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Self-dual codes over rings and the Chinese
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Abstract. We give some characterizations of self-dual codes over rings, specifically 1 11e

ring \mathbb{Z}_{2k} , where \mathbb{Z}_{2k} denotes the ring \mathbb{Z}/2k\mathbb{Z} of integers modulo 2k , using the (i’,hi11cse

Remainder Theorem, investigating Type I and Type II codes The Chinese Re\prime naindt^{\backslash }t.

Theorem plays an important role in the study of self-dual codes over \mathbb{Z}_{2k} when 2k is I10\{

a prime power, while the Hensel lift is a powerful tool when 2k is a prime I)ower Ir1

particular, we concentrate on the case k=3 and use construction A to build unimodular

and 3-modular lattices.
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1. Introduction

Self-dual codes over finite fields, especially binary and ternary fie lds, arc
a well studied subject, including their relationship to lattices anel e1e^{1}sig_{11_{\iota}b^{\tau}} .

Recently, codes over rings have increased in importance, gener.ati_{Il}g w ell
interest in these codes, for example see [1], [2], [3], [7], [8], [11], [15], [16] anel
[23]. In this paper, we give some characterizations of self-dual coclcs o ver
rings, specifically the ring \mathbb{Z}_{2k} , where \mathbb{Z}_{2k} denotes the ring \mathbb{Z}/2k\mathbb{Z} of integers
modulo 2k , using the Chinese Remainder Theorem. Recently, in [1] t11t^{Y}

notion of Type II codes over \mathbb{Z}_{2k} has been introduced. Here, we investigate
Type II codes over \mathbb{Z}_{2k} using this theorem, giving special attenti()n to t11()

ring \mathbb{Z}_{6} .
We begin with some definitions. A code C over a ring R of length n is

a subset of R^{n} , if it is an additive subgroup of R^{n} then it is called a linear
code. In this paper all codes are assumed to be linear unless othe rwise
specified. An element of C is called a codeword of C . A generator matrix
of C is a matrix whose rows generate C . We equip R^{n} with the standard
inner-product, i.e. [v, w]= \sum v_{i}w_{i} . The orthogonal to a code is defined
in the usual way, i.e. C^{\perp}= {v\in R^{n}|[v, w]=0 for all w\in C} where
v= (v_{1}, v_{2}, \ldots, v_{n}) and w=(w_{1}, w_{2}, . , w_{n}) . We say that a code C is self-
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orthogonal if C\subseteq C^{\perp} and C is self-dual if C=C^{\perp} . Williams relations
for codes over any finite Frobenius ring are given in [23].

The paper is organized as follows. Section 2 gives some characteriza-
tions of self-dual codes over rings, specifically the ring \mathbb{Z}_{2k} . In Section 3,
we pay attention to the ring \mathbb{Z}_{6} . Some families of self-dual codes over \mathbb{Z}_{6}

(called senary codes) are also introduced. Section 4 deals with unimodular
lattices corresponding to senary codes. In Sections 5 and 6, we investigate
self-dual codes constructed from projective planes and weighing matrices.
In the final section, we introduce new weight enumerators and establish
their Williams relations.

2. The Chinese Remainder Theorem and Self-Dual Codes

Let R be a commutative ring (not necessarily finite) with a multiplica-
tive identity denoted by 1. Let I_{1} , I_{2} , . . ’

I_{k} be ideals of R such that:
1. S_{i}=R/I_{i} is finite,
2. I_{j}+ \bigcap_{k\neq j}I_{k}=R for 1\leq j\leq k .

That is, the ideals are relative prime, since R is commutative.
Set I=\cap I_{i} and S=R/I. Define the map

\Psi : Sarrow(R/I_{1})\cross(R/I_{2})\cross , . \cross(R/I_{k}) ,

by

\Psi(\alpha)= ( \alpha (mod I_{1} ), \alpha (mod I_{2}) , , \alpha (mod I_{k}) ).

The map \Psi^{-1} is a ring isomorphism by the generalized Chinese Remainder
Theorem.

Let C_{1} , C_{2} , \ldots , C_{k} be codes where C_{i} is a code over S_{i} , and define the
code

CRT(C_{1}, C_{2}, \ldots, C_{k})=\{\Psi^{-1}(v_{1}, v_{2}, \ldots, v_{k})|v_{i}\in C_{i}\} .

We say that the code CRT(Ci,C_{2} ,\ldots ,C_{k} ) is the Chinese product of codes
C_{1} , C_{2} , , C_{k} . It is clear that | CRT(C_{1}, C_{2}, . , C_{k})|=\prod_{i=1}^{k}|C_{i}| and that
if C_{i} is self-0rthogonal for all i then CRT(Ci,C_{2} , ,C_{k} ) is self-0rthogonal.
This gives the following:

Theorem 2.1 CRT(Ci,C_{2} ,\ldots,C_{k} ) is a self-dual code over S if and only
if it is the Chinese product of self-dual codes C_{1} , \ldots , C_{k} over S_{1} , \ldots , S_{k} ,
respectively.
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We have the following restriction on the length of certain self-dual codes
over \mathbb{Z}_{k} .

Corollary 2.2 Let s=p_{1}^{e_{1}}\cdot\cdot p_{j}^{e_{j}} where p_{i} is prime for all i=1 , \ldots , j .
Suppose that there is at least one i such that e_{i}=1 . Then, if a self-dual
code C of length n over \mathbb{Z}_{s} exists, n is even. In addition, if p_{i}\equiv 3 (mod 4),
then, if a self-dual code C of length n over \mathbb{Z}_{s} exists, n is a multiple of four.
Proof. If there is a self-dual code of length n over the finite field F_{p} where
p is prime then n is even. Since C is the Chinese product of a self-dual
codes over \mathbb{Z}_{p_{1}^{e_{1}}} , \ldots ,

\mathbb{Z}_{p_{j^{j}}^{e}} where at least one \mathbb{Z}_{pi} is the finite field, the length
n of C must be even. Moreover it is known that if there is a self-dual code
of length n over F_{p} where p\equiv 3 (mod 4) then n is a multiple of four (cf. [20]
and [21] ) . \square

2.1. Type II Codes over \mathbb{Z}_{2k}

We begin by giving some characterizations of Type II codes over \mathbb{Z}_{2k}

by the Chinese product.
Recently, codes over \mathbb{Z}_{4} have grown in importance. Interesting connec-

tions with binary codes and unimodular lattices have been found. Further
connections have been found with codes over \mathbb{Z}_{2k} (cf. [1]). The connection
between codes over \mathbb{Z}_{4} and unimodular lattices prompted the definition of
the Euclidean weight of a vector of \mathbb{Z}_{4}^{n} (cf. [2] and [3]). We defined the
Euclidean weights of the elements 0, \pm 1, \pm 2, \pm 3 , \ldots, \pm(k-1) , k of \mathbb{Z}_{2k} as
0, 1, 4, 9, . . ., (k-1)^{2} , k^{2} , respectively (cf. [1]). The Euclidean weight of a
vector is just the rational sum of the Euclidean weights of its components.
The Hamming weight of a vector is the number of non-zero components in
the vector. We defined a Type II code over \mathbb{Z}_{2k} as a self-dual code with all
codewords having Euclidean weight a multiple of 4k , see [1] for a complete
discussion of these codes. If a self-dual code is not Type II , then it is said
to be Type I . The notion of extremality for the Euclidean weight was also
given in [1].

Theorem 2.3 Let 2k=2^{m}r where r is odd. A code C is a Type II code
over \mathbb{Z}_{2k} if and only if it is the Chinese product of a Type II code over \mathbb{Z}_{2^{m}}

and a self-dual code over \mathbb{Z}_{r} .

Proof. If \alpha\in \mathbb{Z}_{2^{m}r} then there is a unique 0\leq\beta<2^{m} such that \alpha=

q2^{m}+\beta for some integer q . This implies \alpha\equiv\beta (mod 2^{m} ) and, taking
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squares

\alpha^{2}\equiv\beta^{2} (mod 2^{m+1} ),

i.e .

\alpha^{2}\equiv
(\alpha (mod 2^{m} ) )^{2} (mod 2^{m+1} ).

Then if v=(v_{i}) is a vector over \mathbb{Z}_{2^{m}r} with Euclidean weight divisible
by 2^{m+1}r , we have

\sum v_{i}^{2}\equiv 0 (mod 2^{m+1}r),

if and only if both

\sum(v_{i} (mod 2^{m} ) )^{2}\equiv 0 (mod 2^{m+1} ),

and

\sum(v_{i} (mod r ) )^{2}\equiv 0 (mod r),

hold. \square

The following corollary was shown in [1]. Here we give an alternative
proof.

Corollary 2.4 If there is a Type II code C of length n over \mathbb{Z}_{2^{m}r} where r
is odd, then n is a multiple of eight.

Proof. Let r=p_{1}^{e_{1}}\cdot\cdot p_{j}^{e_{j}} where p_{i} is prime. Then C is the Chinese
product of a self-dual code over \mathbb{Z}_{2^{m}} and codes over rings \mathbb{Z}_{p_{1}^{e_{1}}} , \ldots , \mathbb{Z}_{p_{i}^{e_{i}}} . It
is known in [8] that if there is a Type II code of length n over \mathbb{Z}_{2^{m}} then n
must be a multiple of eight. \square

Recently the notion of shadow codes over \mathbb{Z}_{4} has been introduced by
the authors [10]. Here we consider shadow codes over \mathbb{Z}_{2k} . Similarly to \mathbb{Z}_{4} ,
we pay attention to a certain subcode of index 2. The even weight subcode
C_{0} of a Type I code C over \mathbb{Z}_{2k} is the set of codewords of C of Euclidean
weights divisible by 4k .

Lemma 2.5 The subcode C_{0} is \mathbb{Z}_{2k} -linear of index 2 in C .

Proof. The first assertion follows by the self-duality of C using the relation

w_{E}(x+y)=w_{E}(x)+w_{E}(y)+2(x, y) , (1)
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where w_{E}(x) denotes the Euclidean weight of a vector x . The second as-
sertion follows by observing that every codeword y of C has an Euclidean
weight divisible by 2k . By the preceding relation we see that C_{2}:=C-C_{0}

is of the form x+C_{0} where x is any codeword of C of Euclidean weight
congruent to 2k mod 4k and that translation by x is a one to one map from
C_{0} onto C_{2} . \square

By the preceding lemma we see that C is of index 2 in C_{0}^{\perp} and we
let C_{0}^{\perp}=C\cup C_{1}\cup C_{3} . With these notations define the shadow of C as
S:=C_{1}\cup C_{3} . Unlike the binary case, C_{0}^{\perp}/C_{0} is not necessarily isomorphic
to the Klein 4-group, it may be isomorphic to either the Klein 4-group or
the cyclic group of order 4.

We now give some characterizations of shadow codes using the Chinese
Remainder Theorem.

Lemma 2.6 If k is an odd prime and C=CRT(B, K) with B a binary
code and K a code over \mathbb{Z}_{k} then C_{0}=CRT(B_{0}, K) , with B_{0} the even weight
subcode of B , that is_{f} the doubly-even subcode.

Proof. Follows from the fact that the Euclidean weight of a vector x
is divisible by 4k if and only if the Hamming weight of the binary vector
(x (mod 2)) is doubly-even and the Euclidean weight of the vector x (mod k )
over \mathbb{Z}_{k} is divisible by k , where x is an element of \mathbb{Z}_{2k} . \square

Proposition 2.7 Let S_{b} be the shadow of B defined as B_{0}^{\perp}=B\cup S_{b} .
Then C_{0}^{\perp}=CRT(B_{0}^{\perp}, K) and S=CRT(S6, K) .

Proof. Let x and y be elements of \mathbb{Z}_{2k}^{n} , then it is easy to see that [x, y]=0
if and only if [x (mod 2), y (mod 2) ] =0 and [x (mod k) , y (mod k) ] =0 .
By Lemma 2.6, C_{0}=CRT(B_{0}, K) . Thus C_{0}^{\perp}=CRT(B_{0}^{\perp}, K) . Moreover
S=C_{0}^{\perp}-C is the same as CRT(B_{0}^{\perp}-B, K)=CRT(S6, K) . \square

2.2. Codes over Polynomial Rings
Let F be a finite field and let F[x] be the ring of polynomials over F.

Let q(x) be a polynomial in F[x] such that the factorization of q(x) is given
by:

q(x)=p_{1}(x)p_{2}(x) . p_{r}(x) ,

where p_{i}(x) is a non-constant irreducible polynomial and gcd(p_{i}(x),p_{j}(x))\in

F.
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Let S_{i}=F[x]/(p_{i}(x)) , i.e. S_{i} is a finite field, and S=F[x]/(q(x)) ,
which is a field only if r=1 . Given codes over S_{i} the Chinese product can
be used to construct codes over S . This gives the following characterization
of codes over a certain residue class ring F[x]/(q(x)) .

Proposition 2.8 Let q(x) be a polynomial in F[x] such that the factor-
ization of q(x) is given by:

q(x)=p_{1}(x)p_{2}(x) . p_{r}(x) ,

where p_{i}(x) is a non-constant irreducible polynomial and gcd(p_{i}(x),p_{j}(x))\in

F for i\neq j . Then a code over the ring F[x]/(q(x)) is the Chinese product
of codes over some finite fields.
Example 1. Let F=\mathbb{Z}_{2} and let q(x)=x(x^{2}+x+1) . This gives that S_{1}

is isomorphic to the finite field F_{2} with 2 elements and S_{2} is isomorphic to
the finite field F_{4} , and S is a ring with 8 elements.

3. Senary Self-Dual Codes

In this section we concentrate on self-dual codes over \mathbb{Z}_{6} . The sym-
metrized weight enumerator (swe) of a senary code C is defined as:

swe_{C}(a, b, c, d):= \sum_{x\in C}a^{n_{0}(x)}b^{n_{1}(x)_{C}n_{2}(x)}d^{n_{3}(x)} ,

where n_{i}(x) denotes the number of j such that x_{j}=\pm i . We say that
two codes over \mathbb{Z}_{k} are equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) changing the signs of certain
coordinates. Codes differing by only a permutation of coordinates are called
permutation-equivalent.

3.1. Some Families of Senary Self-Dual Codes
We introduce a few families of senary self-dual codes together with

Type II codes. Note that we can regard the lifted symmetry codes and the
MacKay codes as bordered double circulant codes since the matrix W is a
circulant matrix.

3.1.1. Extended Cyclic Codes. The Chinese Remainder Theorem
gives much information on the Chinese product codes. For example, if a
permutation \sigma\in S_{n} is an automorphism of the Chinese product CRT(B, T)
then \sigma is also an automorphism of the binary code B and the ternary code
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T, where S_{n} is the symmetry group of degree n .
In fact, the Chinese product of two cyclic codes is again a cyclic code.

An extremal Type II code of length 24 was found in [1]. This code is an
extended cyclic code of length 24 and the Chinese product of two extencleel
cyclic quadratic residue codes over \mathbb{Z}_{2} and \mathbb{Z}_{3} . The next length for Type II
codes is 32. There is no ternary self-dual code of length 32 with automor-
phism of order 31 (cf. [14]). Thus, this gives that there is no senary extende d

cyclic self-dual code of length 32.

3.1.2. Lifted Symmetry Codes. We introduce families of double cir-
culant codes. Of course, senary double circulant codes are constructed from
binary and ternary double circulant codes.

Here we describe a family of codes above the Pless symmetry codes. Let
q be a prime power \equiv-1 (mod 6), and denote by \chi the quadratic character
of F_{q} . We begin by recalling some basic facts about the Jacobsthal matrix
which hold more generally for any odd q . This matrix W=(W_{i,j}) is indexed
by the elements of F_{q} and has for a typical entry

W_{i,j}:=\chi(j-i) .

The matrix W is instrumental in building Hadamard matrices of Paley
type [17, Chap. II]. We collect here the properties that we need:

(J1) JW=WJ=0
(J2) WW^{T}=qI-J

(J3) A:= \sum_{i=\square }W_{-i,1}=-1

(J4) B:= \sum_{i=\square }W_{i,1}=0

where J stands for the all-0ne matrix. See [17, Chap. II , Lemma 7] for
proofs of (J1) and (J2). To prove (J3), (J4) observe firstly that by (J1)
we have, knowing that -1 is not a quadratic residue, that A+B=-1 .
Secondly we have

B= \frac{1}{2}\sum_{x\in F_{q},x\neq 0}\chi(1-x^{2}) ,

and by the character property of \chi

B= \frac{1}{2}\sum_{x\in F_{q},x\neq 0}\chi(1-x)\chi(1+x)=0_{7}
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tllc last equality coming from (J2).
Now we define the matrix S_{q} as

S_{q}= (\begin{array}{llll}0 1 1\chi(-1) \vdots W \chi(-1) \end{array}) ,

which is q+1 by q+1 and satisfies S_{q}S_{q}^{T}=qI . Define a generator matrix
of size q+1 by 2q+2 over \mathbb{Z}_{6} by the rule

G=(I. S_{q}) .

Theorem 3.1 The matrix G generates a self-dual code P(n) of length
n=2q+2 over \mathbb{Z}_{6} . If furthermore q\equiv-1 (mod 12) then P(n) is Type II .

Proof. By (J1) the rows of G are pairwise orthogonal. They are isotropic
by the choice of g , since the inner-product of every row with itself is q+1 .
Now in case q satisfies the congruence mod 12, the Euclidean weight of each
row of G is divisible by 12 by the choice of q . This carries over to the row
span by [1]. \square

P(7l) is the Chinese product of the ternary Pless symmetry code with
generator matrix G and the binary self-dual codes with generator matrix
(I., J-I). Thus we say that the above codes P(n) are the lifted symmetry
codes. Of special interest are q=5 yielding a Type I code above the Golay
code, q=17 yielding a Type I code of length 36, q=11,23 yielding Type II
codes of lengths 24 and 48.

We have obtained by computer that the symmetrized weight enumera-
tors of the lifted symmetry codes P(12) and P(24) of lengths 12 and 24:

swe_{P(12)}=d^{12}+24c^{6}d^{6}+24c^{12}+120bc^{8}d^{3}+120b^{2}c^{4}d^{6}+1280b^{3}c^{6}d^{3}

+360b^{4}c^{8}+1680b^{5}c^{4}d^{3}+264b^{6}d^{6}+768b^{6}c^{6}+360b^{8}c^{4}

+440b^{9}d^{3}+24b^{12}+240abc^{5}d^{5}+1440ab^{2}c^{7}d^{2}+960ab^{3}c^{3}d^{5}

+5760ab^{4}c^{5}d^{2}+3360ab^{6}c^{3}d^{2}+120a^{2}c^{6}d^{4}+2280a^{2}b^{2}c^{4}d^{4}

+3360a^{2}b^{3}c^{6}d+1800a^{2}b^{4}c^{2}d^{4}+5760a^{2}b^{5}c^{4}d+1440a^{2}b^{7}c^{2}d

+440a^{3}c^{9}+960a^{3}bc^{5}d^{3}+3360a^{3}b^{3}c^{3}d^{3}+1680a^{3}b^{4}c^{5}
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+960a^{3}b^{5}cd^{3}+1280a^{3}b^{6}c^{3}+120a^{3}b^{8}c+15a^{4}d^{8}+1800a^{4}b^{2}c^{4}d^{2}

+2280a^{4}b^{4}c^{2}d^{2}+120a^{4}b^{6}d^{2}+960a^{5}b^{3}c^{3}d+240a^{5}b^{5}cd

+32a^{6}d^{6}+264a^{6}c^{6}+120a^{6}b^{4}c^{2}+24a^{6}b^{6}+15a^{8}d^{4}+a^{12} .

swe_{P(24)}=d^{24}+1104c^{12}d^{12}+48c^{24}+3168bc^{20}d^{3}+23760b^{2}c^{16}d^{6}

+116160b^{3}c^{12}d^{9}+23760b^{4}c^{8}d^{12}+3168b^{4}c^{20}+3168b^{5}c^{4}d^{15}

+332640b^{5}c^{16}d^{3}+4040256b^{6}c^{12}d^{6}+1045440b^{7}c^{8}d^{9}

+190080b^{8}c^{4}d^{12}+23760b^{8}c^{16}+4048b^{9}d^{15}+7846080b^{9}c^{12}d^{3}

+5844960b^{10}c^{8}d^{6}+2059200b^{11}c^{4}d^{9}+61824b^{12}d^{12}

+142656b^{12}c^{12}+3326400b^{13}c^{8}d^{3}+3769920b^{14}c^{4}d^{6}

+242880b^{15}d^{9}+23760b^{16}c^{8}+902880b^{17}c^{4}d^{3}+198352b^{18}d^{6}

+3168b^{20}c^{4}+24288b^{21}d^{3}+48b^{24}+95040ab^{2}c^{19}d^{2}

+633600ab^{3}c^{15}d^{5}+3326400ab^{4}c^{11}d^{8}+380160ab^{5}c^{7}d^{11}

+31680ab^{6}c^{3}d^{14}+2661120ab^{6}c^{15}d^{2}+41665536ab^{7}c^{11}d^{5}

+9504000ab^{8}c^{7}d^{8}+1013760ab^{9}c^{3}d^{11}+28245888ab^{10}c^{11}d^{2}

+25470720ab^{11}c^{7}d^{5}+6177600ab^{12}c^{3}d^{8}+5702400ab^{14}c^{7}d^{2}

+6031872ab^{15}c^{3}d^{5}+601920ab^{18}c^{3}d^{2}+18480a^{2}c^{18}d^{4}

+95040a^{2}bc^{14}d^{7}+342144a^{2}b^{2}c^{10}d^{10}+31680a^{2}b^{3}c^{6}d^{13}

+601920a^{2}b^{3}c^{18}d+6177600a^{2}b^{4}c^{14}d^{4}+28702080a^{2}b^{5}c^{10}d^{7}

+2566080a^{2}b^{6}c^{6}d^{10}+95040a^{2}b^{7}c^{2}d^{13}+5702400a^{2}b^{7}c^{14}d

+142987680a^{2}b^{8}c^{10}d^{4}+29367360a^{2}b^{9}c^{6}d^{7}+1672704a^{2}b^{10}c^{2}d^{10}

+28245888a^{2}b^{11}c^{10}d+37224000a^{2}b^{12}c^{6}d^{4}+5702400a^{2}b^{13}c^{2}d^{7}

+2661120a^{2}b^{15}c^{6}d+2827440a^{2}b^{16}c^{2}d^{4}+95040a^{2}b^{19}c^{2}d

+3520a^{3}c^{9}d^{12}+24288a^{3}c^{21}+443520a^{3}bc^{17}d^{3}

+1425600a^{3}b^{2}c^{13}d^{6}+3125760a^{3}b^{3}c^{9}d^{9}+142560a^{3}b^{4}c^{5}d^{12}

+902880a^{3}b^{4}c^{17}+22809600a^{3}b^{5}c^{13}d^{3}+112464000a^{3}b^{6}c^{9}d^{6}

+7223040a^{3}b^{7}c^{5}d^{9}+102960a^{3}b^{8}cd^{12}+3326400a^{3}b^{8}c^{13}

+212115200a^{3}b^{9}c^{9}d^{3}+41342400a^{3}b^{10}c^{5}d^{6}-+1013760a^{3}b^{11}cd^{9}

+7846080a^{3}b^{12}c^{9}+22809600a^{3}b^{13}c^{5}d^{3}+1900800a^{3}b^{14}cd^{6}

+332640a^{3}b^{16}c^{5}+443520a^{3}b^{17}cd^{3}+3168a^{3}b^{20}c+66a^{4}d^{20}

+23760a^{4}c^{12}d^{8}+47520a^{4}bc^{8}d^{11}+2827440a^{4}b^{2}c^{16}d^{2}
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+9408960o^{4}b^{3}c^{12}d^{5}+17083440a^{4}b^{4}c^{8}d^{8}+475200a^{4}b^{5}c^{4}d^{11}

+37224000a^{4}b^{6}c^{12}d^{2}+216311040a^{4}b^{7}c^{8}d^{5}+10216800a^{4}b^{8}c^{4}d^{8}

+34320a^{4}b^{9}d^{11}+142987680a^{4}b^{10}c^{8}d^{2}+28036800a^{4}b^{11}c^{4}d^{5}

\dashv- 190080a^{4}b^{12}d^{8}+6177600a^{4}b^{14}c^{4}d^{2}+190080a^{4}b^{15}d^{5}

+18480a^{4}b^{18}d^{2}+190080a^{5}c^{15}d^{4}+- 380160a^{5}bc^{11}d^{7}

+494208a^{5}b^{2}c^{7}d^{10}+6031872a^{5}b^{3}c^{15}d+28036800a^{5}b^{4}c^{11}d^{4}

+41817600o^{5}b^{5}c^{7}d^{7}+696960a^{5}b^{6}c^{3}d^{10}+25470720a^{5}b^{7}c^{11}d

+216311040a^{5}b^{8}c^{7}d^{4}+7223040a^{5}b^{9}c^{3}d^{7}+41665536a^{5}b^{11}c^{7}d

+9408960a^{5}b^{12}c^{3}d^{4}+633600a^{5}b^{15}c^{3}d+198352a^{6}c^{18}

+1900800a^{6}bc^{14}d^{3}+2566080a^{6}b^{2}c^{10}d^{6}+1858560a^{6}b^{3}c^{6}d^{9}

+3769920a^{6}b^{4}c^{14}+41342400a^{6}b^{5}c^{10}d^{3}+59000832a^{6}b^{6}c^{6}d^{6}

+475200a^{6}b^{7}c^{2}d^{9}+5844960a^{6}b^{8}c^{10}+112464000a^{6}b^{9}c^{6}d^{3}

+2566080a^{6}b^{10}c^{2}d^{6}+4040256a^{6}b^{12}c^{6}+1425600a^{6}b^{13}c^{2}d^{3}

+23760a^{6}b^{16}c^{2}+15840a^{7}c^{9}d^{8}+5702400a^{7}b^{2}c^{13}d^{2}

+7223040a^{7}b^{3}c^{9}d^{5}+3611520a^{7}b^{4}c^{5}d^{8}+29367360a^{7}b^{6}c^{9}d^{2}

+41817600a^{7}b^{7}c^{5}d^{5}+166320a^{7}b^{8}cd^{8}+28702080a^{7}b^{10}c^{5}d^{2}

+380160a^{7}b^{11}cd^{5}+95040a^{7}b^{14}cd^{2}+495a^{8}d^{16}+190080a^{8}c^{12}d^{4}

+166320a^{8}bc^{8}d^{7}-\vdash 6177600a^{8}b^{3}c^{12}d+10216800a^{8}b^{4}c^{8}d^{4}

+3611520a^{8}b^{5}c^{4}d^{7}+9504000a^{8}b^{7}c^{8}d+17083440a^{8}b^{8}c^{4}d^{4}

+15840a^{8}b^{9}d^{7}+3326400a^{8}b^{11}c^{4}d+23760a^{8}b^{12}d^{4}

+242880a^{9}c^{15}+1013760a^{9}bc^{11}d^{3}+475200a^{9}b^{2}c^{7}d^{6}

+2059200a^{9}b^{4}c^{11}+7223040a^{9}b^{5}c^{7}d^{3}+1858560a^{9}b^{6}c^{3}d^{6}

+1045440a^{9}b^{8}c^{7}+3125760a^{9}b^{9}c^{3}d^{3}+116160a^{9}b^{12}c^{3}

+1672704a^{10}b^{2}c^{10}d^{2}+696960a^{10}b^{3}c^{6}d^{5}+2566080a^{10}b^{6}c^{6}d^{2}

+494208a^{10}b^{7}c^{2}d^{5}+342144a^{10}b^{10}c^{2}d^{2}+34320a^{11}c^{9}d^{4}

+1013760a^{11}b^{3}c^{9}d+475200a^{11}b^{4}c^{5}d^{4}+380160a^{11}b^{7}c^{5}d

+47520a^{11}b^{8}cd^{4}+2972a^{12}d^{12}+61824a^{12}c^{12}+102960a^{12}bc^{8}d^{3}

+190080a^{12}b^{4}c^{8}+142560a^{12}b^{5}c^{4}d^{3}+23760a^{12}b^{8}c^{4}

+3520a^{12}b^{9}d^{3}+1104a^{12}b^{12}+95040a^{13}b^{2}c^{7}d^{2}+31680a^{13}b^{6}c^{3}d^{2}

+31680a^{14}b^{3}c^{6}d+4048a^{15}c^{9}+3168a^{15}b^{4}c^{5}+495a^{16}d^{8}

+66a^{20}d^{4}+a^{24} .
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3.1.3. MacKay Codes. Let q be a prime power congruent to -5
(mod 12). Define a matrix B_{q} bordering Jacobsthal as

B_{q}=(\begin{array}{lll}2 1 .\cdot 11 \vdots 1 W -2I\end{array})

A double circulant code M_{q} is then introduced by its generator matrix

(I, B_{q}) .

Theorem 3.2 The MacKay code M_{q} is a self-dual Type II code of length
2q+2 .

Proof Follows from the property of W which is skew-symmetric for q\equiv

-1 (mod 4). Observe that the inner-product of each row with itself is this
time q+5 . \square

Remark. M_{q} is the Chinese product of the binary doubly-even self-dual
code with generator matrix (I. J-I) and the ternary self-dual code with
generator matrix (I, B_{q}) .

In particular q=19 yields after the real construction A_{6} an extremal
lattice in dimension 40 [6]. For the first case q=7, we have found itcb^{\urcorner}

symmetrized weight enumerator:

swe_{M_{7}}=d^{16}+480bc^{8}d^{7}+1792b^{3}c^{12}d+24864b^{4}c^{8}d^{4}+5376b^{5}c^{4}d^{7}

+224b^{6}d^{10}+25344b^{7}c^{8}d+25536b^{8}c^{4}d^{4}+2720b^{9}d^{7}+5376b^{11}c^{4}d

+3360b^{12}d^{4}+256b^{15}d+256ac^{15}+2688abc^{11}d^{3}+10752ab^{2}c^{7}d^{6}

+896ab^{3}c^{3}d^{9}+5376ab^{4}c^{11}+166656ab^{5}c^{7}d^{3}+24192ab^{6}c^{3}d^{6}

+25344ab^{8}c^{7}+45696ab^{9}c^{3}d^{3}+1792ab^{12}c^{3}+20160a^{2}b^{2}c^{10}d^{2}

+72576a^{2}b^{3}c^{6}d^{5}+2016a^{2}b^{4}c^{2}d^{8}+282240a^{2}b^{6}c^{6}d^{2}

+32256a^{2}b^{7}c^{2}d^{5}+20160a^{2}b^{10}c^{2}d^{2}+1568a^{3}c^{9}d^{4}+2688a^{3}bc^{5}d^{7}

+45696a^{3}b^{3}c^{9}d+185472a^{3}b^{4}c^{5}d^{4}+2688a^{3}b^{5}cd^{7}+166656a^{3}b^{7}c^{5}d

+12768a^{3}b^{8}cd^{4}+2688a^{3}b^{11}cd+28a^{4}d^{12}+3360a^{4}c^{12}

+12768a^{4}bc^{8}d^{3}+11424a^{4}b^{2}c^{4}d^{6}+25536a^{4}b^{4}c^{8}+185472a^{4}b^{5}c^{4}d^{3}
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+672a^{4}b^{6}d^{6}+24864a^{4}b^{8}c^{4}+1568a^{4}b^{9}d^{3}+32256a^{5}b^{2}c^{7}d^{2}

+16128a^{5}b^{3}c^{3}d^{5}+72576a^{5}b^{6}c^{3}d^{2}+672a^{6}c^{6}d^{4}+24192a^{6}b^{3}c^{6}d

+11424a^{6}b^{4}c^{2}d^{4}+10752a^{6}b^{7}c^{2}d+2720a^{7}c^{9}+2688a^{7}bc^{5}d^{3}

+5376a^{7}b^{4}c^{5}+2688a^{7}b^{5}cd^{3}+480a^{7}b^{8}c+198a^{8}d^{8}

+2016a^{8}b^{2}c^{4}d^{2}+896a^{9}b^{3}c^{3}d+224a^{10}c^{6}+28a^{12}d^{4}+a^{16} .

3.1.4. A Family of Type II Codes. It is well known that there is a
llrliq\mbox{\boldmath $\iota$}le binary doubly-even self-dual code B and there is a unique ternary
self-dual code T of length 8, up to equivalence. B and T have the following
generator matrices:

G_{FJ}=\{

1000 0111 \backslash

0100 1011
0010 1101
0001 1100 /

and G_{T}=(\begin{array}{ll}1000 12000100 11000010 00120001 0011\end{array}) ,

re spectively. A genera tor matrix of the Chinese product CRT(B, T) of B
and T is

(\begin{array}{ll}1000 45330100 14330010 33450001 3314\end{array})

The symmetrized weight enu merator of the senary code CRT(B, T) is

swe_{CRT(B,T)}=d^{8}+192b^{2}c^{4}d^{2}+16b^{3}d^{5}+64b^{6}d^{2}+16ac^{3}d^{4}

+512ab^{3}c^{3}d+64a^{2}c^{6}+96a^{2}bc^{2}d^{3}+192a^{2}b^{4}c^{2}

+96a^{3}b^{2}cd^{2}+14a^{4}d^{4}+16a^{4}b^{3}d+16a^{5}c^{3}+a^{8} .

\oplus_{n} CRT(B, T) is a Type II code of length 8n whose symmetrized weight
enumerator is swe_{CRT(B,T)^{n}} .

3.2. Properties of Senary Self-Dual Codes
Any code over \mathbb{Z}_{6} is permutation-equivalent to a code generated by the

following matrix:
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(\begin{array}{llll}I_{k_{1}} A_{1,2} A_{1,3} A_{1,4}0 2I_{k_{2}} 2A_{2,3} 2A_{2,4}0 0 3I_{k_{3}} 3A_{3,4}\end{array}) , (2)

where A_{i,j} are binary matrices for i>1 . Such a code is said to have rank
\{1^{k_{1}} , 2^{k_{2}},3^{k_{3}}\} , see [1].

Lemma 3.3 Let C be a senary code of rank \{1^{k_{1}} , 2^{k_{2}},3^{k_{3}}\} . If C is a

self-dual code of length n then k_{2}=k_{3} and k_{1}+k_{2}=n/2 .

Proof. A senary self-dual code of length n has 6^{\frac{n}{2}} codewords. A code
of rank \{k_{1}, k_{2}, k_{3}\} has 6^{k_{1}}3^{k_{2}}2^{k_{3}} codewords. Hence, if the code is self-dual
then k_{2} must be equal to k_{3} otherwise the number of codewords would not
be a multiple of 6. Moreover k_{1}+k_{2}= \frac{n}{2} , since 6^{k_{1}}3^{k_{2}}2^{k_{2}}=6^{k_{1}} (3 2)^{k_{2}} .

\square

If C is a code over \mathbb{Z}_{6} , let C_{2} be the code read (mod 2) and let C_{3} be
the code read (mod 3). That is,

C_{2}= { v|v\equiv w (mod 2), w\in C},

and

C_{3}= { v|v\equiv w (mod 3), w\in C}.

The code C_{2} is permutation-equivalent to a code with generator matrix of
the form:

(\begin{array}{llll}I_{k_{1}} A_{1,2} A_{1,3} A_{1,4}0 0 3I_{k_{3}} 3A_{3,4}\end{array}) , (3)

where A_{i,j} are binary matrices for i>1 . Notice 3\equiv 1 (mod 2) hence this
code generates a binary code of dimension k_{1}+k_{3}= \frac{n}{2} . And the ternary
code C_{3} is permutation-equivalent to a code with generator matrix of the
form:

(\begin{array}{llll}I_{k_{1}} A_{1,2} A_{1,3} A_{1,4}0 2I_{k_{2}} 2A_{2,3} 2A_{2,4}\end{array}) , (4)

where A_{i,j} are binary matrices for i>1 . Notice 2 is a unit in \mathbb{Z}_{3} hence this
code generates a ternary code of dimension k_{1}+k_{2}= \frac{n}{2} .

We now consider self-dual codes of length n over \mathbb{Z}_{6} constructed from a



266 S. T. Dougherty, M. Harada and P. Sole’

(5)

fixed binary self-dual code C_{2} and a fixed ternary self-dual code C_{3} by the
Chinese product. Let T be the set of all codes constructed by permuting the
coordinates of C_{2} and C_{3} . Let C_{3}’ be a ternary code obtained from C_{3} by
changing the signs of certain coordinates, then it is clear that CRT(C_{2}, C_{3})

is equivalent to CRT(C_{2}, C_{3}’) . Moreover CRT(C_{2}^{\alpha}, C_{3}^{\beta}) is equivalent to
CRT(C_{2}^{\alpha(\beta)^{-1}}, C_{3}) where \alpha and \beta are element of the symmetric group S_{n}

of degree n . Of course, S_{n} acts on the coordinates of C_{2} and C_{3} . Hence

T=\{CRT(C_{2}^{\alpha}, C_{3}^{\beta})|\alpha, \beta\in S_{n}\}

=\{CRT(C_{2}^{\gamma}, C_{3})|\gamma\in S_{n}\} .

In addition, if \gamma is an element of the automorphism group Aut(C_{2}) of C_{2} then
CRT(C_{2}, C_{3})=CRT(C_{2}^{\gamma}, C_{3}) . Therefore the number N of inequivalent
codes obtained from C_{2} and C_{3} by permuting the coordinates and changing
the signs is at most

\frac{n!}{|Aut(C_{2})|} ,

where |Aut(C_{2})| denotes the order of Aut(C_{2}) .
Lct \overline{Aut(C_{3})} be the group of all permutations which preserve C_{3} , simi-

larly, we have

N \leq\frac{n!}{|\overline{Aut(C_{3})}|} .

Thus we have

N \leq\min\{\frac{n!}{|Aut(C_{2})|} , \frac{n!}{|\overline{Aut(C_{3})}|}\}

This gives the following upper bound on the number of inequivalent
senary self-dual codes.

Proposition 3.4 Let C_{2} and C_{3} be the sets of all inequivalent self-dual
codes of length n over \mathbb{Z}_{2} and \mathbb{Z}_{3} , respectively. Let N_{6}(n) be the number of
inequivalent self-dual codes of length n over \mathbb{Z}_{6} . Then N_{6}(n) is bounded by

N_{6}(n) \leq\min\{|C_{3}|(\sum_{C_{2}\in C_{2}}\frac{n!}{|Aut(C_{2})|}) , |C_{2}|( \sum_{C_{3}\in C_{3}}\frac{n!}{|\overline{Aut(C_{3})}|})\} .

We give a classification of self-dual codes over \mathbb{Z}_{6} of length 4. By
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Lemma 3.3, the rank of a self-dual code of length 4 is either \{1^{2}\} or
\{1^{1},2^{1},3^{1}\} . When rank is \{1^{2}\} , any code is equivalent to a code with
generator matrix of the form:

(\begin{array}{llll}1 0 1 20 1 4 1\end{array})

When rank is \{1^{1},2^{1},3^{1}\} , it is easy to see that a generator matrix of a
self-dual code can be transformed into a matrix of the form:

(\begin{array}{llll}1 a b c0 2 1 10 0 3 3\end{array}) .

where a , b , c\in \mathbb{Z}_{6} . We found all self-dual codes by finding all possible
(a, b, c) . Then any code of rank \{1^{1},2^{1},3^{1}\} is equivalent to a code with
generator matrix of the form:

(\begin{array}{llll}1 1 0 40 2 1 10 0 3 3\end{array})

Therefore there are exactly two inequivalent self-dual codes of length 4.
Since N_{6}(4)\leq 3 , the above bound (5) is always not tight in general.

All binary self-dual codes of length up to 30 and all ternary self-dual
codes of length up to 20 have been classified (cf. [4] and [22]). It would
be interesting to determine equivalence classes of senary self-dual codes of
length up to 20 from these codes.

4. Corresponding Lattices

An n-dimensional lattice \Lambda in \mathbb{R}^{n} is the set of integer linear combinations
of n linearly independent vectors v_{1} , . . , v_{n} , where \mathbb{R}^{n} is the n-dimensional
Euclidean space. The dual lattice \Lambda^{*} is given by \Lambda^{*}=\{x\in \mathbb{R}^{n}|[x, a]\in

\mathbb{Z} for all a\in\Lambda }, where [x, a]=x_{1}a_{1}+ +x_{n}a_{n} and x= (x_{1}, . . ’ x_{n}) ,
a= (a_{1}, . ’ a_{n}) . A lattice \Lambda is integral if the inner product of any two
lattice points is integral, or equivalently, if \Lambda\subseteq\Lambda^{*} . An integral lattice with
\Lambda=\Lambda^{*} is called unimodular. The theta series \theta_{\Lambda}(q) of a lattice \Lambda is the
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formal power series

\theta_{\Lambda}(q)=\sum_{x\in\Lambda}q^{[x,x]}
.

The kissing number is the first non-trivial coefficient of the theta series.

4.1. Construction A_{6}

Every senary code C can be attached a lattice by the formula

A_{6}(C)= \frac{1}{\sqrt{6}}(C+6\mathbb{Z}^{n}) .

Using that construction the Leech lattice was constructed anew in [1]. If
C is self-dual then A_{6}(C) is unimodular, moreover if C is Type II then
A_{6}(C) is even unimodular (cf. [1]). We observe that construction B_{3} of
Leech and Sloane [6, p. 148] is in fact construction A_{6} applied to the code
S=-2C+3P_{n} , where C is a ternary code and P_{n} is the binary parity-check
code of length n . In other words, S is the Chinese product of C by P_{n} .

Let \nu_{i} denote the theta series of \mathbb{Z}+\frac{i}{6} for i=1,2,3 . Clearly

\theta_{A_{6}(C)}=swe_{C}(\theta_{3}, \nu_{1}, \nu_{2}, \nu_{3}) .

With the denotations of [6, p. 105] we have \nu_{1}=\psi_{6} , \nu_{2}=\psi_{3} , \nu_{3}=\theta_{2} .

4.2. Even Unimodular Lattices
In Section 3, we gave a family of Type II codes \oplus_{n} CRT(5, T) of length

8n . Since there is a unique 8-dimensional even unimodular lattice, up to
equivalence, namely E_{8} , A_{6}(CRT(B, T)) must be E_{8} . In addition, it is easy
to see that A_{6} ( \oplus_{n} CRT(5, T)) is E_{8}+ , . +E_{8} .

The minimum norm of the lattice A_{6}(P(12)) is 1, the kissing number is
24 and the lattice is a unimodular lattice. Thus A_{6}(P(12)) is \mathbb{Z}^{12} . Since the
code M_{7} of length 16 is Type II and d_{E}=12 , A_{6}(M_{7}) is a 16-dimensi0nal
even extremal unimodular lattice, that is, either E_{8}+E_{8} or D_{16}^{+} by Table
16.7 of [6].

The lattice A_{6}(P(24)) is a 24-dimensional even unimodular lattice.
Moreover, from swe_{P(24)} of P(24) in Section 3, the theta series \theta_{A_{6}(P(24))}

of the lattice A_{6}(P(24)) is 1+1104q2+|\cdot . Thus the lattice is D_{24}^{+} by
Table 16.1 in [6].
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4.3. Odd Unimodular Lattices
From [5, Table II], there is a unique odd unimodular lattice with the

minimum norm 2 in dimensions 12 and 16. By the Chinese product, we
have Type I codes C_{12} and C_{16} of lengths 12 and 16 with the following
generator matrices

(\begin{array}{ll}100000 231155010000 141113001000 112355000100 151235000010 513545000001 355112\end{array}) and \{\begin{array}{ll}10000000 4441111101000000 425’2151100100000 4251211500010000 4215145500001000 4451152500000100 4211555400000010 1442224200000001 41222424\end{array}) ,

respectively. Their symmetrized weight enumerators swe_{12} and swe_{16} are

swe_{C_{12}}=d^{12}+24c^{12}+120bc^{8}d^{3}+120b^{2}c^{4}d^{6}+1280b^{3}c^{6}d^{3}+360b^{4}c^{8}

+1680b^{5}c^{4}d^{3}+264b^{6}d^{6}+768b^{6}c^{6}+360b^{8}c^{4}+440b^{9}d^{3}+24b^{12}

+384abc^{5}d^{5}+1440ab^{2}c^{7}d^{2}+960ab^{3}c^{3}d^{5}+5760ab^{4}c^{5}d^{2}

+3360ab^{6}c^{3}d^{2}+120a^{2}c^{6}d^{4}+1920a^{2}b^{2}c^{4}d^{4}+3360a^{2}b^{3}c^{6}d

+1800a^{2}b^{4}c^{2}d^{4}+5760a^{2}b^{5}c^{4}d+1440a^{2}b^{7}c^{2}d+440a^{3}c^{9}

+960a^{3}bc^{5}d^{3}+3840a^{3}b^{3}c^{3}d^{3}+1680a^{3}b^{4}c^{5}+960a^{3}b^{5}cd^{3}

+1280a^{3}b^{6}c^{3}+120a^{3}b^{8}c+15a^{4}d^{8}+1800a^{4}b^{2}c^{4}d^{2}

+1920a^{4}b^{4}c^{2}d^{2}+120a^{4}b^{6}d^{2}+960a^{5}b^{3}c^{3}d+384a^{5}b^{5}cd

+32a^{6}d^{6}+264a^{6}c^{6}+120a^{6}b^{4}c^{2}+15a^{8}d^{4}+a^{12} ,

swe_{C_{16}}=d^{16}+40c^{12}d^{4}+144bc^{8}d^{7}+64bc^{14}d+40b^{2}c^{4}d^{10}+1712b^{2}c^{10}d^{4}

+1760b^{3}c^{6}d^{7}+1024b^{3}c^{12}d+56b^{4}c^{2}d^{10}+12304b^{4}c^{8}d^{4}

+2992b^{5}c^{4}d^{7}+5952b^{5}c^{10}d+224b^{6}d^{10}+24032b^{6}c^{6}d^{4}

+1632b^{7}c^{2}d^{7}+12032b^{7}c^{8}d+14632b^{8}c^{4}d^{4}+2720b^{9}d^{7}

+9920b^{9}c^{6}d+3696b^{10}c^{2}d^{4}+3072b^{11}c^{4}d+3360b^{12}d^{4}

+448b^{13}c^{2}d+256b^{15}d+136ac^{9}d^{6}+256ac^{15}+112abc^{5}d^{9}

+1376abc^{11}d^{3}+5024ab^{2}c^{7}d^{6}+448ab^{2}c^{13}+352ab^{3}c^{3}d^{9}



270 S. T. Dougherty, M. Harada and P. Sol\’e

+22912ab^{3}c^{9}d^{3}+18640ab^{4}c^{5}d^{6}+3072ab^{4}c^{11}+224ab^{5}cd^{9}

+77120ab^{5}c^{7}d^{3}+14144ab^{6}c^{3}d^{6}+9920ab^{6}c^{9}+82432ab^{7}c^{5}d^{3}

+2856ab^{8}cd^{6}+12032ab^{8}c^{7}+25952ab^{9}c^{3}d^{3}+5952ab^{10}c^{5}

+2688ab^{11}cd^{3}+1024ab^{12}c^{3}+64ab^{14}c+2a^{2}d^{14}+104a^{2}c^{6}d^{8}

+336a^{2}c^{12}d^{2}+4056a^{2}bc^{8}d^{5}+1152a^{2}b^{2}c^{4}d^{8}+11760a^{2}b^{2}c^{10}d^{2}

+35200a^{2}b^{3}c^{6}d^{5}+1392a^{2}b^{4}c^{2}d^{8}+77232a^{2}b^{4}c^{8}d^{2}+55536a^{2}b^{5}c^{4}d^{5}

+168a^{2}b^{6}d^{8}+136992a^{2}b^{6}c^{6}d^{2}+17952a^{2}b^{7}c^{2}d^{5}+77232a^{2}b^{8}c^{4}d^{2}

+952a^{2}b^{9}d^{5}+11760a^{2}b^{10}c^{2}d^{2}+336a^{2}b^{12}d^{2}+816a^{3}c^{9}d^{4}

+1152a^{3}bc^{5}d^{7}+2688a^{3}bc^{11}d+26336a^{3}b^{2}c^{7}d^{4}+4192a^{3}b^{3}c^{3}d^{7}

+25952a^{3}b^{3}c^{9}d+87472a^{3}b^{4}c^{5}d^{4}+1376a^{3}b^{5}cd^{7}+82432a^{3}b^{5}c^{7}d

+62176a^{3}b^{6}c^{3}d^{4}+77120a^{3}b^{7}c^{5}d+7616a^{3}b^{8}cd^{4}+22912a^{3}b^{9}c^{3}d

+1376a^{3}b^{11}cd+16a^{4}d^{12}+360a^{4}c^{6}d^{6}+3360a^{4}c^{12}+7616a^{4}bc^{8}d^{3}

+4984a^{4}b^{2}c^{4}d^{6}+3696a^{4}b^{2}c^{10}+62176a^{4}b^{3}c^{6}d^{3}+5432a^{4}b^{4}c^{2}d^{6}

+14632a^{4}b^{4}c^{8}+87472a^{4}b^{5}c^{4}d^{3}+424a^{4}b^{6}d^{6}+24032a^{4}b^{6}c^{6}

+26336a^{4}b^{7}c^{2}d^{3}+12304a^{4}b^{8}c^{4}+816a^{4}b^{9}d^{3}+1712a^{4}b^{10}c^{2}

+40a^{4}b^{12}+952a^{5}c^{9}d^{2}+2640a^{5}bc^{5}d^{5}+17952a^{5}b^{2}c^{7}d^{2}

+8576a^{5}b^{3}c^{3}d^{5}+55536a^{5}b^{4}c^{5}d^{2}+2640a^{5}b^{5}cd^{5}+35200a^{5}b^{6}c^{3}d^{2}

+4056a^{5}b^{8}cd^{2}+62a^{6}d^{10}+424a^{6}c^{6}d^{4}+2856a^{6}bc^{8}d

+5432a^{6}b^{2}c^{4}d^{4}+14144a^{6}b^{3}c^{6}d+4984a^{6}b^{4}c^{2}d^{4}+18640a^{6}b^{5}c^{4}d

+360a^{6}b^{6}d^{4}+5024a^{6}b^{7}c^{2}d+136a^{6}b^{9}d+2720a^{7}c^{9}+1376a^{7}bc^{5}d^{3}

+1632a^{7}b^{2}c^{7}+4192a^{7}b^{3}c^{3}d^{3}+2992a^{7}b^{4}c^{5}+1152a^{7}b^{5}cd^{3}

+1760a^{7}b^{6}c^{3}+144a^{7}b^{8}c+94a^{8}d^{8}+168a^{8}c^{6}d^{2}+1392a^{8}b^{2}c^{4}d^{2}

+1152a^{8}b^{4}c^{2}d^{2}+104a^{8}b^{6}d^{2}+224a^{9}bc^{5}d+352a^{9}b^{3}c^{3}d

+112a^{9}b^{5}cd+62a^{10}d^{6}+224a^{10}c^{6}+56a^{10}b^{2}c^{4}+40a^{10}b^{4}c^{2}

+16a^{12}d^{4}+2a^{14}d^{2}+a^{16} .

Thus the minimum Euclidean weights of both C_{12} and C_{16} are 12. A_{6}(C_{12})

and A_{6}(C_{16}) are the odd unimodular lattices with the minimum norm 2.

4.4. A 3-modular Lattice
Recently Gabriele Nebe [18] has found an extremal 3-modular lattice in

dimension 24 from a code N over \mathbb{Z}_{6} . N has the following generator matrix:
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\{\begin{array}{l}021504155450211000001131011045013540150005055212402051511014011450502145l210410505410200155512125205401104555115555553005l1150105450203514055511333300000000000000000000000033330000000000000000000000003333000000000000000000000000333300000000000000000000000033330000000000000000000000003333\end{array}\}

We have obtained its symmetrized weight enumerator:

swe_{N}=d^{24}+626b^{5}c^{16}d^{3}+5668b^{6}c^{12}d^{6}+3060b^{7}c^{8}d^{9}+2b^{8}c^{4}d^{12}+6b^{9}d^{15}

+5982b^{9}c^{12}d^{3}+12826b^{10}c^{8}d^{6}+130b^{11}c^{4}d^{9}+26b^{12}d^{12}

+5626b^{13}c^{8}d^{3}+280b^{14}c^{4}d^{6}+178b^{15}d^{9}+42b^{17}c^{4}d^{3}+154b^{18}d^{6}

+12b^{21}d^{3}+6ab^{2}c^{19}d^{2}+1428ab^{3}c^{15}d^{5}+4594ab^{4}c^{11}d^{8}

+670ab^{5}c^{7}d^{11}+3926ab^{6}c^{15}d^{2}+49150ab^{7}c^{11}d^{5}+21474ab^{8}c^{7}d^{8}

+38ab^{9}c^{3}d^{11}+23002ab^{10}c^{11}d^{2}+67556ab^{11}c^{7}d^{5}+428ab^{12}c^{3}d^{8}

+10930ab^{14}c^{7}d^{2}+410ab^{15}c^{3}d^{5}+24ab^{18}c^{3}d^{2}+190a^{2}bc^{14}d^{7}

+472a^{2}b^{2}c^{10}d^{10}+286a^{2}b^{3}c^{6}d^{13}+24a^{2}b^{3}c^{18}d+12546a^{2}b^{4}c^{14}d^{4}

+29094a^{2}b^{5}c^{10}d^{7}+5518a^{2}b^{6}c^{6}d^{10}+18a^{2}b^{7}c^{2}d^{13}+8114a^{2}b^{7}c^{14}d

+170184a^{2}b^{8}c^{10}d^{4}+73758a^{2}b^{9}c^{6}d^{7}+74a^{2}b^{10}c^{2}d^{10}

+22362a^{2}b^{11}c^{10}d+93322a^{2}b^{12}c^{6}d^{4}+382a^{2}b^{13}c^{2}d^{7}+4310a^{2}b^{15}c^{6}d

+188a^{2}b^{16}c^{2}d^{4}+6a^{2}b^{19}c^{2}d+134a^{3}c^{9}d^{12}+780a^{3}c^{21}+46a^{3}bc^{17}d^{3}

+2630a^{3}b^{2}c^{13}d^{6}+2748a^{3}b^{3}c^{9}d^{9}+698a^{3}b^{4}c^{5}d^{12}+42a^{3}b^{4}c^{17}

+54280a^{3}b^{5}c^{13}d^{3}+124326a^{3}b^{6}c^{9}d^{6}+14926a^{3}b^{7}c^{5}d^{9}+18a^{3}b^{8}cd^{12}

+5754a^{3}b^{8}c^{13}+252276a^{3}b^{9}c^{9}d^{3}+100798a^{3}b^{10}c^{5}d^{6}+42a^{3}b^{11}cd^{9}

+5854a^{3}b^{12}c^{9}+59400a^{3}b^{13}c^{5}d^{3}+102a^{3}b^{14}cd^{6}+882a^{3}b^{16}c^{5}

+46a^{3}b^{17}cd^{3}+6a^{4}d^{20}+4a^{4}c^{12}d^{8}+56a^{4}bc^{8}d^{11}+188a^{4}b^{2}c^{16}d^{2}

+21404a^{4}b^{3}c^{12}d^{5}+17494a^{4}b^{4}c^{8}d^{8}+2430a^{4}b^{5}c^{4}d^{11}

+78730a^{4}b^{6}c^{12}d^{2}+241014a^{4}b^{7}c^{8}d^{5}+21738a^{4}b^{8}c^{4}d^{8}
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+172104a^{4}b^{10}c^{8}d^{2}+70556a^{4}b^{11}c^{4}d^{5}+15490a^{4}b^{14}c^{4}d^{2}

+26a^{4}b^{15}d^{5}+26a^{5}c^{15}d^{4}+1190a^{5}bc^{11}d^{7}+842a^{5}b^{2}c^{7}d^{10}

+410a^{5}b^{3}c^{15}d+57884a^{5}b^{4}c^{11}d^{4}+39924a^{5}b^{5}c^{7}d^{7}+2390a^{5}b^{6}c^{3}d^{10}

+58340a^{5}b^{7}c^{11}d+247798a^{5}b^{8}c^{7}d^{4}+16494a^{5}b^{9}c^{3}d^{7}

+46846a^{5}b^{11}c^{7}d+23836a^{5}b^{12}c^{3}d^{4}+1940a^{5}b^{15}c^{3}d+8730a^{6}c^{18}

+102a^{6}bc^{14}d^{3}+4650a^{6}b^{2}c^{10}d^{6}+3340a^{6}b^{3}c^{6}d^{9}+280a^{6}b^{4}c^{14}

+90174a^{6}b^{5}c^{10}d^{3}+51084a^{6}b^{6}c^{6}d^{6}+1956a^{6}b^{7}c^{2}d^{9}+12570a^{6}b^{8}c^{10}

+127142a^{6}b^{9}c^{6}d^{3}+5034a^{6}b^{10}c^{2}d^{6}+4260a^{6}b^{12}c^{6}+2630a^{6}b^{13}c^{2}d^{3}

+20a^{7}c^{9}d^{8}+382a^{7}b^{2}c^{13}d^{2}+11886a^{7}b^{3}c^{9}d^{5}+5640a^{7}b^{4}c^{5}d^{8}

+62494a^{7}b^{6}c^{9}d^{2}+42356a^{7}b^{7}c^{5}d^{5}+598a^{7}b^{8}cd^{8}+31910a^{7}b^{10}c^{5}d^{2}

+1062a^{7}b^{11}cd^{5}+318a^{7}b^{14}cd^{2}+751a^{8}d^{16}+598a^{8}bc^{8}d^{7}

+428a^{8}b^{3}c^{12}d+17002a^{8}b^{4}c^{8}d^{4}+5128a^{8}b^{5}c^{4}d^{7}+19042a^{8}b^{7}c^{8}d

+16726a^{8}b^{8}c^{4}d^{4}+20a^{8}b^{9}d^{7}+4722a^{8}b^{11}c^{4}d+4a^{8}b^{12}d^{4}

+10290a^{9}c^{15}+42a^{9}bc^{11}d^{3}+1316a^{9}b^{2}c^{7}d^{6}+130a^{9}b^{4}c^{11}

+13262a^{9}b^{5}c^{7}d^{3}+3084a^{9}b^{6}c^{3}d^{6}+2804a^{9}b^{8}c^{7}+2108a^{9}b^{9}c^{3}d^{3}

+74a^{10}b^{2}c^{10}d^{2}+1622a^{10}b^{3}c^{6}d^{5}+4366a^{10}b^{6}c^{6}d^{2}+458a^{10}b^{7}c^{2}d^{5}

+216a^{10}b^{10}c^{2}d^{2}+38a^{11}b^{3}c^{9}d+1406a^{11}b^{4}c^{5}d^{4}+670a^{11}b^{7}c^{5}d

+56a^{11}b^{8}cd^{4}+2452a^{12}d^{12}+2970a^{12}c^{12}+18a^{12}bc^{8}d^{3}+2a^{12}b^{4}c^{8}

+442a^{12}b^{5}c^{4}d^{3}+6a^{12}b^{9}d^{3}+18a^{13}b^{2}c^{7}d^{2}+30a^{13}b^{6}c^{3}d^{2}

+134a^{15}c^{9}+879a^{16}d^{8}z+6a^{20}d^{4}+a^{24} .

5. Self-Dual Codes over Rings formed from Projective Planes

Let II be a projective plane of order n= \prod_{i=1}^{r}p_{i} where the p_{i} are
distinct primes with either:
Case 1: Each p_{i}=2 or p_{i}\equiv 1 (mod 4) or
Case 2: Each p_{i}\equiv 3 (mod 4).

Let C_{pi} be the self-code over F_{pi} of length n^{2}+n+2 or n^{2}+n+4
depending on the case formed as given in [9].

Theorem 5.1 Let \Pi be a projective plane of order n= \prod p_{i} where the p_{i}

are distinct primes with the above cases, then CRT(C_{p1}, C_{p2}, \ldots, C_{p_{r}}) is a
self-dual code over the ring \mathbb{Z}_{p_{1}p_{2}\ldots p_{\Gamma}} of length n^{2}+n+2 or n^{2}+n+4 for
Case 1 and Case 2 respectively.
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Proof. Since each C_{p_{i}} is a self-dual code over F_{p_{i}} of the same length then
the Chinese product gives that the code CRT(C_{p_{1}}, C_{p_{2}}, . ’ C_{p_{r}}) is self-dual.

\square

Note for Case 2, r must be odd. If r=2k then n \equiv\prod p_{i}\equiv 3^{2k}\equiv 1

(mod 4). Hence n^{2}+n+1\equiv 3 (mod 4) and then n^{2}+n+4\equiv 2 (mod 4)
giving that there are no self-dual codes over F_{pi} .

Corollary 5.2 If n=2p where p is a prime and p\equiv 1 (mod 4) then a
Type II self-dual code of length N=n^{2}+n+3\pm 1 can be constructed from a
projective plane of order n over \mathbb{Z}_{2p} . The N-dimensional even unimodular
lattice obtained by Construction A has minimum norm 2.

Of course, there are no known non-trivial examples of either Case 1
or Case 2 since all known planes have orders a power of a prime. Had a
projective plane of order 10 existed its attached lattice in dimension 112=
8.14 would have had by [6, Chap. 17, Theorem 7]. A theta series of the
shape:

\theta_{10}(q)=E_{4}^{14}+\sum_{i=1}^{4}a_{i}E_{4}^{14-3i}\triangle^{i} ,

where letting t=q^{2} , we denote by

E_{4}=1+240t+2160t^{2}+6720t^{3}+17520t^{4}+30240t^{5}+\cdot . ,

the theta series of the E_{8} lattice, and by \triangle the cusp form of weight 12 for
the full modular group

\Delta=t\prod_{r\geq 1}(1-t^{r})^{24}
,

or up to order 5

\Delta=t-24t^{2}+252t^{3} –1472 t^{4}+4830t^{5}

6. Weighing Matrices and Type II Codes

In this section, we deal with weighing matrices corresponding to Type II
codes.

A weighing matrix W(m, k) of order m and weight k is an m by m
(0,1,-1)-matrix such that W W^{T}=kI_{m} , k\leq m . A weighing matrix
W(m, m) just a Hadamard matrix. Weighing matrices are a generalization
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of Hadamard matrices. We say that two weighing matrices W_{1} and W_{2} of
order m and weight k are equivalent if there exist monomial matrices of 0’s,
1’s and -1’s P and Q such that W_{1}=PW_{2} , Q .

We give a method for constructing self-dual codes over \mathbb{Z}_{2n} .

Theorem 6.1 Let x an element of \mathbb{Z}_{2n} satisfying 1+x^{2}k\equiv 0 (mod 2n).
Let W_{m,k} be a weighing matrix of order m and weight k . Then the matrix
G=(I_{m}, xW_{m,k}) generates a self-dual code C over \mathbb{Z}_{2n} of length 2m .
Moreover if x satisfies 1+x^{2}k\equiv 0 (mod 4n) then C is Type II .

Proof G G^{T}=(1+x^{2}k)I_{m} . Thus if 1+x^{2}k\equiv 0 (mod 2n) then C is
self-dual. Moreover if 1+x^{2}k\equiv 0 (mod 4n) then C is Type II . \square

Remark. For n=2 , this method was given in [12].

Since the matrix S_{q} in the generator matrix of the lifted senary sym-
metry codes is a weighing matrix of order q+1 and weight q , this method
is a generalization of Theorem 3.1.

Example 2. All weighing matrices have been classified for order 12
(cf. [19]). There are weighing matrices W_{12,k} of order 12 for every weight
1\leq k\leq 12 . For n=3, the matrix (I , W_{12,11}) generates a Type II code of
length 24 with the minimum Euclidean weight 12, that is, this code is not
extremal. Since there is a unique weighing matrix of weight 11, this is the
same code given previously.

Example 3. For n=4, the matrix (I, 3W_{12,7}) generates a Type II code
of length 24. There are exactly three inequivalent weighing matrices of
weight 7. The three inequivalent matrices are denoted by A_{1} , A3 and A_{8}

in [19]. Since the matrix A_{1} has the intersection pattern p_{6}\geq 1 (for the
definition see [19] ) , the Type II code with generator matrix of the form
(I, 3A_{1}) contains a codeword of Euclidean weight 16, that is the code
is not extremal. Moreover we have verified by computer that the codes
constructed from the remaining two weighing matrices are not extremal.

It was shown in [1] that a Type II code of length n exists if and only if
n\equiv 0 (mod 8). Thus we have the following restriction on the existence of
weighing matrices.

Corollary 6.2 Suppose that there is a weighing matrix of order m and
weight k . If there is an element x of \mathbb{Z}_{2n} satisfying 1+x^{2}k\equiv 0 (mod 4n)
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for certain n, then m\equiv 0 (mod 4).

Remark. For n=1 , the above corollary was shown in [13].

As a corollary to Theorem 6.1, we have the following:

Corollary 6.3 Let \alpha and \beta be elements of \mathbb{Z}_{2n} satisfying 1+\alpha^{2}+\beta^{2}k\equiv 0

(mod 2n). If either W_{m,k} is a skew-symmetric weighing matrix (that is,
W_{m,k}=-W_{m,k}^{T}) or W_{m,k} is a symmetric weighing matrix with \alpha\beta\equiv 0

(mod n), then the matrix G=(I (\alpha I+\beta W_{m,k})) generates a self-dual
code C over \mathbb{Z}_{2n} of length 2m . Moreover if 1+\alpha^{2}+\beta^{2}k\equiv 0 (mod 4n) then
C is Type II .

Proof. We have G\cdot G^{T}=(1+\alpha^{2}+k\beta^{2})I+\alpha\beta W_{m,k}+\alpha\beta W_{m,k}^{T} . It follows
from the assumptions that GG^{T}=0 . \square

Remark. We can regard MacKay codes over \mathbb{Z}_{6} described in Section 3 as
a special case of the above corollary.

A similar argument to Corollary 6.2 gives the following:

Corollary 6.4 Suppose that there are two elements \alpha and \beta of \mathbb{Z}_{2n} sat-
isfying 1+\alpha^{2}+\beta^{2}k\equiv 0 (mod An) for certain n where \beta\neq 0 .
(1) If there is a skew-symmetric weighing matrix of order m and weight

k , then m\equiv 0 (mod 4).
(2) If there is a symmetric weighing matrix of order m and weight k and

\alpha\beta\equiv 0 (mod n), then m\equiv 0 (mod 4).

7. The Complete Combined Weight Enumerator

In this section all rings will assumed to be commutative, finite and
Frobenius.

Let C_{1} , C_{2} , . , C_{s} be codes of length n , where C_{i} is a code over the ring
R_{i} . Let C=C_{1}\cross C_{2}\cross\cdot 1\cross C_{s} and \mathcal{R}=R_{1}\cross R_{2}\cross \cross R_{s} .

Definition 1 The complete combined weight enumerator is given by:

P(C_{1}, C_{2}, \ldots , C_{s})(X_{a})=\sum_{(c_{1},c_{2},\ldots,c_{s})\in C}\prod_{a\in \mathcal{R}}X_{a}^{n_{a}(c_{1},c_{2},..,c_{s})}
.

where n_{a}(c_{1}, c_{2}, . , c_{s})=|\{i|a=(c_{1}^{i}, c_{s}^{i}, \ldots, c_{s}^{i})\}| and c_{j}^{i} is the i-th coordi-
nate of c_{j} .
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7.1. The Williams Relations
We will prove the Williams relations for this new weight enumerator

by generalizing the technique in [1], which itself is a generalization of [23].
Let G_{i} be a group-with f : G_{1}\cross G_{2}\cross\cdots\cross G_{s}arrow A where A is a complex

algebra. Denote by G_{i} the character group of G_{i} , that is \overline{G_{i}}=\{\pi|\pi is a
character of G_{i} } where a character of a group is a group homomorphism
from G to the Comp\underline{le}x numbers under multiplication.

Define \hat{f}:\overline{G_{1}}\cross G_{2}\cross
\cdot 1

\cross\overline{G_{s}}arrow A by

\hat{f}(\pi_{1}, \pi_{2}, \ldots, \pi_{s})=\sum_{x_{1}\in G_{1}}\sum_{x_{2}\in G_{2}} \sum_{x_{s}\in G_{s}}\pi_{1}(x_{1})\pi_{2}(x_{2})\cdots

\pi_{s}(x_{s})f(x_{1}, x_{2}, \ldots, x_{s}) .

Lemma 7.1 The function
f(x_{1}, x_{2}, \ldots, x_{s})

= \frac{1}{|G_{1}||G_{2}|\cdot\cdot|G_{s}|}\sum_{\pi_{1}\in\overline{G_{1}}}\sum_{\pi_{1}\in\overline{G_{2}}}\cdot\cdot\sum_{\pi_{1}\in\overline{G_{s}}}\pi_{1}(-x_{1})\pi_{2}(-x_{2})\cdots

\pi_{s}(-x_{s})\hat{f}(\pi_{1}, \pi_{2}, \ldots, \pi_{s}) .

Proof. We have that

\frac{1}{|G_{1}||G_{2}|\cdots|G_{s}|}\sum_{\pi_{1}\in\overline{G_{1}}}\sum_{\pi_{2}\in\overline{G_{2}}}

. .
\sum_{\pi_{s}\in\overline{G_{s}}}\pi_{1}(-x_{1})\pi_{2}(-x_{2})\cdot\cdot t

\pi_{s}(-x_{s})\hat{f}(\pi_{1}, \pi_{2}, \ldots, \pi_{s})

= \frac{1}{|G_{1}||G_{2}|}. . |G_{s}| \sum_{\pi_{1}\in\overline{G_{1}}}

. .
\sum_{\pi_{s}\in\overline{G_{s}}}\pi_{1}(-x_{1})\pi_{2}(-x_{2})\ldots\pi_{s}(-x_{s})

\sum_{a_{1}\in G_{1}}

. .
\sum_{a_{s}\in G_{s}}\pi_{1}(a_{1})\cdots\pi_{s}(a_{s})f(a_{1}, a_{2}

, . . ’^{a_{s})}

= \frac{1}{|G_{1}||G_{2}|}. |G_{s}| \sum_{\pi_{1}\in\overline{G_{1}}}\sum_{a_{1}\in G_{1}}\pi_{1}(-x_{1}+a_{1})

. .

\sum \sum\pi_{s}(-x_{s}+a_{s})f(a_{1}, a_{2} , . ’
_{a_{s})}

\pi_{s}\in\overline{G_{1}}^{a_{s}\in G_{1}}

= \frac{1}{|G_{1}||G_{2}|\cdot|G_{s}|}|G_{1}||G_{2}| |G_{s}|f(x_{1}, x_{2}, \ldots, x_{s})
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=f(x_{1}, x_{2}, \ldots, x_{s}) ,

since

\sum_{\pi\in\hat{G}}\pi(g)=\{

|G| g=0
0 g\neq 0 .

\square

This is a generalization of the Fourier inversion formula. Next we gen-
eralize the Poisson summation formula.

Before stating the next lemma we shall define (\hat{G} : H)=\{\pi\in\hat{G}|

\pi|_{H}=1\} and note that

\sum_{x\in H}\pi(x)=\{

|H| \pi\in(\hat{G} : H)

0 \pi\not\in(\hat{G} : H)

Lemma 7.2 Let H_{i} be a subgroup of G_{i} . For every a_{i} in G_{i} we have

\sum_{x_{1}\in H_{1}}\sum_{x_{2}\in H_{2}}

’.

( \sum_{x_{s}\in H_{s}}f(a_{1}+x_{1}, a_{2}+x_{2}
, . . ,

^{a_{s}+x_{s})}

= \frac{1}{|(\overline{G_{1}}.H_{1})|}\cdot\frac{1}{|(\overline{G_{2}}\cdot H_{2})|}

.
\cdot .

\frac{1}{|(\overline{G_{s}}.H_{s})|}\cdot\sum_{\pi_{1}\in(\overline{G_{1}}.H_{1})}.\sum_{\pi_{2}\in(\overline{G_{2}}\cdot H_{2})}

.

\sum_{\pi_{s}\in(\overline{G_{s}}\cdot H_{s})}.\hat{f}(\pi_{1}, \pi_{2}

, . . ’
_{\pi_{s})} .

Proof. We have that

\sum_{x_{1}\in H_{1}}

. 1

x_{s} \sum_{\in H_{s}}f(a_{1}+x_{1}, \ldots, a_{s}+x_{s})

= \sum_{x_{1}\in H_{1}}|\cdot 1\sum_{x_{s}\in H_{s}}\frac{1}{|G_{1}|\cdot|G_{s}|}\sum_{\pi_{1}\in\overline{G_{1}}}

\sum_{\pi_{s}\in\overline{G_{s}}}\pi_{1}(-x_{1})\cdots\pi_{s}(-x_{s})\hat{f}(\pi_{1}
, . ,

^{\pi_{s})}

= \frac{1}{|G_{1}|\cdots|G_{s}|}\sum_{x_{1}\in H_{1}}
, .

x_{s} \sum_{\in H_{s}}\sum_{\pi_{1}\in\overline{G_{1}}}

\sum_{\pi_{s}\in\overline{G_{s}}}\pi_{1}(-x_{1})\cdots\pi_{s}(-x_{s})\hat{f}(\pi_{1}
, . . ’

_{\pi_{s})}
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= \frac{1}{|G_{1}|\cdot\cdot|G_{s}|}\sum_{\pi_{1}\in\overline{G_{1}}}

, .
\sum_{\pi_{s}\in\overline{G_{s}}}\hat{f}(\pi_{1}

, . ,
^{\pi_{s})}

\sum_{x_{1}\in H_{1}}\pi_{1}(-x_{1})\sum_{x_{s}\in H_{s}}\pi_{s}(-x_{s})

= \frac{1}{|G_{1}||G_{s}|} \sum_{-}
, .

\sum_{-}
\hat{f}(\pi_{1} , . . ’

^{\pi_{s})|H_{1}|\cdots|H_{s}|}

\pi_{1}\in(G_{1}:H_{1}) \pi_{s}\in(G_{s}:H_{s})

=. \frac{1}{|(\overline{G_{1}}\cdot H_{1})|\cdots|(\overline{G_{s}}}\cdot

. H_{s} ) |

\sum_{-}
. .

\sum_{-} \hat{f}(\pi_{1, }\ldots, \pi_{s}) .
\pi_{1}\in(G_{1}.H_{1}) \pi_{s}\in(G_{s}:H_{s})

\square

Lemma 7.3 Suppose f^{i} : G_{1}\cross \cdot 1 \cross G_{s} -arrow A , with A a complex algebra,
are functions with i=1,2 , . , m . Let F : G_{1}^{m}\cross G_{2}^{m}\cross ). \cross G_{s}^{m} -arrow A be
given by

F(x_{1}^{1}, \ldots , x_{1}^{m}, x_{2}^{1}, . . ’ x_{2}^{m}, . . . ’ x_{s}^{1}, . , x_{s}^{m})=\prod_{i=1}^{m}f^{i}(x_{1}^{i}, x_{2}^{i}, . . ’ x_{s}^{i}) .

then \hat{F} = \prod_{i=1}^{m}f^{\hat{i}} , i.e.\hat{F}(\pi_{1}^{1}, . . ’ \pi_{1}^{m}, \pi_{2}^{1}, \ldots, \pi_{2}^{m}, \ldots, \pi_{s}^{1}, \ldots , \pi_{s}^{m}) =
\prod_{i=1}^{m}f^{\hat{i}}(\pi_{1}^{i}, \pi_{2}^{i} , . . ,_{\pi_{s}^{i})} .

Proof. Straightforward. \square

Let Y_{1}= (a_{1}^{1}, . , a_{1}^{n})\in(R_{1})^{n} , Y_{2}=(a_{2}^{1}, \ldots, a_{2}^{n})\in(R_{2})^{n} and Y_{s}=

(a_{s}^{1}, . . ’ a_{s}^{n})\in(R_{s})^{n} . Let f : R_{1}\cross R_{2}\cross \cross R_{s} -arrow A by f(a_{1}, a_{2}, . . ’ a_{s})=

X_{a} where a= (a_{1}, a_{2}, . . ’ a_{s}) , then for 1\leq i_{j}\leq n define f^{i_{1},i_{2},\ldots,i_{s}}(a_{i_{1}} ,
a_{i_{2}} , \ldots , a_{i_{s}} ) and set

F(Y_{1}, Y_{2} , .
^{ Y_{s})}

,
’ = \prod_{1\leq i_{j}\leq|R_{j}|}f^{i_{1},i_{2}}

’... ’
i_{s}

.

All that remains is for find f^{i_{1}\overline{i_{2},},\ldots,i_{s}}
(\pi_{\alpha_{1}} , . . . ’

\pi_{\alpha_{s}}) where \pi_{\alpha}(z)=

\chi([x, y]) and \alpha_{i} runs over the elements of R_{i} .

f^{i_{1}\overline{i_{2},},..,i_{s}}(\pi_{\alpha_{1}}, \ldots, \pi_{\alpha_{s}})

= \sum_{w_{1}\in R_{1}}
\sum_{w_{s}\in R_{s}}\prod_{i=1}^{s}\pi_{\alpha_{j}}(w_{i})f^{i_{1},i_{2}}

,... ,
i_{s}(w_{1, }\ldots, w_{s})
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= \sum_{w_{1}\in R_{1}}
\sum_{w_{s}\in R_{s}}\prod_{i=1}^{s}\chi_{i}(\alpha_{j}w_{i})X_{(w_{1}} ,... , w_{s} )

Let a , b\in \mathcal{R} , and define the matrix T by:

T_{a,b}= \prod_{i=1}^{i=s}\chi_{i}^{a_{i}b_{i}} ,

where a_{i} , b_{i} denote the i-th coordinate of a and b respectively and \chi_{i} is the
generating character of the ring R_{i} (such a character exists because the ring
is Frobenius).

Theorem 7.4 Let C_{1} , C_{2} , \ldots , C_{s} be codes over the finite Frobenius rings
R_{1} , R_{2} , . , R_{s} respectively. Then

P(C_{1}^{\perp}, C_{2}^{\perp}, \ldots, C_{s}^{\perp})(X_{a})

= \frac{1}{|C_{1}||C_{2}|\cdots|C_{s}|}P(C_{1}, C_{2}, \ldots, C_{s})(T(X_{a})))

where T(X_{a}) denotes the natural action of the matrix T

As a corollary to this theorem we get the MacWilliams relations for th(\}

joint, complete and Hamming weight enumerators.

7.2. The Weight Enumerator and the Chinese Remainder
Theorem

Let C=CRT(C_{1}, C_{2}, \ldots , C_{s}) , assuming of course that the rings are
such the Chinese Remainder Theorem applies. Then we have the following:

W_{C}(x_{0}, x_{1}, . . ’ x_{k})=P(C_{1}, C_{2}, . . ’ C_{s})(x_{crt(a)}) ,

where a\in \mathcal{R} and crt(a) is the unique element given by the Chinese remain-
der theorem that is equivalent to a_{i} in R_{i} .

Notice that the matrix of \mathbb{Z}_{2}\cross \mathbb{Z}_{3} is not exactly the same as the matrix
giving the Williams relations for \mathbb{Z}_{6} . However they are equivalent, in
that it simply replaces one generating character with another.

Note the generating character for \mathbb{Z}_{6} is \omega=e^{\frac{\pi i}{3}} Hence the matrix,
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indexed by 0, 1, 2, 3, 4, 5, giving the Williams relations are:

\frac{1}{\sqrt{6}}(111111 -1\omega^{2}\omega^{4}\omega^{5}\omega 1 \omega_{1}^{2}\omega^{4}\omega^{4}\omega^{2}1 -1-1-1111 \omega_{1}^{2}\omega^{4}\omega^{4}\omega^{2}1

-1\omega^{5}\omega^{4}\omega^{2}\omega 1)

For the complete combined weight enumerator we have \chi_{F_{2}}=-1 and
\chi_{F_{3}^{\urcorner}}=e^{\frac{2\pi i}{3}}=\omega^{2} then \chi_{F_{2}}\chi_{F_{3}}=-\omega^{2}=\omega^{5} . Then the matrix, indexed by
00, 11, 02, 10, 01, 12, giving the Williams relations is:

\frac{1}{\sqrt{6}}(111111 -1\omega^{4}\omega^{5}\omega^{2}\omega 1 \omega_{1}^{4}\omega^{2}\omega^{4}\omega^{2}1 -1-1-1111 \omega_{1}^{2}\omega^{4}\omega^{2}\omega^{4}1

-1\omega^{2}\omega^{4}\omega^{5}\omega 1)

This amounts to replacing the generating character \chi(1)=\omega with the
generating character \chi(1)=\omega^{5} .

7.3. Symmetrized Weight Enumerators
Let U_{i} be a group of units of the ring R_{i} . We say two elements of R_{i}

are equivalent, (denoted x\approx y ), if x=uy for some u\in R_{i} . Let H_{i} denote
the sct of equivalence classes in R generated by this equivalence relation
and let H=H_{1}\cross H_{2}\cross \cdot . \cross H_{s} .

Definition 2 The symmetrized combined weight enumerator is given by

S_{U_{1},U_{2}} , ’
u_{9}

(C_{1}, C_{2} , . ,^{C_{s})(X_{[a]})}= \sum_{(c_{1},c_{2},\ldots,c_{s})\in C}\prod_{[a]\in H}X_{[a]}^{n_{[a]}(c_{1},c_{2}\ldots,c_{s})}
,

wllerc n_{[a]}=| { i| for j=1 . . s[c_{j}^{i}]=[a^{i}] } | and c_{j}^{i} is the i-th coordinate of
c_{j} and a^{i} is the i-th coordinate of a .

Note that this is a generalization of the definition given in [23].
Let [a] , [b]\in H , and define the matrix M by

J\nearrow I_{a,b}=\prod i=s\sum
\sum\chi_{i}^{ab} ,

i=1a\in[a_{i}]b\in[b_{i}]
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where a_{i} , b_{i} denote the i-th coordinate of a and b respectively and \chi_{i} is the
generating character of the ring R_{i} (such a character exists because the ring
is Frobenius).

By specializing the variables in the previous lemmas we have the fol-
lowing.

Theorem 7.5 The MacWilliams relations for the symmetrized weight
enumerator are given by

S_{U_{1},U_{2},\ldots,U_{s}}(C_{1}^{\perp}, C_{2}^{\perp}, \ldots, C_{s}^{\perp})(X_{[a]})

= \frac{1}{|C_{1}||C_{2}|\cdot\cdot|C_{s}|}S_{U_{1},U_{2}} ,... , U_{s} ( C_{1}, C_{2} , . . ’
_{C_{s})(M(X_{[a]}))} ,

where M(X_{a}) denotes the natural action of the matrix M .

For the symmetrized weight enumerator as given in [23], the matrix
giving the MacWilliams relations, indexed by 0, 1, 2, 3, is given by:

\frac{1}{\sqrt{6}} (\begin{array}{llll}1 2 2 11 \omega+\omega^{5} \omega^{2}+\omega^{4} -11 \omega^{2}+\omega^{4} \omega^{4}+\omega^{2} 11 -2 2 -1\end{array}).

,

which is identical to the matrix M as given above if U_{1}=\{1\} and U_{2}=

\{1, 2\} , except that the matrix is indexed by [0] [0], [1] [1], [0] [1], [1] [0].
The symmetrized weight enumerator of a self-dual code over \mathbb{Z}_{6} is held

invariant by this matrix as well as the matrix:

(\begin{array}{llll}1 0 0 00 \omega 0 00 0 \omega^{4} 00 0 0 \omega^{3}\end{array})

The group of matrices holding the weight enumerator of a Type I code
over \mathbb{Z}_{6} is generated by these matrices. A Magma computation gives that
the group has order 384 and the Molien series is given by

\frac{t^{40}+2t^{36}+2t^{32}+4t^{28}+3t^{24}+3t^{20}+4t^{16}+3t^{12}+t^{8}+1}{(1+t^{4})^{2}(t^{8}-t^{4}+1)(t^{2}-t+1)^{2}(t^{2}+t+1)^{2}(t^{4}-t^{2}+1)^{2}(t-1)^{4}(t+1)^{4}(t^{2}+1)^{4}} ,
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where the denominator is also

(1-t^{4})(1-t^{8})(1-t^{12})(1-t^{24}) .

The Taylor series is

1+t^{4}+3t^{8}+7t^{12}+13t^{16}+21t^{20}+35t^{24}+

Hence by inspection of the denominator there are 4 primary invariants and
by inspection of the numerator 24 nontrivial secondary invariants.
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