- (iii) $|\hat{\sigma}_{b_m,k,r}| \leq C|2^{rk}\beta_r\xi|^{-\omega}$ if $|Q_m| \geq e^{\frac{q}{1-q}}$ and $\beta_r \neq 0$ where C and ω are positive constants independent of $k \in \mathbb{Z}$, $\xi \in \mathbb{R}^n$, the block b_m , and the coefficients of the polynomials P_r .

Proof.

$$\begin{split} &|\hat{\sigma}_{\Omega,k,r}(\xi) - \hat{\sigma}_{\Omega,k,r-1}(\xi)| \\ &= \left| \int\limits_{2^k \leq |y| \leq 2^{k+1}} h(|y|)|y|^{-n}\Omega(y')e^{-iP_r(t)\langle y',\xi\rangle}dy \right| \\ &- \int\limits_{2^k \leq |y| \leq 2^{k+1}} h(|y|)|y|^{-n}\Omega(y')e^{-iP_{r-1}(t)\langle y',\xi\rangle}dy \right| \\ &\leq C \int\limits_{2^k}^{2^{k+1}} t^{-1} \left| \int\limits_{\mathbf{S}^{n-1}} \Omega(y')e^{-iP_{r-1}(t)\langle y,\xi\rangle} \{e^{-i\beta_r t^r \langle y',\xi\rangle} - 1\}d\sigma(y') \right| dt \\ &\leq C \int\limits_{2^k}^{2^{k+1}} t^{-1} \int\limits_{\mathbf{S}^{n-1}} |\Omega(y')| \left|\beta_r t^r \langle y',\xi\rangle\right| d\sigma(y') dt \\ &= C \int\limits_{2^k}^{2^{k+1}} \left|\beta_r |t^{r-1}| \int\limits_{\mathbf{S}^{n-1}} |\Omega(y')| \left|\langle y',\xi\rangle\right| d\sigma(y') \right| dt \\ &\leq C \|\Omega\|_{L^1(\mathbf{S}^{n-1})} |\beta_r \xi| \int\limits_{2^k}^{2^{k+1}} t^{r-1} dt \\ &\leq C |\beta_r \xi| 2^{rk} \quad \text{and (i) is proved.} \end{split}$$

If $|Q_m| < e^{\frac{q}{1-q}}$, let $p_m = \log |Q_m|/\{1 + \log |Q_m|\}$, then $1 < p_m$. By Hölder's inequality we have

$$|\hat{\sigma}_{b_m,k,r}(\xi)|^2 \le C \int_{2k}^{2^{k+1}} \left| \int_{\mathbf{S}^{n-1}} b_m(y') e^{-iP_r(t)\langle y',\xi\rangle} d\sigma(y') \right|^2 t^{-1} dt.$$

Now

$$\left| \int_{\mathbf{S}^{n-1}} b_m(y') e^{-iP_r(t)\langle y',\xi\rangle} d\sigma(y') \right|^2$$

$$= \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{n-1}} b_m(y') \bar{b}_m(x') e^{-iP_r(t)\langle y'-x',\xi\rangle} d\sigma(y') d\sigma(x'),$$

and by the Van der Corput lemma (Lemma A), if r > 1,

$$\int_{2^{k}}^{2^{k+1}} e^{-iP_{r}(t)\langle y'-x',\xi\rangle} t^{-1} dt = \int_{1}^{2} e^{iP_{r}(2^{k}t)\langle y'-x',\xi\rangle} t^{-1} dt$$

$$\leq C(|2^{k}\beta_{r}^{\frac{1}{r}}| |\langle y'-x',\xi\rangle|^{\frac{1}{r}})^{-1}.$$

By the easy fact $|\int_{2^k}^{2^{k+1}} e^{-iP_r(t)\langle y'-x',\xi\rangle} t^{-1} dt| \leq \log 2$, we have

$$\bigg|\int\limits_{2^k}^{2^{k+1}}e^{-iP_r(t)\langle y'-x',\xi\rangle}t^{-1}dt\bigg|\leq C|2^{kr}\beta_r\langle y'-x',\xi\rangle|^{\frac{-\delta}{r}}$$

for any $0 < \delta \le 1$.

Let $\delta = \frac{1}{p'_m}$, we have

$$|\hat{\sigma}_{b_m,k,r}(\xi)| \leq C|2^{rk}\beta_r\xi|^{\frac{-1}{2rp'_m}}$$

$$\times \left\{ \iint_{\mathbf{S}^{n-1}\times\mathbf{S}^{n-1}} b_m(y')\bar{b}_m(x')(|\xi'.(y'-x')|)^{\frac{-1}{rp'_m}} d\sigma(y')d\sigma(x') \right\}^{\frac{1}{2}}$$

where $\xi' = \xi/|\xi|$. Thus by Hölder's inequality

$$|\hat{\sigma}_{b_{m},k,r}(\xi)| \leq C|2^{rk}\beta_{r}\xi|^{\frac{-1}{2rp'_{m}}} ||b_{m}||_{L^{p_{m}}(\mathbf{S}^{n-1})} \times \left\{ \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{n-1}} (|\xi'.(y'-x')|)^{\frac{-1}{r}} d\sigma(y') d\sigma(x') \right\}^{\frac{1}{2p'_{m}}}.$$

By the choice of p_m , and Hölder's inequality, we have

$$||b_{m}||_{L^{p_{m}}(\mathbf{S}^{n-1})} \leq C||b_{m}||_{L^{q}(\mathbf{S}^{n-1})}|Q_{m}|^{\frac{1}{p_{m}}-\frac{1}{q}}$$

$$\leq C|Q_{m}|^{\frac{1}{p_{m}}-1} \leq C|Q_{m}|^{\frac{1}{\log|Q_{m}|}} \leq C.$$

So, by recalling $p'_m = -\log |Q_m|$, we obtain

$$|\hat{\sigma}_{b_m,k,r}(\xi)| \le C|2^{rk}\beta_r \xi|^{\frac{1}{2r\log|Q_m|}}.$$

For r = 1, note the easy fact

$$\left| \int_{1}^{2} e^{iP_1(2^k t)\langle y'-x',\xi\rangle} t^{-1} dt \right| \leq \min\left\{ \log 2, \frac{1}{|2^k \beta_1\langle \xi, (y'-x')\rangle|} \right\}$$

where the first inequality can be obtained by bringing the absolute value inside the integral and the second inequality can be obtained by integration by parts.

So we have

$$\left|\int_{1}^{2} e^{iP_{1}(2^{k}t)\langle y'-x',\xi\rangle} t^{-1} dt\right| \leq \frac{C}{|2^{k}\beta_{1}\langle \xi, (y'-x')\rangle|^{\frac{1}{2}}}.$$

Thus, using the same argument as in r > 1, we have

$$|\hat{\sigma}_{b_m,k,1}(\xi)| \le C|2^k \beta_1 \xi|^{\frac{1}{2\log|Q_m|}}.$$

This proves (ii).

To prove (iii), we take a $\lambda > 1$ such that $\lambda \leq \min\{q, 2\}$. Following the proof in (ii), we have

$$|\hat{\sigma}_{b_{m},k,r}(\xi)| \leq C|2^{rk}\beta_{r}\xi|^{\frac{-\delta}{2r}}||b_{m}||_{L^{\lambda}(\mathbf{S}^{n-1})} \times \left\{ \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{n-1}} (|\xi'.(y'-x')|^{\frac{1}{r}})^{-\delta\lambda'} d\sigma(y') d\sigma(x') \right\}^{\frac{1}{2\lambda'}}$$

for any $\delta \in (0,1]$.

Since $||b_m||_{L^{\lambda}(\mathbf{S}^{n-1})} \leq C$, letting $\delta < \frac{1}{\lambda'}$ we obtain

$$|\hat{\sigma}_{b_m,k,r}(\xi)| \le C|2^{rk}\beta_r \xi|^{\frac{-\delta}{2r}}.$$

We now choose and fix a function $\phi \in C_0^{\infty}(\mathbf{R})$ such that $\phi(t) \equiv 1$ for $|t| \leq 1$ and $\phi(t) \equiv 0$ for |t| > 2.

Let $\varphi(t) = \phi(t^2)$. In order to use an induction argument, we define the

measures $\{\tau_{\Omega,k,N-\lambda}\}$ and $\{\tau_{b_m,k,N-\lambda}\}$ by

$$\hat{\tau}_{\Omega,k,N-\lambda}(\xi) = \hat{\sigma}_{\Omega,k,N-\lambda}(\xi) \prod_{N-\lambda < l \le N} \varphi(|2^{lk}\beta_{N-\lambda}\xi|)
- \hat{\sigma}_{\Omega,k,N-\lambda-1}(\xi) \prod_{N-\lambda-1 < l \le N} \varphi(|2^{lk}\beta_{N-\lambda}\xi|),
\hat{\tau}_{b_m,k,N-\lambda}(\xi) = \hat{\sigma}_{b_m,k,N-\lambda}(\xi) \prod_{N-\lambda < l \le N} \varphi(|2^{lk}\beta_{N-\lambda}\xi|)
- \hat{\sigma}_{b_m,k,N-\lambda-1}(\xi) \prod_{N-\lambda-1 < l \le N} \varphi(|2^{lk}\beta_{N-\lambda}\xi|)$$

for $k \in \mathbf{Z}$ and $\lambda = 0, 1, ..., N - 1$, where we use the convention $\prod_{j \in \emptyset} a_j = 1$.

Since $\hat{\sigma}_{\Omega,k,0} = 0$, we find that

$$\sigma_{\Omega,k,N} = \sum_{\lambda=0}^{N-1} \tau_{\Omega,k,N-\lambda}.$$
 (2.4)

Note that

$$T_{P_{N},h}\left(f
ight) = \sum_{k=-\infty}^{\infty} \sigma_{\Omega,k,N} * f = \sum_{\lambda=0}^{N-1} \sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f,$$

so we have

$$||T_{P_{N},h}\left(f\right)||_{L^{p}(\mathbf{R}^{n})} \leq \sum_{\lambda=0}^{N-1} \left|\left|\sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f\right|\right|_{L^{p}(\mathbf{R}^{n})}.$$

Thus, to prove the theorem, it suffices to show

$$\left\| \sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f \right\|_{L^{p}(\mathbf{R}^{n})} \le C \|f\|_{L^{p}(\mathbf{R}^{n})}$$
for $\lambda = 0, 1, 2, \dots, N-1$. (2.5)

It is easy to see that $\tau_{\Omega,k,N-\lambda}=0$ if $\beta_{N-\lambda}=0$. Thus, without loss of generality we assume $\beta_{N-\lambda}\neq 0$ for $\lambda=0,1,\ldots,N-1$.

By Lemma (2.2) (i) we find

$$\begin{aligned} |\hat{\tau}_{\Omega,k,N-\lambda}(\xi)| &\leq [|\hat{\sigma}_{\Omega,k,N-\lambda}(\xi) - \hat{\sigma}_{\Omega,k,N-\lambda-1}(\xi)| \\ &+ \|\hat{\sigma}_{\Omega,k,N-\lambda-1}(\xi)\| |1 - \varphi(|2^{(N-\lambda)k}\beta_{N-\lambda}\xi|)|] \\ &\times \prod_{N-\lambda < l \leq N} |\varphi(|2^{lk}\beta_{N-\lambda}\xi|)| \end{aligned}$$

$$\leq C2^{(N-\lambda)k}|\beta_{N-\lambda}\xi|.

(2.6)$$

By Lemma (2.2) (ii) and (iii) we find that if $\operatorname{supp}(b_m) \subseteq Q_m$ with

 $|Q_m| < e^{\frac{q}{1-q}}$ then

$$|\hat{\tau}_{b_m,k,N-\lambda}(\xi)| \le C|2^{(N-\lambda)k}\beta_{N-\lambda}\xi|^{\frac{1}{2(N-\lambda)\log|Q_m|}},\tag{2.7}$$

and if supp $(b_m) \subseteq Q_m$ with $|Q_m| \ge e^{\frac{q}{1-q}}$ then

$$|\hat{\tau}_{b_m,k,N-\lambda}(\xi)| \le C|2^{(N-\lambda)k}\beta_{N-\lambda}\xi|^{-\omega} \quad \text{for some } \omega > 0.$$
 (2.7')

Also, by Lemma (2.1), it is easy to see that

$$\left\| \sup_{k \in \mathbf{Z}} |\tau_{\Omega,k,N-\lambda}| * f \right\|_{p} \le C \|f\|_{p} \tag{2.8}$$

and

$$\left\| \sup_{k \in \mathbf{Z}} |\tau_{b_m, k, N - \lambda}| * f \right\|_p \le C \|f\|_p \tag{2.9}$$

and the bounds are independent of b_m , and the coefficients of the polynomials.

By applying (2.9), we can obtain the following modified lemma in [4].

Lemma 2.3 For arbitrary functions g_k ,

$$\left\| \left(\sum_{k} |\tau_{b_{m},k,N-\lambda} * g_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{p_{0}} \leq C \left\| \left(\sum_{k} |g_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{p_{0}}$$

for $1 < p_0 < \infty$, where C is independent of b_m , and the coefficients of the polynomials.

Proof. The proof is a minor modification of those in Lemma of [4]. In fact, it suffices to consider the case $p_0 \ge 2$ so that $q = (\frac{p_0}{2})$.

There exist $u \in L^q_+$ of unit norm such that

$$\left\| \left(\sum_{k} |\tau_{b_{m},k,N-\lambda} * g_{k}|^{2} \right)^{\frac{1}{2}} \right\|_{p_{0}}^{2}$$

$$= \int_{\mathbf{R}^{n}} \left(\sum_{k} |\tau_{b_{m},k,N-\lambda} * g_{k}(x)|^{2} \right) u(x) dx$$

$$\leq \sum_{k} \int_{\mathbf{R}^{n}} \left(|\tau_{b_{m},k,N-\lambda}| * |g_{k}(x)|^{2} \right) u(x) dx$$

$$\leq \sum_{k} \int_{\mathbf{R}^{n}} |g_{k}(x)|^{2} \sup_{k \in \mathbf{Z}} ||\tau_{b_{m},k,N-\lambda}| * u(x)| dx
\leq \left\| \left(\sum_{k} |g_{k}(x)|^{2} \right)^{\frac{1}{2}} \right\|_{p_{0}}^{2} \left\| \sup_{k \in \mathbf{Z}} |\tau_{b_{m},k,N-\lambda}| * u \right\|_{q}.$$

By (2.9) we obtain

$$\left\| \left(\sum_{k \in \mathbf{Z}} |\tau_{b_m,k,r} * g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0}^2 \le C_{p_0} \left\| \left(\sum_{k \in \mathbf{Z}} |g_k|^2 \right)^{\frac{1}{2}} \right\|_{p_0}.$$

3. Proof of main theorem

As we discussed in Section 2, to prove the theorem, it suffices to prove (2.5). By 2 in Remarks, we write $\Omega(y') = \sum_m C_m b_m(y')$. By (2.7) and (2.7'), without loss of generality, we may assume that the support Q_m of b_m are uniformly small such that $|Q_m| < e^{\frac{q}{1-q}}$.

Let $\{\Phi_j\}_{-\infty}^{\infty}$ be a smooth partition of unity in $(0,\infty)$ adapted to the interval $(2^{-(N-\lambda)j}\beta_{N-\lambda}^{-1}, 2^{-(N-\lambda)j+1}\beta_{N-\lambda}^{-1})$. To be precise, we require the

following:

$$\Phi_j \in C^{\infty}, \ 0 \le \Phi_j \le 1, \ \sum_j \Phi_j(t)^2 = 1,$$

$$\operatorname{supp}(\Phi_j) \subseteq (2^{-(N-\lambda)j-1}\beta_{N-\lambda}^{-1}, 2^{-(N-\lambda)j+1}\beta_{N-\lambda}^{-1}).$$

Define the multiplier operators S_i in \mathbb{R}^n by

$$(S_j f)^{\wedge}(\xi) = f^{\wedge}(\xi) \Phi_j(|\xi|).$$

We have

$$\sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f = \sum_{k} \tau_{\Omega,k,N-\lambda} * \left(\sum_{j} S_{j+k} S_{j+k} f \right)$$

$$= \sum_{j} \left(\sum_{k} S_{j+k} (\tau_{\Omega,k,N-\lambda} * S_{j+k} f) \right)$$

$$= \sum_{j} I_{j} f.$$

Thus

$$\left\| \sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f \right\|_{p} \leq \left\| \sum_{j\geq 0} I_{j} f \right\|_{p} + \left\| \sum_{j<0} I_{j} f \right\|_{p}.$$

From classical Littlewood-Paley theory and Lemma (2.3), we know that

$$||I_j f||_p \le C||f||_p$$
 with C independent of j . (3.1)

By the Plancherel theorem

$$||I_j f||_2^2 \le C \sum_k \int_{E_{j+k,N-\lambda}} |\hat{f}(\xi)|^2 |\hat{\tau}_{\Omega,k,N-\lambda}(\xi)|^2 d\xi$$

where

$$E_{j+k,N-\lambda} = \left\{ \xi : 2^{-(N-\lambda)(j+k)-1} \beta_{N-\lambda}^{-1} \le |\xi| < 2^{-(N-\lambda)(j+k)+1} \beta_{N-\lambda}^{-1} \right\}.$$

Thus by (2.6) we have

$$||I_{j}f||_{2}^{2} \leq C \sum_{k} \int_{E_{j+k,N-\lambda}} |\hat{\tau}_{\Omega,k,N-\lambda}(\xi)|^{2} |\hat{f}(\xi)|^{2} d\xi$$

$$\leq C \sum_{k} \int_{E_{j+k,N-\lambda}} |2^{(N-\lambda)k} \beta_{N-\lambda} \xi|^{2} |\hat{f}(\xi)|^{2} d\xi$$

$$\leq C 2^{-2(N-\lambda)j} ||\hat{f}(\xi)||_{2}^{2}. \tag{3.2}$$

Using interpolation between (3.1) and (3.2), we obtain

$$\left\| \sum_{j>0} I_j f \right\|_p \le C \|f\|_p. \tag{3.3}$$

On the other hand

$$\left\| \sum_{j<0} I_j f \right\|_p \le \sum_{j<0} \|I_j f\|_p \le \sum_{j<0} \sum_m |C_m| \|I_{j,m} f\|_p$$

where

$$I_{j,m}f = \sum_{k} S_{j+k}(\tau_{b_m,k,N-\lambda} * S_{j+k}f).$$

By Lemma (2.3) and the Littlewood-Paley theorem, one has

$$||I_{j,m}f||_{p_0} \le C||f||_{p_0} \quad \text{for } 1 < p_0 < \infty$$
 (3.4)

where C is independent of b_m and j. By the Plancherel theorem and (ii) in Lemma (2.2), we have

$$||I_{j,m}f||_{2}^{2} \leq C \sum_{k} \int_{E_{k+j,N-\lambda}} |\hat{f}(\xi)|^{2} |\hat{\tau}_{b_{m},k,N-\lambda}(\xi)|^{2} d\xi$$

$$\leq C \sum_{k} \int_{E_{k+j,N-\lambda}} |\hat{f}(\xi)|^{2} |2^{(N-\lambda)k} \beta_{N-\lambda} \xi|^{\frac{1}{(N-\lambda)\log|Q_{m}|}} d\xi$$

$$\leq C |2^{-(N-\lambda)j}|^{\frac{1}{(N-\lambda)\log|Q_{m}|}} \sum_{k} \int_{E_{k+j,N-\lambda}} |\hat{f}(\xi)|^{2} d\xi$$

$$\leq C |2^{-(N-\lambda)j}|^{\frac{1}{(N-\lambda)\log|Q_{m}|}} ||\hat{f}||_{2}^{2}.$$

Therefore we obtain

$$||I_{j,m}||_{L^2 \longrightarrow L^2} \le C2^{\frac{-j}{\log|Q_m|}}. \tag{3.5}$$

Using interpolation again we obtain

$$||I_{j,m}f||_p \le 2^{\frac{-j\theta}{\log|Q_m|}} ||f||_p \quad \text{for some} \quad \theta > 0.$$
 (3.6)

This shows that

$$\sum_{j<0} ||I_{j}f||_{p} \leq C \sum_{j<0} \sum_{m} |C_{m}| 2^{\frac{-j\theta}{\log|Q_{m}|}} ||f||_{p}
\leq C ||f||_{p} \sum_{m} |C_{m}| \left(\log \frac{1}{|Q_{m}|}\right).$$
(3.7)

Clearly, the constant C above is independent of the essential variables. (3.3) and (3.7) now imply

$$\left\| \sum_{k=-\infty}^{\infty} \tau_{\Omega,k,N-\lambda} * f \right\|_{p} \le C M_{q}^{0,0} \|f\|_{p}, \quad \text{for all } 1
and $\lambda = 0, 1, \dots, N-1.$ (3.8)$$

References

- [1] Chen L., On a singular integral. Studia Math. TLXXXV (1987), 61–72.
- [2] Calderon A.P. and Zygmund A., On existence of certain singular integrals. Acta. Math. 88 (1952), 85–139.
- [3] Calderon A.P. and Zygmund A., On singular integrals. Amer. J. Math. 18 (1956), 289–309.

- [4] Duoandikoetxea J. and Rubio de Francia J.L., Maximal and singular integral operators via Fourier transform estimate. Invent. Math. 84 (1986), 541–561.
- [5] Fan D., Restriction theorems related to atoms. Ill. Jour. Math, 40, No.1 (1996), 13–20.
- [6] Fefferman R., A note on singular integrals. Proc. Amer. Math. Soc. 74 (1979), 266–270.
- [7] Fan D. and Pan Y., A singular integral operator with rough kernel. Proc. Amer. Math. Soc. 125 (1997), 3695–3703.
- [8] Fan D. and Pan Y., Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119 (1997), 799–839.
- [9] Jiang Y. and Lu S., L^p boundedness of a class of maximal singular integral operators. Acta Math. Sinica **35** (1992), 63–72.
- [10] Jiang Y. and Lu S., A note on a class of singular integral operators. Acta Math. Sinca 36 (1993), 555–562.
- [11] Lu S., Taibleson M. and Weiss G., "Spaces Generated by Blocks". Beijing Normal University Press, Beijing, (1989).
- [12] Keitoku M. and Sato E., Block Spaces on the unit sphere in \mathbb{R}^n . Proc. Amer. Math. Soc. 119 (1993), 453–455.
- [13] Lu S., On block decomposition of functions. Scientia Sinca A, Vol. **XXV II** (1984), 585–596.
- [14] Namazi J., A Singular Integral. Ph. D. Thesis, Indiana University, Bloomington, 1984.
- [15] Stein E.M., "Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals". Princeton University Press, Princeton, Nj, 1993.
- [16] Taibleson M.H. and Weiss G., Certain function spaces associated with a.e. convergence of Fourier series. Univ. of Chicago Conf. in honor of Zygmund, Woodsworth, 1983.
- [17] Watson D.K., The Hardy space kernel condition for rough singular integrals. Preprint.

AbdelNaser J. Al-Hasan
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
Milwaukee, WI 53201, U.S.A.
E-mail: naser@csd.uwm.edu

Dashan Fan
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
Milwaukee, WI 53201, U.S.A.
E-mail: fan@csd.uwm.edu