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A construction of closed helices with self-intersections
in a complex projective space by using

submanifold theory
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Abstract. In this paper we construct a certain class of closed helices with self-inter-
sections in a complex projective plane. This is a nice class of curves which are not
generated by global Killing vector fields.
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Introduction

The main purpose of this paper is to give a certain class of closed helices
with self-intersections in a complex projective space by using a well-known
isometric imbedding. In a real space form, which is a Euclidean space \mathbb{R}^{n} ,
a standard sphere S^{n} , or a hyperbolic space H^{n} . it is well-known that a
smooth curve is a helix if and only if it is generated by a Killing vector field
on this space. In a symmetric space of rank one, every circle, that is a helix
of order 2, is generated by a Killing vector field. From this point of view we
are interested in the difference between the set of helices of order d(\geq 3)

and the set of curves generated by Killing vector fields in a symmetric space
of rank one. Needless to say, in any Riemannian manifold M every integral
curve of a Killing vector field is a helix. But in general, a helix is not
necessarily an integral curve of some Killing vector field in M .

One of the most important properties of integral curves of Killing vector
fields is that they do not have any self-intersection points. In this paper we
pay attention to self-intersection points of helices in a complex projective
space. In section 2 we give a class of helices with self-intersection points
by using an isometric imbedding of a flat torus into a complex projective
plane defined in [4]. This imbedding maps geodesies in a torus to circles
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in a complex projective plane. We here study the image of circles by this
imbedding. In section 3 we also study helices which are generated by Killing
vector fields by using the Veronese imbedding of degree 2.

1. Helices on a complex space form

We shall start with reviewing the Frenet formula for a smooth Frenet
curve in a Riemannian manifold M with Riemannian metric \langle , \rangle (cf. [3]).
A smooth curve \gamma=\gamma(s) parametrized by its arclength s is called a
Frenet curve of proper order d if there exist orthonormal frame fields \{V_{1}=

\dot{\gamma} , \ldots , V_{d} } along \gamma and positive functions \kappa_{1}(s) , . ’
\kappa_{d-1}(s) which satisfy

the following system of ordinary equations

\nabla_{\gamma}V_{j}(s)=-\kappa_{j-1}(s)V_{j-1}(s)+\kappa_{j}(s)V_{j+1}(s) , j=1 , \ldots , d , (1.1)

where V_{0}\equiv V_{d+1}\equiv 0 and \nabla_{\gamma} denotes the covariant differentiation along
\gamma . We call Equation (1.1) the Frenet formula for the Frenet curve \gamma . The
functions \kappa_{j}(s)(j=1, \ldots, d-1) and the orthonormal frame \{V_{1} , . . ’

V_{d}\}

are called the curvatures and the Frenet frame of \gamma , respectively. Here
we note that we do not allow the curvature function to be vanished at
some point. Therefore curves with inflection points, such as y=x^{3} on a
Euclidean xy-plane, are not Frenet curves. The definition of Frenet curves
so seems a bit artificial. This is because we need the Frenet frame of a
Frenet curve to be continuous and we suppose curvature functions to be
positive. Once we allow curvature functions to have variable signature, we
can treat more general curves. But for the sake of simplicity and to follow
classical treatment of smooth curves, we treat Frenet curves. So the reader
should not stick to this point.

A Frenet curve is called a Frenet curve of order d if it is a Frenet curve
of proper order r(\leq d) . For a Frenet curve of order d which is of proper
order r(\leq d) , we use the convention in (1.1) that \kappa_{j}\equiv 0(r\leq j\leq d-1)

and V_{j}\equiv 0(r+1\leq j\underline{<}d) . In real space forms, it is known that a smooth
curve is generated by some Killing vector field if and only if all its curvatures
are constant. We call a smooth curve a helix when all its curvatures are
constant. A helix of order 1 is nothing but a geodesic. A helix of order
2, that is a curve which satisfies \nabla_{\gamma}V_{1}(s)=kV_{2}(s) , \nabla_{\gamma}V_{2}(s)=-kV_{1}(s) ,
V_{1}(s)=\dot{\gamma}(s) , is called a circle of curvature k .

We now restrict ourselves to Frenet curves on K\"ahler manifolds. Let
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M be an n-dimensional K\"ahler manifold with complex structure J and
Riemannian metric \langle ., \rangle . For a Frenet curve \gamma=\gamma(s) in M of order
d(\leq 2n) with the associated Frenet frame \{V_{1}, . . ’ V_{d}\} , we set \tau_{ij}(s)=

\langle V_{i}(s), JV_{j}(s)\rangle for 1\leq i<j\leq d and call them its complex torsions. In
the study of Frenet curves in a K\"ahler manifold their complex torsions play
an important role. We have the following fundamental result on curves in
complex space forms, that is complete simply connected K\"ahler manifolds
of constant holomorphic sectional curvature, which are complex Euclidean
space \mathbb{C}^{n} , complex projective space \mathbb{C}P^{n} , and complex hyperbolic space
\mathbb{C}H^{n} .

Fact ([3]) In a complex space form M, a Frenet curve is generated by a
holomorphic Killing vector fifield on M if and only if all its curvatures and
all its complex torsions are constant functions.

In a complex space form, every circle is generated by some Killing vector
field. But of course there are many helices which are not generated by
Killing vector fields on a complex space form. For example, let \gamma=\gamma(s) be
a helix of proper order 3 on a K\"ahler manifold. The complex torsions of \gamma

then satisfy the following equations:

\{

\tau_{12}’=\kappa_{2}\tau_{13} ,
\tau_{13}’=-\kappa_{2}\tau_{12}+\kappa_{1}\tau_{23} ,
\tau_{23}’=-\kappa_{1}\tau_{13} ,

where \kappa_{1} , \kappa_{2} denote the curvatures of the helix. By solving them, we have

(\begin{array}{l}\tau_{12}(s)=\alpha_{1}sin\tau_{13}(s)=\frac{\sqrt{\kappa_{1}^{2}}}{\kappa_{2}}\tau_{23}(s)=-\frac{\kappa_{1}}{\kappa_{2}}(\end{array}

\sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s+\alpha_{2} cos \sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s+\alpha_{3} ,

+\kappa_{2}^{2}

( \alpha_{1} cos \sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s-\alpha_{2}\sin\sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s),
\alpha_{1} sin \sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s+\alpha_{2}\cos\sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}s)+\frac{\kappa_{2}}{\kappa_{1}}\alpha_{3} ,

for some constants \alpha_{1} , \alpha_{2} and \alpha_{3} . This implies that the helix \gamma is generated
by some Killing vector field if and only if \alpha_{1}=\alpha_{2}=0 .
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2. Main result

In this section we give a class of helices with self-intersections in a
complex projective plane \mathbb{C}P^{2} with the aid of a well-known isometric parallel
imbedding of a 2-dimensional flat torus into \mathbb{C}P^{2} (see [4] for detail). We
consider a Riemann surface N=(S^{1}\cross S^{1})/\varphi . Here by representing the
first component by S^{1}=\{z\in \mathbb{C}||z|=1\} and the second component
by S^{1}=\{(a_{1}, a_{2})\in \mathbb{R}^{2}|(a_{1})^{2}+(a_{2})^{2}=1\} , we define the identification
\varphi by \varphi((e^{i\theta}, (a_{1}, a_{2})))=(-e^{i\theta}, (-a_{1}, -a_{2})) . The Riemannian metric on

N is given by \langle A+\xi, B+\eta\rangle=\frac{2}{9}\langle A, B\rangle_{S^{1}}+\frac{2}{3}\langle\xi, \eta\rangle_{S^{1}} for tangent vectors
A , B\in TS^{1} of the first component and tangent vectors \xi , \eta\in TS^{1} of the
second component, where \langle , \rangle_{S^{1}} denotes the canonical metric of S^{1} . We
define an isometric imbedding of N into \mathbb{C}P^{2}(4) by

f(e^{i\theta}, (a_{1}, a_{2}))

=\pi ( \frac{1}{3}(e^{-\frac{2i\theta}{3}}+2a_{1}e^{\frac{i\theta}{3}}) , \frac{\sqrt{2}}{3}(e^{-\frac{2i\theta}{3}}-a_{1}e^{\frac{i\theta}{3}}) , \frac{2}{\sqrt{6}}ia_{2}e^{\frac{i\theta}{3}} ), (2.1)

where \pi : S^{5}(1)arrow \mathbb{C}P^{2}(4) is the Hopf fibration. This isometric imbed-
ding f is parallel, that is, the second fundamental form \sigma_{f} of f is parallel,
and totally real. The second fundamental form \sigma_{f} of this imbedding is in
fact expressed as follows for every unit vector w\in TS^{1}(1) of the second
component;

\{

\sigma_{f}(u, u)=-\frac{1}{\sqrt{2}}Ju ,

\sigma_{f}(w, w)=\frac{1}{\sqrt{2}}Ju ,

\sigma_{f}(u, w)=\frac{1}{\sqrt{2}}Jw ,

(2.2)

where the tangent vector u\in TS^{1}(1) of the first compornent is the normal-
ized vector of \partial/\partial\theta .

We now study images of circles in N under this isometric imbedding.
As we see in [1], the imbedding f maps each geodesic on N to a circle of
curvature \frac{1}{\sqrt{2}} in \mathbb{C}P^{2}(4) . This circle does not have self-intersections, but it

is not necessarily closed in \mathbb{C}P^{2}(4) . For images of circles on N through f
we have the following.
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Proposition 1 For a circle \gamma of curvature k(>0) on N. the curve fo\gamma

is a helix of order 4 in \mathbb{C}P^{2}(4) . More precisely,
(1) when k= \frac{1}{2} , it is a helix of proper order 3 with curvatures

\kappa_{1}=\frac{\sqrt{3}}{2} , \kappa_{2}=\sqrt{\frac{3}{2}} ,
(2) when k \neq\frac{1}{2} , it is a helix of proper order 4 with curvatures

\kappa_{1}=\sqrt{k^{2}+\frac{1}{2}} , \kappa_{2}=\frac{3k}{\sqrt{2k^{2}+1}} , \kappa_{3}=\frac{|4k^{2}-1|}{\sqrt{2(2k^{2}+1)}} .

Proof. Let \overline{\nabla} and \nabla denote the Riemannian connections of \mathbb{C}P^{2}(4) and
N, respectively. Suppose a circle \gamma of curvature k in N satisfies the following
equations:

\nabla_{X}X=kY and \nabla_{X}Y=-kX , with X=V_{1}=\dot{\gamma} . (2.3)

We can represent the orthonormal pair \{X, Y\} as

\{

X=\cos\phi\cdot u+\sin\phi w ,
(2.4)Y=- sin \phi\cdot u+\cos\phi\cdot w (0\leqq\phi<2\pi) ,

at each point \gamma(s) . We hence find that \sigma_{f}(X, X)=-\sigma_{f}(Y, Y) . By the
Gauss formula we find that the curve fo\gamma satisfies

\overline{\nabla}_{V_{1}}V_{1}=\kappa_{1}V_{2} , where \kappa_{1}=\sqrt{k^{2}+\frac{1}{2}} and V_{2}= \frac{1}{\kappa_{1}}(kY+\sigma(X, X)) .

Since f has parallel second fundamental form, we get by use of the Gauss
formula and (2.3) that

\overline{\nabla}_{V_{1}}V_{2}=-\kappa_{1}V_{1}+\kappa_{2}V_{3} ,

where

\kappa_{2}=\frac{3k}{\sqrt{2k^{2}+1}} and V_{3}=\sqrt{2}\sigma(X, Y) .

When k \neq\frac{1}{2} , by routine calculations we find with (2.4) that

\overline{\nabla}_{V_{1}}V_{3}=-\kappa_{2}V_{2}+\kappa_{3}V_{4} and \overline{\nabla}_{V_{1}}V_{4}=-\kappa_{3}V_{3} ,
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where

\{

\kappa_{3}=\frac{|4k^{2}-1|}{\sqrt{2(2k^{2}+1)}} ,

V_{4}= \frac{\sqrt{2(2k^{2}+1)}}{|4k^{2}-1|}\{(\frac{3\sqrt{2}k^{2}}{2k^{2}+1}-\frac{1}{\sqrt{2}})Y

+ \sqrt{2}k(\frac{3}{2k^{2}+1}-2)\sigma(X, X)\}

When k= \frac{1}{2} , since our calculations go through without the field V_{4} , we
obtain the conclusion. \square

Next we investigate properties of these helices. We call a Frenet curve \rho

parametrized by its arclength closed, if there exists some s_{0}(\neq 0) satisfying
\rho(s+s_{0})=\rho(s) for every s . We call such the minimum positive s_{0} the
length of this closed curve.

Theorem 1 Let f : Narrow \mathbb{C}P^{2}(4) denote the imbedding defifined by (2.1)
and \gamma be a circle of curvature k(>0) in N Then we have the following:
(1) The helix fo\gamma is closed of length \frac{2\pi}{k} , and is not generated by any

Killing vector fifield on \mathbb{C}P^{2}(4) .
(2) The helix fo\gamma has self-intersections if and only if k \leqq\frac{3}{\sqrt{2}\pi} . The

number of intersection points is greater than 2.

Proof Consider the universal Riemannian covering p : \mathbb{R}^{2}arrow N . Re-
garding the Riemannian metric on N we can choose a fundamental region
for N in \mathbb{R}^{2} as ff =[0, \frac{2\sqrt{2}}{3}\pi)\cross[0, \frac{\sqrt{6}}{3}\pi) . Two points (x_{1}, x_{2}) and (y_{1}, y_{2}) on
\mathbb{R}^{2} satisfies p((x_{1}, x_{2}))=p((y_{1}, y_{2})) if and only if either

i) x_{1}-y_{1}= \frac{2\sqrt{2}}{3}m_{1}\pi , x_{2}-y_{2}= \frac{2\sqrt{6}}{3}m_{2}\pi for some m_{1} , m_{2}\in \mathbb{Z} , or
ii) x_{1}-y_{1}= \frac{\sqrt{2}}{3}(2m_{1}+1)\pi , x_{2}-y_{2}= \frac{\sqrt{6}}{3}(2m_{2}+1)\pi , for some m_{1} , m_{2}\in \mathbb{Z} .

Let \tilde{\gamma} denote a covering circle of \gamma in \mathbb{R}^{2} , which is a circle with radius \frac{1}{k} in
the sense of Euclidean Geometry. This guarantees that \gamma is a closed curve
of length \frac{2\pi}{k} .

We shall show that \gamma has self-intersections in the case of k \leq\frac{3}{\sqrt{2}\pi} . The
lift \overline{\gamma}(s)=(\overline{\gamma_{1}}(s),\overline{\gamma_{2}}(s)) is represented as

\{

\overline{\gamma_{1}}(s)=\frac{1}{k} ( v_{2} cos ks+v_{1} sin ks ) - \frac{v_{2}}{k}+\overline{\gamma_{1}}(0) ,

\overline{\gamma_{2}}(s)=\frac{1}{k} ( -v_{1} cos ks+v_{2} sin ks ) + \frac{v_{1}}{k}+\overline{\gamma_{2}}(0) ,
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where (v_{1}, v_{2})\in \mathbb{R}^{2} denotes the unit tangent vector \overline{\gamma}

.
(0). If \gamma(s_{0})=\gamma(0)

(s_{0}\neq 0) , then \overline{\gamma}(s_{0}) and \overline{\gamma}(0) satisfy either the condition i) or ii ). When
they satisfy the condition i), we have

\{

sin ks_{0}= \frac{2\sqrt{2}}{3}m_{1}\pi v_{1}k+\frac{2\sqrt{6}}{3}m_{2}\pi v_{2}k ,

cos ks_{0}= \frac{2\sqrt{2}}{3}m_{1}\pi v_{2}k-\frac{2\sqrt{6}}{3}m_{2}\pi v_{1}k+1 ,

hence

\pi k=\frac{3(-\sqrt{2}v_{2}m_{1}+\sqrt{6}v_{1}m_{2})}{2(m_{1}^{2}+3m_{2}^{2})} (2.5)

for some integers m_{1} , m_{2} with (m_{1}, m_{2})\neq(0,0) . Similarly, when they
satisfy the condition ii), we have

\pi k=\frac{3\{-\sqrt{2}(2m_{1}+1)v_{2}+\sqrt{6}(2m_{2}+1)v_{1}\}}{(2m_{1}+1)^{2}+3(2m_{2}+1)^{2}} , (2.6)

for some integers m_{1} , m_{2} with (m_{1}, m_{2})\neq(0,0) . Conversely, if there exists
a pair of integers (m_{1}, m_{2})(\neq(0,0)) satisfying either (2.5) or (2.6) for
some (v_{1}, v_{2})\in \mathbb{R}^{2} with v_{1}^{2}+v_{2}^{2}=1 , we find \gamma has a self-intersection.
The number of intersection points corresponds to the cardinality of pairs
(v_{1}, v_{2}) with such properties. Namely, the circle \gamma has self-intersections if
and only if some of the images of its covering circles in \mathbb{R}^{2} cut each other in
S . When k> \frac{3}{\sqrt{2}\pi} , every covering circle of \gamma is contained in a fundamental
domain. Hence \gamma does not have self-intersections. When k= \frac{3}{\sqrt{2}\pi} , some two
covering circles have a point of contact (see the Figure). This corresponds
to the fact that for (v_{1}, v_{2})=( \frac{\sqrt{3}}{2}, -\frac{1}{2}) , ( \frac{\sqrt{3}}{2}, \frac{1}{2}) , (0, 1) the equation (2.5)
holds with (m_{1}, m_{2})=(0,1) , (0, -1) , (-1, 0), respectively. Thus one can
easily find that \gamma has self-intersections if and only if k \leqq\frac{3}{\sqrt{2}\pi} and that
the number of self-intersection points is greater than 2 in this case. Since
f : N -arrow \mathbb{C}P^{2}(4) is an isometric imbedding, we get that fo\gamma inherits these
properties.

To see that fo\gamma is not generated by any Killing vector field on \mathbb{C}P^{2}(4) ,
we compute the complex torsion \tau_{12}=\langle V_{1}, JV_{2}\rangle . As f is totally real, we
obtain that \tau_{12}=\frac{1}{\kappa_{1}}\langle X, J\cdot\sigma_{f}(X, X)\rangle . We here make use of the representa-
tion (2.4). We set \phi_{0} as the angle between \tilde{\gamma}

.
(0) and the positive direction

of the first component in \overline{N}=\mathbb{R}^{2} . The angle between \tilde{\gamma}

.
(s) and the positive
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\#

L

Figure

direction of the first component is then \phi=ks+\phi_{0} . We may hence use
this angle in (2.4). It follows from (2.2) that

\{

\sigma_{f}(X, X)=-\sigma_{f}(Y, Y)=\frac{1}{\sqrt{2}}(-\cos 2\phi\cdot Ju+\sin 2\phi\cdot Jw) ,
(2.7)

\sigma_{f}(X, Y)=\frac{1}{\sqrt{2}} (sin 2\phi\cdot Ju+\cos 2\phi Jw ).
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Thus we obtain that \tau_{12}=\frac{1}{\sqrt{2k^{2}+1}} cos 3\phi . Since \tau_{12} is not constant, we find
with Fact that f\circ\gamma is not generated by any holomorphic Killing vector field.
As Killing vector fields on a complex projective space are holomorphic, we
get the conclusion. \square

Figure shows self-intersections of the closed circle \gamma of curvature k=
\frac{3}{\sqrt{2}\pi} in N .

For the sake of completeness we here compute all the complex torsions
of fo\gamma . When k> \frac{1}{2} , we can see that

\tau_{24}=\frac{1}{\kappa_{1}\kappa_{3}}\{\sqrt{2}(\frac{3}{2k^{2}+1}-2)k^{2}

-( \frac{3\sqrt{2}k^{2}}{2k^{2}+1}-\frac{1}{\sqrt{2}})\}\langle Y, J\sigma_{f}(X, X)\rangle ,

which, together with (2.4) and (2.7), shows that \tau_{24}=\sin 3(ks+\phi_{0}) . When
k< \frac{1}{2} , we find \tau_{24}=-\sin 3(ks+\phi_{0}) . By the same calculation we obtain
the following.

Proposition 2 Let \gamma be a circle of curvature k(>0) in N1 The complex
torsions \tau_{ij}(s)=\langle V_{i}(s), JV_{j}(s)\rangle(1\leq i<j\leq 4) of fo\gamma is described as
follows:
(1) When k> \frac{1}{2} , we have

\tau_{12}=\tau_{34}=\frac{1}{\sqrt{2k^{2}+1}}\cos 3(ks+\phi_{0}) ,

\tau_{13}=-\tau_{24}=- sin 3(ks+\phi_{0}) ,

\tau_{14}=\tau_{23}=-\frac{\sqrt{2}k}{\sqrt{2k^{2}+1}}\cos 3(ks+\phi_{0}) .

(2) When k= \frac{1}{2} , we have

\tau_{12}=\sqrt{\frac{2}{3}} cos 3 ( \frac{1}{2}s+\phi_{0}).
, \tau_{13}=- sin 3 ( \frac{1}{2}s+\phi_{0}) ,

\tau_{23}=-\frac{1}{\sqrt{3}}\cos 3(\frac{1}{2}s+\phi_{0})

(3) When k< \frac{1}{2} , we have

\tau_{12}=-\tau_{34}=\frac{1}{\sqrt{2k^{2}+1}}\cos 3(ks+\phi_{0}) ,
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\tau_{13}=\tau_{24}=- sin 3 (ks+\phi_{0}) ,

\tau_{14}=-\tau_{23}=\frac{\sqrt{2}k}{\sqrt{2k^{2}+1}}\cos 3(ks+\phi_{0}) .

Here, \phi_{0} is the angle between \dot{\gamma}(0) and the unit vector u tangent to the fifirst
component of Nr

3. Helices and Veronese imbeddings

To obtain another class of helices in \mathbb{C}P^{2} we use in this section an
isometric parallel holomorphic imbedding of \mathbb{C}P^{1} ( \frac{c}{2})(=S^{2} (\frac{c}{2})) into \mathbb{C}P^{2}(c) .
We define h : S^{2}( \frac{c}{2}) – \mathbb{C}P^{2}(c) by h(z_{0}, z_{1})=(z_{0}^{2}, \sqrt{2}z_{0}z_{1}, z_{1}^{2}) , where z_{0} ,
z_{1} are homogeneous coordinates in \mathbb{C}P^{1}

( \frac{c}{2}) . The second fundamental form
\sigma_{h} of h satisfies

|| \sigma_{h}(X, X)||=\frac{\sqrt{c}}{2} (3.1)

for every unit vector X (see [5]). This imbedding h maps each geodesic on
S^{2}( \frac{c}{2}) to a circle of curvature \frac{\sqrt{c}}{2} in \mathbb{C}P^{2}(c) . This circle is simple and its
length is \frac{2\sqrt{2}}{\sqrt{c}}\pi . It lies on \mathbb{R}P^{2}(\frac{c}{4}) which is a totally real totally geodesic
submanifold of \mathbb{C}P^{2}(c) (see, [1]).

We here study geometric properties of images of circles in \mathbb{C}P^{1}
( \frac{c}{2}) under

the isometric imbedding h .

Proposition 3 For a circle \gamma of curvature k(>0) in \mathbb{C}P^{1}
( \frac{c}{2}) , the curve

ho\gamma isa(1)whenhelixorderk= \frac{of\sqrt{c}}{2\sqrt{2}},itis
4in\mathbb{C}P^{2}(c)Morepreciselyahelixofproperorder3wilh

curvatures \kappa_{1}=\frac{\sqrt{3c}}{2\sqrt{2}} ,

\kappa_{2}=\frac{\sqrt{3c}}{2} , and
(2) when k \neq\frac{\sqrt{c}}{2\sqrt{2}} it is a helix of proper order 4 with curvatures

\kappa_{1}=\sqrt{k^{2}+\frac{c}{4}} , \kappa_{2}=\frac{3k\sqrt{c}}{\sqrt{4k^{2}+c}} , \kappa_{3}=\frac{|8k^{2}-c|}{2\sqrt{4k^{2}+c}} .

Proof We use the same terminologies as in the proof of Proposition 1.
By the Gauss formula and (3.1) the curve ho\gamma satisfies

\overline{\nabla}_{V_{1}}V_{1}=\kappa_{1}V_{2} , where \kappa_{1}=\sqrt{k^{2}+\frac{c}{4}} and V_{2}= \frac{1}{\kappa_{1}}(kY+\sigma_{h}(X, X)) .

As Y=\pm JX and h is holomorphic, we have \sigma_{h}(X, Y)=\pm J\sigma_{h}(X, X) .
Since h has parallel second fundamental form, we get by direct calculations
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that

\overline{\nabla}_{V_{1}}V_{2}=-\kappa_{1}V_{1}+\kappa_{2}V_{3} , with \kappa_{2}=\frac{3k\sqrt{c}}{\sqrt{4k^{2}+c}} , V_{3}= \frac{2}{\sqrt{c}}\sigma_{h}(X, Y) .

Continuing routine calculations we obtain the following when k \neq\frac{\sqrt{c}}{2\sqrt{2}} :

\{

\nabla_{V_{1}}V_{3}=-\kappa_{2}V_{2}+\kappa_{3}V_{4} ,
\overline{\nabla}_{V_{1}}V_{4}=-\kappa_{3}V_{3} ,

with

\kappa_{3}=\frac{|8k^{2}-c|}{2\sqrt{4k^{2}+c}} , V_{4}= \frac{4}{\sqrt{c(4k^{2}+c)}}(\frac{c}{4}Y-k\cdot\sigma_{h}.(X, X))

When k= \frac{\sqrt{c}}{2\sqrt{2}} , we find \overline{\nabla}_{V_{1}}V_{3}=-\kappa_{2}V_{2} , so that we get the conclusion.
\square

For properties of these helices we have the following.

Theorem 2 For a circle \gamma of curvature k in \mathbb{C}P^{1}
( \frac{c}{2}) , the helix ho\gamma is

simple and closed with length \frac{2\pi}{\sqrt{k^{2}+\frac{c}{2}}} , and is generated by a Killing vector

fifield in \mathbb{C}P^{2}(c) . The complex torsions \tau_{ij}(s)=\langle V_{i}(s), JV_{j}(s)\rangle(1\leq i<j\leq

4) of ho\gamma are described as follows according as the complex torsion of \gamma is
\pm 1(i.e. \nabla_{\dot{\gamma}}\dot{\gamma}=\mp kJ\dot{\gamma}) :
(1) When k> \frac{\sqrt{c}}{2\sqrt{2}} , we have \tau_{12}=\tau_{34}=\frac{\pm k}{\sqrt{k^{2}+\frac{c}{4}}} , \tau_{23}=\tau_{14}=\frac{\pm\sqrt{c}}{\sqrt{4k^{2}+c}} ,

\tau_{13}=\tau_{24}=0 .
(2) When k= \frac{\sqrt{c}}{2\sqrt{2}} , we have \tau_{12}=\pm\frac{1}{\sqrt{3}} , \tau_{23}=\pm\frac{\sqrt{2}}{\sqrt{3}} , \tau_{13}=0 .

(3) When k< \frac{\sqrt{c}}{2\sqrt{2}} , we have \tau_{12}=-\tau_{34}=\frac{\pm k}{\sqrt{k^{2}+\frac{c}{4}}} , \tau_{23}=-\tau_{14}=\frac{\pm\sqrt{c}}{\sqrt{4k^{2}+c}} ,
\tau_{13}=\tau_{24}=0 .

Proof. It is known that every circle of curvature k(\geq 0) on an n-dimen-
sional sphere S^{n}(c) of curvature c is a simple closed curve with length \frac{2\pi}{\sqrt{k^{2}+c}} .
Since h is an isometric imbedding, we get that ho\gamma is simple and closed
with length \frac{2\pi}{\sqrt{k^{2}+\frac{c}{2}}} .

As the imbedding h is holomorphic we have

\tau_{13}=\langle V_{1}, JV_{3}\rangle=\frac{2}{\sqrt{c}}\langle X, J\cdot\sigma_{h}(X, Y)\rangle=0 .
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By routine calculations we get the desired expression for other \tau_{ij} . Since all
its complex torsions are constant, we find by Fact that it is generated by
some Killing vector field in \mathbb{C}P^{2}(c) . \square

The authors determined in [2] helices of proper order 4 which are gener-
ated by Killing vector fifields in \mathbb{C}P^{2}(c) : For given arbitrary positive constants
k_{1} , k_{2} and k_{3} , there exist four equivalence classes of helices which are gen-
erated by Killing vector fields of proper order 4 with curvatures k_{1} , k_{2} and
k_{3} with respect to holomorphic isometries of \mathbb{C}P^{2}(c) . The complex torsions
\tau_{ij}(i\leq i<j\leq 4) of these four classes of helices satisfy one of the following
(i), (ii) or one of the following (i), (ii’) :

(i) \tau_{12}=\tau_{34}=\tau . \tau_{23}=\tau_{14}=\frac{k_{2}\tau}{k_{1}+k_{3}} , \tau_{13}=\tau_{24}=0 , where \tau=

\pm\frac{k_{1}+k_{3}}{\sqrt{k_{2}^{2}+(k_{1}+k_{3})^{2}}} .

(ii) \tau_{12}=-\tau_{34}=\tau , \tau_{23}=-\tau_{14}=\frac{k_{2}\tau}{k_{1}-k_{3}} , \tau_{13}=\tau_{24}=0 , when
k_{1}\neq k_{3} , where \tau=\pm\frac{k_{1}-k_{3}}{\sqrt{k_{2}^{2}+(k_{1}-k_{3})^{2}}} .

(ii’) \tau_{12}=\tau_{34}=\tau_{13}=\tau_{24}=0 , \tau_{23}=-\tau_{14}=\pm 1 , when k_{1}=k_{3} .
We finally point out the following.

(1) When k> \frac{\sqrt{c}}{2\sqrt{2}} , the complex torsions of the helix h\circ\gamma in Theorem
2 satisfy the case (i).

(2) When k< \frac{\sqrt{c}}{2\sqrt{2}} , the complex torsions of the helix h\circ\gamma in Theorem
2 satisfy the case (ii).

References

[1 ] Adachi T., Maeda S. and Udagawa S., Circles in a complex projective space. Osaka
J. Math. 32 (1995), 1197-1202.

[2] Adachi T. and Maeda S., Holomorphic helices in a complex space form. Proc. Amer.
Math. Soc. 125 (1997), 1197-1202.

[3] Maeda S. and Ohnita Y., Helical geodesic immersions into complex space forms.
Geometriae Dedicata 30 (1989), 93-114.

[4] Naitoh H., Isotropic submanifolds with parallel second fundamental form in P^{m}(c) .
Osaka J. Math. 18 (1981), 427-464.

[5] Ogiue K., Differential geometry of Kaehler submanifolds. Advances in Mathematics
13 (1974), 73-114.



Construction of closed helices with self-intersections 145

Toshiaki Adachi
Department of Mathematics
Nagoya institute of Technology
Nagoya 466-8555, Japan
E-mail: adachi@math.kyy.nitech.ac.jp

Sadahiro Maeda
Department of Mathematics
Shimane University
1\vee Iatsue 690-8504, Japan
E-mail: smaeda@math.shimane-u.ac.jp


	Introduction
	1. Helices on a complex ...
	2. Main result
	Theorem 1 ...

	3. Helices and Veronese ...
	Theorem 2 ...

	References

