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Abstract. Alin and Dickson have pointed out that the Goldie torsion theory is centrally
splitting when the ring is QF . This is also true for a dual ring. More generally, it is shown
that if R is semiperfect with soc(_{R}R)^{2} . rad(R) =0, then there exists a 3-fold torsion
theory with length 2, which reduces the Goldie torsion theory in case R is a dual ring.
It is also shown that every left dual-bimodule RQ_{S} with R as above can be decomposed
into a direct sum of two types of left dual-bimodules. In case Q=R, this means that R
can be decomposed into a ring direct sum of a semisimple ring and a ring with essential
left singular ideal. This is nothing but a result due to Alin and Dickson proved for QF
rings.
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A ring R is called a dual ring [7] if

A=\ell_{R}r_{R}(A) and B=r_{R}\ell_{R}(B)

for every left ideal A and every right ideal B of R . A QF-ring is nothing
but a dual ring, when it is Artinian. Generalizing the notion of dual rings,
we have defined dual-bimodules in [11]. Let R and S be rings and RQs an
(R, S)-bimodule. We shall call Q a left dual-bimodule if

\ell_{R}r_{Q}(A)=A and r_{Q}\ell_{R}(Q’)=Q’

for every left ideal A of R and every S-submodule Q’ of Q .
In [1], Alin and Dickson have pointed out that the Goldie torsion theory

is centrally splitting when the ring is QF . We shall show in Section 1 that
this is also true for a dual ring. More generally, it is shown that if R is a
semiperfect ring with rad(R)\in T (for the definition see below), then there
exists a 3-fold torsion theory with length 2 (Theorem 1.5), which reduces
the Goldie torsion theory in case R is a dual ring.

In Section 2, we shall show that every left dual-bimodule RQs with R
semiperfect and rad(R)\in T can be decomposed into a direct sum of two
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types of left dual-bimodules (Theorem 2.4). In case R is a dual ring, this
means that R can be decomposed into a ring direct sum of a semisimple
ring and a ring with essential left singular ideal. This is nothing but a result
due to Alin and Dickson [1] proved for QF rings.

Throughout this paper all rings considered are associative rings with
identity and all modules are unitary. Let R be a ring and RM a left R-
module. For a subset X of \mathbb{J}I and a subset Y of R, the right annihilator of
Y in M and the left annihilator of X in R are denoted by r_{M}(Y) and \ell_{R}(X) ,
respectively. The socle of M and the singular submodule of M are denoted
by soc(M) and Z(M) , respectively. We also denote the Jacobson radical of
R by rad(R). For notations, definitions and results we shall mainly follow
[2] and [11].

1. For a semiperfect ring R and I=soc(_{R}R)^{2} , let

C=\{_{R}M|IM=M\} , T=\{_{R}M|IM=0\} and

F=\{_{R}M|r_{M}(I)=0\} .

Then (C, T, F) is a 3-fold torsion theory for R-mod [8], since I is idempotent
(cf. [4, p. 900]). Furthermore

(1) Each element of C is semisimple. Indeed, if M\in C , then M=
IM\leq soc(_{R}R)M\leq soc(M) . Hence, M is semisimple.

(2) C is hereditary. Indeed, if M\in C and M’ is a submodule of M,
then there exists a submodule M’ of M such that M=M’\oplus M’ . Hence
M=IM=IM’\oplus IM’ and thus IM’=M’

(3) Each element of F is nonsingular. Indeed, if M\in F and x\in

Z(M) , then I\leq soc(_{R}R)\leq\ell_{R}(x) . Hence Ix=0 and x\in r_{M}(I)=0 . Thus
we have Z(M)=0 .

Since C is hereditary, by [8, Lemma 2.2] C\subseteq F and so each element of
C is semisimple projective. Conversely, let RM be semisimple projective.
Then soc(_{R}R)M=soc(M)=M . Hence, IM=M and M\in C . Therefore,
we have

C= { M|M is semisimple projective}

(cf. [5]). Since R(R/I) has a projective cover, by [3, Theorems 3 and 8] it
follows that I=eR for some idempotent e in R.

Let \overline{R}=R/rad(R) and let \overline{1}=\sum_{i=1}^{n}\sum_{j=1}^{k(i)}\overline{e}_{ij} be a decomposition
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of the identity of \overline{R} into orthogonal primitive idempotents according to a
decomposition of \overline{R} into simple left \overline{R}-modules, where \overline{R}\overline{e}_{ij}\cong\overline{R}\overline{e}_{kl} if and
only if i=k .

These idempotents can be lifted to a complete set of orthogonal primi-
tive idempotents e_{ij} in R modulo rad(R). Let \overline{e}_{i}=\overline{e}_{i1} for each i . Then the
set \{\overline{R}\overline{e}_{1}, . . ’ \overline{R}\overline{e}_{n}\} forms a representative set of nonisomorphic simple left
R-modules. We may assume that

\overline{R}\overline{e}_{1} , . , \overline{R}\overline{e}_{m}\in C , \overline{R}\overline{e}_{m+1} , , \overline{R}\overline{e}_{n}\in T

Lemma 1.1 With the notation as above, the following conditions are
equivalent for any i and any j :

(1) \overline{R}\overline{e}_{ij}\in C .
(2) rad(R)e_{ij}=0 .
(3) e_{ij}\in soc(_{R}R) .
(4) e_{ij}I\neq 0 .

Proof (1)\Rightarrow(2) . Suppose that \overline{R}\overline{e}_{ij}\in C . Then rad(R)e_{ij} is a direct
summand of Re_{ij} and Re_{ij} is indecomposable. Hence rad(R)e_{ij}=0 .

(2)\Rightarrow(3) . [2, Proposition 15.17]. (3)\Rightarrow(4) is trivial.
(4)\Rightarrow(1) . Suppose that e_{ij}I\neq 0 . If e_{ij}I is a proper submodule

of e_{ij}R , then e_{ij}I\leq e_{ij}rad(R) and e_{ij}I=e_{ij}I soc(_{R}R)\leq e_{ij}rad(R)
soc(_{R}R)=0 , a contradiction. Hence, e_{ij}I=e_{ij}R , e_{ij}\in I and rad(R)e_{ij}=
0 . Thus, \overline{R}\overline{e}_{ij} is projective. \square

Hence, we have:

Lemma 1.2 I=e’R with e’= \sum_{i=1}^{m}\sum_{j=1}^{k(i)}e_{ij} .

Let E=\{e_{ij}\}_{i,j} and define a relation\sim onE by e_{ij}\sim e_{kl} in case there
exist s and t , 1\leq s\leq n , 1\leq t\leq k(s) such that e_{st}Re_{ij}\neq 0 and e_{st}Re_{kl}\neq 0

([2, p. 100]).

Lemma 1.3 Let 1\leq i\leq m and suppose that rad(R)\in T Then e_{i1}\sim e_{kl}

for some k and l if and only if i=k .

Proof. Suppose that e_{i1}\sim e_{kl} for some k and l . Then by definition
e_{st}Re_{i1}\neq 0 and e_{st}Re_{kl}\neq 0 for some s and t . By [2, Exercise 27.9] Re_{i1}

contains submodules K and L such that K\leq L and L/K\cong\overline{R}\overline{e}_{st} . Since
1\leq i\leq m,\overline{R}\overline{e}_{i1}=\overline{R}\overline{e}_{i}\in C . Hence rad(R)e_{i1}=0 by Lemma 1.1 and Re_{i1} is
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simple. Therefore L=Re_{i1} and K=0 and thus \overline{R}\overline{e}_{i}\cong Re_{i1}=L/K\cong\overline{R}\overline{e}_{s} .
This means that i=s .

Similarly, Re_{kl} contains submodules K’ and L’ such that K’\leq L’ and
L’/K’\cong\overline{R}\overline{e}_{st} . If m+1\leq k\leq n,\overline{R}\overline{e}_{kl}\cong\overline{R}\overline{e}_{k}\in T Moreover, as rad(R)\in

T, I rad(R) =0 and hence rad(R)e_{kl}\in T Thus Re_{kl}\in T since T is
closed under extensions. This implies that \overline{R}\overline{e}_{st}\cong L’/K’\in T However, as
i=s,\overline{R}\overline{e}_{st}\cong\overline{R}\overline{e}_{s}\in C , a contradiction. Therefore 1\leq k\leq m . It follows
that Re_{kl} is simple and \overline{R}\overline{e}_{st}\cong L’/K’=Re_{kl} as is stated above. Hence
\overline{R}\overline{e}_{s}\cong Re_{kl}\cong\overline{R}\overline{e}_{k} and thus s=k .

Conversely, suppose that i=k . Then, since \overline{R}\overline{e}_{i1}\cong\overline{R}\overline{e}_{il} , Re_{i1}\cong Re_{il}

by [2, Proposition 17.18]. Now e_{i1}Re_{i1}\neq 0 and e_{i1}Re_{i1}\cong e_{i1}Re_{il} . Hence
we have e_{i1}\sim e_{il} . \square

From this lemma it follows that for each i , 1\leq i\leq m , e_{i1}\approx e_{kl}([2 ,
p. 100]) for some k and l if and only if i=k . Hence u_{i}= \sum_{j=1}^{k(i)}e_{ij} is the
block idempotent and is cental ([2, Theorem 7.9]). Thus, e’= \sum_{i=1}^{m}u_{i} is
also central. Moreover, e=e’ as the following lemma shows.

Lemma 1.4 With the notation as above, e’=e .

Proof. Since eR=e’R, e=e’u’ and e’=eu for some u , u’ in R. Then
e’e=e and ee’=e’ . Hence, as e’ is central, e=e’ \square

By [8, Theorem 2.7], we have:

Theorem 1.5 Let R be a semiperfect ring with rad(R) \in T Then
(C, T, F) is a 3-fold torsion theory with length 2. R has a ring decom-
position R=eR\oplus(1-e)R with the central idempotent e= \sum_{i=1}^{m}\sum_{j=1}^{k(i)}e_{ij} .

Note that a semiperfect ring cannot always satisfy the condition that
rad(R)\in T For example, let k be a field and R the ring of all 2 \cross 2

upper triangular matrices over k . Then soc(_{R}R)^{2} rad(R)\neq 0 and hence
rad(R)\not\in T

To apply Theorem 1.5 to the case of dual rings, we need the following:

Lemma 1.6 Let R’ and S’ be arbitrary rings and R’Q_{S’} a left dual
bimodule. Then the following conditions are equivalent:

(1) soc(nt R’ ) is essential in R^{\prime R’} .

(2) Every nonzero left ideal of R’ contains a minimal left ideal.
(3) Every proper submodule of Q_{S’} is contained in a maximal sub-
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module.
(4) rad(Q_{S’}) is small in Q_{S’} .

Proof. (1)\Rightarrow(2) follows from [2, Corollary 9.10] and (2)\Rightarrow(3) is trivial.
(3)\Rightarrow(4) and (4)\Rightarrow(1) follow from [2, Proposition 9.18] and [11, Lemma
1.5 and Proposition 1.6], respectively. \square

Note that, in the above lemma, (3) is not equivalent to (4) in general
(see [2, Exercise 9.4]).

Alin and Dickson [1, Example 2] have pointed out that the Goldie tor-
sion theory is centrally splitting (cf. [8, p. 562]) when the ring is QF . How-
ever, by Theorem 1.5, this is true for dual rings. In fact, if R is a dual ring,
then R is semiperfect by [7, Theorem 3.9] and soc(_{R}R) is essential in RR by
Lemma 1.6. Hence by [9, Theorem 6] or [12, Theorem 3.1] I is the smallest
element of the left Gabriel topology of the Goldie torsion functor G . By [9,
Lemma 3], G(M)=r_{M}(I) for each R-module rM. Therefore, the torsion
class of G is \{_{R}M|IM=0\} and coincides with T

Moreover, it follows from [11, Proposition 1.6] that soc(_{R}R)\cdot rad(R)=0

and hence rad(R)\in T Thus, we have:

Corollary 1.7 If R is a dual ring, then the Goldie torsion theory is cen-
trally splitting.

2. In this section, let RQs be a left dual-bimodule and R a semiperfect
ring with rad(R)\in T Then by [11, Proposition 1.8] there are only finitely
many nonisomorphic simple submodules of Q_{S} . We may take one of these
as uS with u\in Q . Then Ru is simple and is in either C or T As is easily
seen, we have:

Lemma 2.1 With the notation as above, the following conditions are
equivalent:

(1) Ru\in C .
(2) \ell_{R}(u) is a direct summand of rR .
(3) \ell_{R}(u) is not essential in rR .
(4) uS is not small in Q_{S} .
(5) u\not\in rad(Q_{S}) .

Proposition 2.2 Let RQs be a left dual-bimodule and R a semiperfect
ring with rad(R)\in T_{-} Consider the following conditions:
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(1) RQ\in C .
(2) Q_{S} is semisimple.
(3) No nonzero submodule of Q_{S} is small.
(4) Every simple left R-module is projective.
(5) Every minimal left ideal of R is projective.
(6) soc(_{R}R) is projective.
(7) soc(_{R}R)^{2}=soc(_{R}R) .

Then each of (1) to (4) is equivalent. Each (i) from (4) to (6) implies
(i+1) and if soc(_{R}R) is essential in rR, then (7) implies (1).

Proof. (1)\Rightarrow(2) follows from [11, Proposition 1.12] and (2)\Rightarrow(3) is
trivial.

(3)\Rightarrow(4) . Every simple left R-module is isomorphic to Ru with some
u in Q ([11, p. 95]). Then uS is simple and is not small in Q_{S} . Hence by
Lemma 2.1 Ru is projective.

(4)\Rightarrow(1) . If every simple left R-module is projective, then R is semi-
simple and so is RQ by [11, Proposition 1.12].

(4)\Rightarrow(5)\Rightarrow(6) are trivial.
(6)\Rightarrow(7) . As soc(_{R}R)\in C , soc(_{R}R)^{2}\cdot soc(_{R}R)=soc(_{R}R) and hence

soc(_{R}R)^{2}=soc(_{R}R) .
(7)\Rightarrow(1) . Suppose that soc(_{R}R) is essential in RR . Then since

soc(_{R}R)=I=Re and rad(R)\in T. soc(_{R}R)\cap rad(R)=I rad(R) =0,
from which it follows that rad(R) =0 . Hence R is semisimple and so is rQ .

\square

The equivalence of (6) and (7) was also shown by [12, Theorem 3.6]. We
shall call a left dual-bimodule RQ_{S} with soc(_{R}R)^{2}=soc(_{R}R) a left dual
bimodule of the first type. Every semisimple ring is a left dual-bimodule of
the first type. If R is a dual ring, it is of the first type if and only if it is a
semisimple ring.

Proposition 2.3 Let RQs be a left dual-bimodule and R a semiperfect
ring with rad(R)\in T Then the following conditions are equivalent:

(1) RQ\in T

(2) soc(Q_{S}) is small in Q_{S} .
(3) Every simple submodule of Q_{S} is small in Q_{S} .
(4) No simple left R-module is projective.
(5) Every minimal left ideal of R is nilpotent.
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(6) soc(_{R}R)^{2}=0 .
(7) RR\in T

Proof. (1)\Rightarrow(2) . Let soc(Q_{S})=\oplus_{i=1}^{n}u_{i}S with each u_{i}S simple ([11,
Proposition 1.8]). Then each Ru_{i} is simple and is in T Hence by Lemma
2.1 each u_{i}S is small in Q_{S} . Thus soc(Q_{S}) is also small in Q_{S} .

(2)\Rightarrow(3) is trivial.
(3)\Rightarrow(4) . Every simple left R-module is isomorphic to Ru for some

u\in Q . If Ru is projective, then uS is simple and is not small in Q_{S} by
Lemma 2.1, a contradiction.

(4)\Rightarrow(5) is trivial.
(5)\Rightarrow(6) . Since every minimal left ideal is contained in rad(R), it

follows that soc(_{R}R) is in T, which shows that soc(_{R}R)^{2}=0 .
(6)\Rightarrow(7\grave{)}\Rightarrow(1) are trivial. \square

The equivalence of (4) and (7) was pointed out in [1, Example 2] for
a ring with minimum condition on left ideals. We shall call a left dual-
bimodule RQs with soc(_{R}R)^{2}=0 a left dual-bimodule of the second type.
For example, let RQ_{R} be the dual-bimodule of [11, Example 4.1], Q’=
p^{-2}R/R and \overline{R}=R/Rp2 . Then, - Q_{R}’ is a left dual-bimodule ([11, Example
4.2]) of the second type. If R is a dual ring, it is of the second type if and
only if it is a ring with essential left singular ideal.

Theorem 2.4 Every left dual-bimodule RQs for which R is a semiperfect
ring with rad(R)\in T can be decomposed into a direct sum of the left dual
bimodule ReeQs of the first type and the left dual-bimodule R(1-e)(1-e)Q_{S}

of the second type.

Proof. By [11, Proposition 1.15] ReeQs is a left dual-bimodule and,
as soc(_{Re}Re)=soc(_{R}Re)=soc(_{R}R)e , soc(_{Re}Re)^{2}=soc(_{R}R)^{2}e=Re .
Hence soc(_{Re}Re)^{2}=soc(_{Re}Re) and thus ReeQs is of the first type. Simi-
larly, R(1-e)(1-e)Qs is a left dual-bimodule with soc(_{R(1-e)}R(1-e))^{2}=

soc(_{R}R)^{2}(1-e)=0 and hence it is of the second type. \square

Alin and Dickson [1, Example 2] have pointed out that any QF ring R
has G-global dimension zero, i.e. R=R’\oplus R’ (ring direct sum) where R’ is
a ring with essential left singular ideal and R’ is semisimple with minimum
condition. However, as an application of Theorem 2.4, we can generalize
this result to the case of dual ring.
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Corollary 2.5 If R is a dual ring, then R has G-global dimension zero,
i.e . R=Re\oplus R(1-e) {ring direct sum) where Re is semisimple and R(1-e)
is a ring with essential left singular ideal.

It is to be noted that, as is seen from the following example due to
K. Koike, a semiperfect ring R with rad(R)\in T need not be a dual ring
in general, even if its soc(_{R}R) is essential in RR . Let k be a field and
R=k\cross k^{2} , the trivial extension of k by the (k, k)-bimodule k^{2} . Then
R is a semiperfect ring with rad(R) =0\cross k^{2} . Hence by [2, Proposition
15.17] soc(_{R}R)=0\cross k^{2} . As is easily seen, soc(_{R}R) is essential in RR and
rad(R)\in T However, R is not a dual ring.
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