Hokkaido Mathematical Journal Vol. 28 (1999) p. 217-230

Norm estimates for function starlike or convex
of order alpha

Shinji YAMASHITA
(Received November 14, 1997)

Abstract. For holomorphic functions f with Re{zf’(z)/f(z)} > aand Re{zf"(2)/f'(2)}
>a—1, (0 < a<1), respectively, in {|z| < 1}, estimates of sup|,|<; (1—[2]?)[f"(2)/f'(z)|
are given. Functions Gelfer-close-to-convex of exponential order (o, 3) will also be con-
sidered.

Key words: starlike and convex of order a; Gelfer-starlike, Gelfer-convex, and Gelfer-
close-to-convex; Schwarz’s and Schwarz-Pick’s inequalities.

1. Introduction

Sharp upper estimates of the norm

f"(z)

f'(2)

are given for f holomorphic in D = {z;|z| < 1} under additional conditions.
Throughout the present paper, by f we always mean a function holo-
morphic in D with the Taylor expansion

171l = sup (1= 12[?)

|z|<1

f(2) =z+az? +az2® + . (1.1)

If f is univalent in D, then ||f|| < 6 and ||k|| = 6 for the Koebe function
k(z) = z/(1 — 2)?. Conversely if ||f|| < 1, then f is univalent in D; see [B,
p.- 36, Korollar 4.1]. A necessary and sufficient condition for ||f|| < +oo is
that there exists a constant p, 0 < p < 1, such that f is univalent in each
Appolonius disk,

see [Y1, Y2]. The set of all f with finite || f|| is a nonseparable Banach space
with the norm || - || under the Hornich operation; see [Y1, Theorem 1].
For a constant o, 0 < o < 1, the set S*(a) consists of all f such that

w—=z

- <p}, z € Dj
1—-ZzZw
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zf'(z)/ f(z) is pole-free and
2f'(2)
IO

in D, whereas, the set C(a) consists of all f such that zf”(z)/f'(z) is pole-
free and

Re

"

HON
f'(z)

in D. Each function of S*(«) is called starlike of order a and that of
C(a) is called convex of order a. Each f € S*(«) is univalent in D, and,
in particular, the image f(D) of D is starlike with respect to the origin
0, whereas, each f € C(a) is univalent in D, and, in particular, f(D) is
convex. As typical examples we consider

Re a-—1

A

@(Z) = (1 — 2)2(1_a) y and,
1— (1= z)21 1
(2 zi , O # §a
U(z) = .
lo L a= 1
g 11— ) =3
for which
2®'(2)  207(2) b 14+(1-2a)z
d(z) V() - 1-2z

Then @ € S*(a) and ¥ € C(a). An Alexander-type criterion can easily
be proved: f € C(«) if and only if h(z) = 2f'(z) € S*(a). Consequently,
h"(0) = 2f”(0). In particular, ®(z) = 2¥/(2) in D.

It is well known that both ® and ¥ are extremal in the following esti-
mate of az. For each f € S*(a) we have |az| < 2(1 — ) and the equality
laz| = 2(1 — a) holds if and only if

f(z) = p®(p2), (1.2)

where p is a unimodular constant, that is, u is complex with |u|? = um = 1.
On the other hand, for each f € C(a) we have |az| < 1— o and the equality
laz| = 1 — a holds if and only if

f(z) = p¥(pz) (1.3)
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for a unimodular constant u. The Alexander-type criterion shows that the
C(a) case follows from the S*(a) case and wvice versa. See, for example,
[Go, I, p. 138 et seq.] for reference of these facts, where S*(a) = ST(«) and
C(a) = CV(a). These familiar estimates of |as| for $*(a) and C(a) will be
observed again in the proofs of the following Theorems 1 and 2.

We begin with the C(«) case.

Theorem 1 The following two propositions hold for 0 < o < 1.

(I)  Suppose that f € C(a). Then, ||f]| = 4(1 — ) if and only if f is
of the form (1.3).

(I) If f € C(a) is not of the form (1.3), then

B+A+1
B-—A+3

which reflects personality of f, where

Il <4(1-a) (1.4)

|as|
—

0<A=

<1, and (1.5)

0<B— ](3 —3a)as + (2a — 3)a%|

< A=) I—a—]m) <14+A<2, (1.6)

so that

The §*(a) case is not an immediate consequence of Theorem 1.

Theorem 2 The following two propositions hold for 0 < a < 1.
(III)  Suppose that f € S*(a). Then,

Ifll =4(1 - @) + 2 = 6 — 4o

if and only if f is of the form (1.2).
(IV) If f € S*(a) is not of the form (1.2), then
B'+ A" +1
<4(l—a) =————— +2 1.
£ < 401 - o) g 42 (17)
which reflects personality of f, where

ca=_lol d 1.
0< 2(1~0[)<1, an (1.8)
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- ‘(4—4a)a3—|—(2a—3)a%\ ,
0SB = B e lay S 1T A <2 (1.9)

so that

/ / /
_1_<B+A+1§1+A<1.
3 B -A"+3 2

Theorems 1 and 2 claim roughly that || f]] < 4(1 — «) for f € C(a) and
| f|l < 6—4afor f € S*(a), respectively. These norm inequalities themselves
are actually obtained under far general settings which will be clarified in
Theorem 3 in Section 3 in terms of Gelfer functions. See Remark (ii) in
Section 3.

S. Yamashita expresses his sincere thanks to Nobuyuki Suita and
Toshiyuki Sugawa for nice conversation.

2. Proof of Theorem 1

The function

1+ (1-20)2

F(2) = Fy(2) -

(2.1)

is univalent in D satisfying the identities
F'(0)=2(1-a), F"(0)=4(1-a), and
F(D) = {z;Rez > a}.

For f € C(a) we set

_ 2"(2)
)

Then the composed function

9(z) +1, z€D.
p=F1log:D — D,

first g and then the inverse of F, is holomorphic with ¢(0) =0 and g = Fo¢
in D; in short, g is subordinate to F'. Since

g(0)=2a; and  g"(0) = 12a3 — 8a3,
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it follows that

¢'(0) =

11—«

" 2
¢"(0) = A= aP

as
and

((3 —3a)as + (2a — 3)a%) : (2.2)
In particular, the Schwarz lemma for ¢ shows that

A= o)<

T l-a
and further A =1 if and only if
¢(2) = pz (2.3)

for a unimodular constant y, or f is of the form (1.3). On the other hand,
it follows from g = F o ¢ that

f"(z) _ 2(1 - a)¢(2)
fi(z)  2(1-¢(2))

(2.4)

in D.
For the proof of (II), we remark that ¢ is not of the form [2.3). It then
follows from [Y5, p. 313, (6.8%*a)] that

()| < 121Q(|2]), =z € D, (2.5)
where
22+ Bx+ A
0= oo 0Sest
Here,
__19'0)
2(1—[¢'(0)])

which, together with [2.2), yields the expression of B in terms of a; and as.
With the aid of the Schwarz-Pick inequality at 0 applied to x(z) = ¢(2)/z,
where |x| < 1, we furthermore observe that

B ()
T 170~ T- O =+
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Hence

< 2

B<itA—1+-%
l-«a
by |¢'(0)| = A < 1. Combining and one now has

"(z — |2|? z
(1_ |z|2) (2) <2(1-a) (1 21°) Q(lz]) = 2(1 — a)G(|2]),

f'(z) 1 —12|Q(|z])
(2.6)
where
(z +1)(z%? + Bz + A)
= <z<
Glz) 2+ (B-A+1z+1’ sesl
To prove that
2(B+A+1)
< = <zr< .
G(z) < G(1) B_AL3 0<z<1, (2.7)

we let H(z) be the numerator of the derivative G'(z). Then,
H(0)=(1-AB+A>>0, H(0)=2B-A+1)>0,
H"(0)=2(B*+(1— A)B +2(2~ 4)) >0,

and, furthermore,
H"(z)=122c+B-A+1)>0 for 0<z<1.

Hence H(z) > 0 or G(z) is nondecreasing in 0 < & < 1, which shows [2.7}.
Combining (2.6) with one finally has (1.4).

Since (II) has been proved, we have only to prove that

If]l = 4(1 - ) (2.8)
for f of the form (1.3). Since
') Wp2) L
zf’(z) +1=pz T (j2) + 1= F(uz),
it follows that
"(2) 1|z’
(1 - |z|2) fl(z) = 2(1 — Ol)m < 4(1 - Oé).
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Since (1 — |2|?) J}I,l((zz))‘ =2(1-a)(l+z) for 2 =z, 0 < z < 1, tends to

4(1 - ) as z — 1 — 0 we finally have [2.8).

Correction: There is a misprint in the line 3 of [Y5, p. 313]; the quo-
tient

|/"(0)]
2(1 = [f(0)])

in min [-, -] there should be

1£10)]
20 - 7 (O)F)

3. Gelfer function

A function g holomorphic in D is called a Gelfer (or Gel’fer) function
if g(0) =1 and g(z) + g(w) # 0 for all z,w € D, possibly, z = w. Let G be
the set of all Gelfer functions. Thus, if g(0) = 1, then g € G if and only if
the image g(D) C C of D by g in the complex plane C and the set

—9(D) = { —wyw € g(D)}

are mutually disjoint: g(D) N (—g(D)) = 0. For example, F, of [2.1),
0 < a < 1,isin G; in particular, A = Fy € G plays important roles in the
study of G. Note that F,, = (1 — a)A\ + a. See and [Go, II, p. 73 et
seq.] for reference of Gelfer functions.

Among many properties of Gelfer functions we shall make use of the
following (3.1) and [3.2) for g € G. The first is the estimate
g(2)| _ N(=l) 2

< = , z € D; (3.1)

9(z) 17 Alzl) 11—z
see [Y3, p. 247, (G6)]. Actually, for each Bieberbach-Eilenberg function h
[Go, I1, p. 73] one has

1 — h(z)?|

W) < LA

el < 5

for all z € D; see [Go, II, p. 82, Exercise 49] and [Ge, p. 35, Theorem 2].
Since h = (g—1)/(g+1) is a Bieberbach-Eilenberg function, one immediately
has |3.1). Since each g € G is zero-free, the function g* (a > 0) which
assumes 1 at 0 is single-valued and holomorphic in D. With the aid of
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one can prove that
lg9(2)* — 1] < AJz])* - 1 (3.2)

for g € G, a > 0, and 2z € D; see [Y3, p. 255, Lemma 5.1]. For real «,
—00 < a < +00, and for 3 > 0 we let Cg(a, B) be the set of all f such that
there exists a function g € G depending on f with

2f"(2)

f'(2)
in D. For real o and for 8 > 0 we let S¢;(c, 3) be the set of all f such that
there exists a function g € G depending on f with

z2f'(2)
f(2)

in D. An Alexander-type criterion is valid: f € Cg(a, ) if and only if
zf'(z) € S&(a, B). Furthermore,

Ca(1,B) = Ca(a,0) = S5(1,8) = S5(, 0) = {2}

An exercise is to prove that, for 0 < a < 1,

+1=(1-0a)g(2)’ +a

= (1-a)g(z)’ +

S*(a) € S&(a,1) and C(a) C Cg(oy 1).

For three real parameters, «, 3, and v with 8 > 0 and v > 0 we let
Kg(a, 3,7) be the set of all f such that there exist h € Cg(a,8) and g € G
both depending on f and satisfying

o,

7 =9 (3.3)

in D. It is obvious that Cg(a, 8) C Kg(a, 8,0). Hence C(a) C Kg(a, 1,0).
One can further prove that

S*(a) C Kg(a,1,1) 0<a<l). (3.4)

For f € S*(a) one can find a holomorphic ¢ : D — D with ¢(0) = 0 such
that zf'(2)/f(z) = Fa(é(2)) in D. On the other hand, we have h € C(a) C
Cg(a, 1) satisfying f(z) = 2h'(2) in D. Since Fao¢ = f'/h is Gelfer we now
observe that f € Kg(a,1,1). It is easy to prove that S5(0,1) C K¢(0,1,1).
However, it is open to prove whether or not S5(a,1) C Kg(a,1,1) for
0 < a < 1; see Remark (i) at the end of the present Section.
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For 0 <a <1, let v(a) =0 for 0 < o < 1and v(l) = 4. Then for
0 < a <1, the function

( 2a , =20,
2 a
A@) = Ag(z) =4 L7 K””’) —1}, 0<z<l,
x l—-2x
{ v(a) , =1,

is continuous for 0 < z <1, so that

ax Alz)=M(a) >0

exists; M(0) =0, M (1) =4, and M(a) > 0 for 0 < a < 1. Further property
of M(a) will be given in Section 5.

Theorem 3 Let —co < o < 400, 0 < B <1, and v > 0. Then for
f € Kg(a, B,7) we have

Il < 11— a|M(B) + 2v. (3.5)
There exists an f € Kg(a, B8,7) for which the equality holds in (3.5).
Proof.  For f satisfying one has

fl/ h// gl

= = =. 3.6

f, h,, + 7 g ( )
On the other hand, there exists g, € G such that

zh"(2)

h’(z) +1=(1- a)go(z)ﬁ + o
in D. Recalling for the present g,, @ being replaced with 3, we now
have

hll(z)
[ 2 E—
(1= 12P) ey | < 11— elhs(l2) (3.7)

Recalling for the present g and observing [3.1), [3.6), and one
now has [3.5).

For the equality, suppose first that o < 1. Let h € Cg(a, B) satisfy
zh'(2)

R s =(1-a)\(2)? + « -
W (z) +1=(1 JA(2)” + (3.8)
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in D, and let f € Kg(a, 8,7) satisfy the identity f'/h' = X7 in D. Then

/(=)
1-z? =(1—a)A 2 <z<l1
(1-2?) ey~ (1@ +2y (0<a<),
so that ||f|| = (1 — a)M(B) + 2v. In the case a > 1 we recall that 1/\ € G.
Let h € Cg(a, B) satisfy and let f € Kg(a, 3,7), this time, satisfy the
identity f'/h' = A7 in D. Then

(1 — ;CQ) J;,((j)) = (a — 1)Ag(z) + 2y (0<z<1),
so that ||f|| = (o = 1)M(B) + 2. O

Remark (i) One might suspect that (1—a)g® +a € G for real a, for 8 > 0,
and for g € G. This is not always true. First, for each fixed 3 > 0 we observe
that h = (1—a)\ +a € G for all a > 1. Actually, there exists 2, € D such

that
1/p
A(zy) = (a + 1) '

a-—1

Hence h(z,) + h(0) = 0, so that h ¢ G. Next, for each fixed a # 1, we have
h=(1-a)) +a ¢g forall B> 1. Actually, in case o < 0 or a > 1, the
set h(D) contains 0. Hence h ¢ G. In case 0 < a < 1 we set 3 = min([, %)
The set h(D) then contains two points,

/
i(e—atan%)i (e >0),
so that h € G. It is plausible that (1—a)g+a€Gifge Gand 0 < a < 1,

but we have no answer for its validity.

Remark (ii) It follows from that ||f]] < 4(1 — a) for f €
Kg(a,1,0) and ||f]| < 6 — 4a for f € Kg(a,1,1), assuming o < 1 in
both cases. Hence it follows from the inclusion formula C(a) C Kg(a, 1,0)
that || f|| <4(1 —a) for f € C(a), 0 < a < 1. Furthermore, it follows from
(3.4) that || f|| <6 —4a for f € S*(a), 0<a<1.

4. Proof of Theorem 2
For the proof of we need much more analysis.
Proof of (IV). There exists h € C(a) such that f(z) = 2h/(z) in D.
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Since f is not of the form [1.2}, h is not of the form (1.3). There exists a
holomorphic ¢ : D — D with ¢(0) = 0 such that
2f'(2) _ f'(2)

g(Z)EFaO¢(Z): f(Z) :h/(z)

in D. Hence, in view of

fll hll gl
FTwR g
and [3.1), one now has
A1 < (Rl + 2. (4.1)

We can now apply (II) of to

22,3 3,
h(z) =z + 5 +3z +

Then, A and B for h are A’ and B’ for f, respectively. Consequently,

for h, together with [4.1), shows [1.7).
We complete the proof of [Theorem 2 by showing that || f|| = 4(1—a) +2

for f of [1.2). Since
f') _20-ad  g()

fllz)  1—pz  g(2)’

where g(z) = Fo(p2) isin G, it follows that || f|| < 4(1—a)+2. Furthermore,
lettingx - 1,0<z <1,in

M) _ 2(1 - a)(1+ z) (1 + : ) ’

(1 ) f'(mx) 14+ (1-2a)z

we have ||f|| = 4(1 — a) + 2.

5. Gelfer - close-to-convex function

Elements of Si(o) = S5(0,), Ce(a) = Cg(0,a), and Kg(a,B) =
Kg(0,0,8) for @« > 0 and 8 > 0, are called Gelfer-starlike of exponential
order o, Gelfer-convex of exponential order «, and Gelfer-close-to-convex
of exponential order (a, (), respectively. These sets are introduced and

investigated in and [Y4]. In particular,
S*(0) C Sg(1), C(0) c Cg(1),
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Cgl(a) = Kg(a,0), and Si(a)C Kg(a,a).
If 2f'(z)/f(2) is zero- and pole-free and
2f'(2)

arg ————| <

f(2)

in D, then f € S&(a), whereas, if z2f"(z)/f(2) + 1 is zero- and pole-free
and

o
2

(o> 0) (5.1)

arg (z;f:;(zz)) + 1)‘ < % (a>0) (5.2)

in D, then f € Cg(a).

If f € Si(a) for 0 < a < 1, then f € Kg(a,a), so that
shows the estimate

If]l < M(a) 4 2a. (5.3)

The extremal function is obvious. In particular, if f satisfies in D
for 0 < a < 1, then holds because f € S&(a). T. Sugawa [S, The-

orem 1.1] independently obtained for the specified f satisfying
in D. Although his description on M (a) has some overlaps with ours, we

here include some detailed properties of M («) for the sake of the readers’
convenience, for example,

20 < M(a) < 20(a+1) ( < 4a) (5.4)

for 0 < a < 1, the priority of which belongs to Sugawa [S].
It might be difficult to express M(«a) explicitly in terms of o for 0 <
o < 1. However, we can prove that
4ap
1-a)p?+1+a’

M(a) = (5.5)

where p = p(«) is the unique real root of the equation:
(@ —1)y*2 —(a+Dy*+y>+1=0 for y> 1.

Sugawa [S] independently obtained and the priority is due to him. For
the proof of we set
20, y=1,
(W) =19 4y(y*-1)
yr—1 7

(1]

1<y < +oo.
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Then

l1+=x
11—z

, 0<z<l.

For 1 <y < 400, we set
T(y) = (@ — Dy**? = (a+ 1)y* + > + L.

Then the numerator of Z/(y)/4 is T(y) for 1 < y < +o0.

Since T"(y) < 0 for 1 < y < +o0, T"(1) = 202, and T"(y) — —o0 as
y — +o0, there is only one y; > 1 such that 7"(y;) = 0. Since T'(1) = 0
and 7"(y) — —oo as y — +o0, there is only one y, > 1 such that 7"(y,) = 0.
Finally, since T'(1) = 0 and T'(y) — —oo as y — +o0, there is only one p > 1
such that T'(p) = 0. Note that 1 < y; <y < p.

Consequently, = attains its maximum for 1 < y < +o0 at the point
p > 1. By eliminating p* in M(a) = Z(p) with the aid of T'(p) = 0, one
now has [5.5).

For the proof of M(a) < 2a(a + 1) in for 0 < a < 1 we observe
the original form Z(p) = M(«). Set

V) =y —ky’ —y +k
for 1 <y < 400, where k = Ja(a + 1) for the present o, 0 < a < 1. Since
V'(y) = ale+ 1)y =2k < V(1) =0,

and since V(1) = —a? < 0, it follows that V’(y) < 0. Hence V decreases
from V(1) = 0 to —oo as y increases from 1 to +oo. Therefore V(y) < 0
for 1 < y < +oo. In particular, V(p) < 0, and this shows that M(a) <
2a(a+1).

There is another set C(a, ) of functions described below. For «, 8
with 0 < a<1land 0 <8 <1, welet C(a,3) be the set of all f such that
there exist a real constant y and a function h € C(3) both depending on f
such that

eifyf/
hl
in D. We actually have
C(a7ﬂ) - U CCJ(Oﬁ,ﬁ>

8, real

Re

>«
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in the notation of [Go, II, p. 89]. Each f € C(a, () is called close-to-convex
of order (a, ) and, in particular, each member of K = C(0,0) (K = CC
in [Go, II, p. 2]) is simply called close-to-convex. Set H = e f'/h’ and
¢ = F;1oH. Then f'/h' = e ™ F, 0 ¢ is in G because f'(0)/h'(0) = 1
Since h € C(fB) C Cg(B, 1), it follows that C(a, 8) C Kg(5,1,1). Note that
the inclusion formula S$*(a) C C(a,a) can be proved with the aid of the
Alexander-type criterion for S*(a) and C(a), 0 < a < 1. We again have
(3.4).

It is now an exercise to prove that || f|| < 4(1 - 8) + 2 for f € C(«a, B);
the equality is attained by f satisfying the equation

, 14 (1-2a)z
f (Z) - (1 _ z)3_2g

in D.
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