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Note on MDS codes over the integers modulo p^{m}
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Abstract. Recently, a number of papers have been published dealing with codes over
finite rings. In this paper, we consider maximum distance separable (MDS) codes over
the integers modulo p^{m} , where p is a prime number.
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1. Introduction

In [4], Forney introduced a Singleton bound for codes over any finite
alphabet A as follows;

d(C)\leq n-k+1 ,

where C is a code of length n over A , k=\log_{|A|}|C| and d(C) is the minimum
distance of C and proved several nonexistence results for MDS group codes
over finite groups with respect to the above bound, that is, the group codes
with d(C)=n-k+1 . Zain and Rajan [9] also proved that for a group
code C over a cyclic group of m elements with generator matrix of the
form (I_{k}|M) , where M is a k\cross(n-k) matrix over \mathbb{Z}_{m} , C is MDS iff the
determinant of every h\cross h submatrix, h=1,2 , \ldots , \min\{n-k, k\} , of M is a
unit in \mathbb{Z}_{m} . Moreover, Dong, Soh and Gunawan [3] proved a similar matrix
characterization of MDS (free) codes with parity check matrices of the form
(-M|I_{n-k}) over modules.

Recently, Shiromoto and Yoshida [8] introduced a Singleton bound for
linear codes over \mathbb{Z}_{k} as follows:

Proposition 1 (Shiromoto and Yoshida [8]) Let C be a linear code of
length n over \mathbb{Z}_{k} with the minimum weight d(C) . Then,

d(C)\leq n- rank(C)+l.

In the next section, we shall introduce some definitions and notations
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for this bound. If the integer k is a prime number, then the above bound
coincides with the Singleton bound for linear codes over a finite field ([6])
and if C is a free \mathbb{Z}_{k}-submodule, then the above bound coincides with the
Singleton bound for codes over a finite alphabet ([4]).

In this paper, we study MDS (not necessary free) codes over \mathbb{Z}_{p^{m}} with
respect to the Singleton bound given in Proposition 1, i.e., the linear codes
with d(C)=n- rank(C)+l. The following result is a main theorem of
this paper.

Theorem 1 Let C be a linear code of length n over \mathbb{Z}_{p^{m}} . If C is an MDS
code, then the dual code C^{\perp}is a freely MDS code.

Using this theorem, we have an information on the weight distributions
of the codes and give a characterization of generator matrices for the codes
(Theorem 2 and Theorem 3 in Section 3).

2. Linear codes over \mathbb{Z}_{k}

Let \mathbb{Z}_{k}=\{0,1,2, \ldots, k-1\} be the residue ring of k-elements and let
(\mathbb{Z}_{k})^{n} be the free module of rank n consisting of all n-tuples of elements of
\mathbb{Z}_{k} . A linear code C of length n over \mathbb{Z}_{k} is a \mathbb{Z}_{k} submodule of V:=(\mathbb{Z}_{k})^{n} . In
particular, if C is a \mathbb{Z}_{k}-free submodule of V , we call that C is a free code over
\mathbb{Z}_{k} . An element of C is called a codeword of C . For N:=\{1,2, \ldots, n\} , the
(Hamming) support and the (Hamming) weight of x=(x_{1}, x_{2}, . , x_{n})\in V ,
denoted by supp(x) and wt(x) , are respectively defined as follows:

supp(x):=\{i\in N|x_{i}\neq 0\} ,

wt(x) :=|supp(x)|=|\{i\in N|x_{i}\neq 0\}| .

The minimum (Hamming) weight d(C) of C is defined by

d(C):= \min\{wt(x)|(0\neq)x\in C\} .

For linear codes D_{1} and D_{2} such that D_{1}\subseteq D_{2} , we note that

d(D_{2})\leq d(D_{1}) . (1)

Let C be a linear code over \mathbb{Z}_{k} . Then by the fundamental theorem of finitely
generated abelian groups, C is isomorphic to

\mathbb{Z}_{k}/f1\mathbb{Z}_{k}\oplus \mathbb{Z}_{k}/f_{2}\mathbb{Z}_{k}\oplus\cdots\oplus \mathbb{Z}k/f_{n}\mathbb{Z}_{k} , (2)
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where f_{1} , f_{2} , \ldots , f_{n} are positive integers such that f_{1}|f_{2}|\cdots|f_{n}|k . Moreover,
the type (f_{1}, f_{2}, \ldots, f_{n}) is uniquely decided by C up to the f_{i} ’s such that
f_{i}=1 . We note that |C|=f_{1}f_{2} \cdot f_{n} . For a subset \{g_{1}, g_{2}, . , g_{m}\}\subseteq C ,
g_{i} , i=1,2 , . . , m are called generators of C if C= \sum_{i=1}^{m}\mathbb{Z}_{k}g_{i} . The rank
of C , denoted by rank(C), is the minimum number of generators of C and
the free rank of C , denoted by f-rank(C), is the maximum of the ranks of
\mathbb{Z}_{k}-free submodules of C , that is,

rank(C)= |\{i|f_{i}\neq 1\}| ,
f-rank(C) =|\{i|f_{i}=k\}| .

Let C_{f} be a \mathbb{Z}_{k}-free submodule of C such that rank(C_{f})=f rank(C) and
let C_{F} be a \mathbb{Z}_{k}-free submodule of V such that C\subseteq C_{F} and rank(C_{F})=

rank(C). We note that

|C_{f}|=k^{f- rank(C_{f})} , |C_{F}|=k^{rank(C)} .

If d(C_{f})=n-rank(C_{f})+1 , then we will say that C is a freely MDS code.
Furthermore, the inner product of vectors x= (x_{1}, . , x_{n}) , y=

(y_{1}, \ldots, y_{n})\in(\mathbb{Z}_{k})^{n} is defined by

\langle x, y\rangle=x_{1}y_{1}+)\cdot+x_{n}y_{n} (mod k).

The dual code of C is defined by

C^{\perp}:=\{y\in(\mathbb{Z}_{k})^{n}|\langle x, y\rangle=0 (\forall x\in C)\} .

If C has type (f_{1}, f_{2}, . , f_{n}) , then the type of C^{\perp} is (k/f_{n}, \ldots, k/f_{2}, k/f_{1}) .
We also note that

rank(C)+f rank(C^{\perp})=n .

The (Hamming) weight enumerator W_{C}(z) of a linear code C is defined by

W_{C}(z)= \sum_{i=0}^{n}A_{C}(i)z^{i} ,

where A_{C}(i)=|\{x\in C|wt(x)=i\}| . For linear codes D_{1} and D_{2} such
that D_{1}\subseteq D_{2} , we note that

A_{D_{1}}(i)\leq A_{D_{2}}(i) , i=0,1 , \ldots , n . (3)

The following equation is well-known as a Mac Williams identity over \mathbb{Z}_{k} .
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Proposition 2 (Klemm [5]) For a linear code C of length n over \mathbb{Z}_{k} ,

W_{C}^{\perp}(z)= \frac{(1+(k-1)z)^{n}}{|C|}W_{C}(\frac{1-z}{1+(k-1)z})

For a subset M\subseteq N:=\{1,2, \ldots, n\} and a \mathbb{Z}_{k} submodule D\subseteq V.
, we

define

D(M):=\{x\in V|supp(x)\subseteq M\} ,
D^{*}:=Hom_{\mathbb{Z}_{k}}(D, \mathbb{Z}_{k}) .

Clearly D(M)=D\cap V(M) is also a submodule of V From (2),

D^{*}=Hom_{\mathbb{Z}_{k}}(D, \mathbb{Z}_{k})

\cong Hom_{\mathbb{Z}_{k}}(\oplus_{i}\mathbb{Z}_{k}/f_{i}\mathbb{Z}_{k}, \mathbb{Z}_{k})

\cong\oplus_{i}Hom_{\mathbb{Z}_{k}}(\mathbb{Z}_{k}/f_{i}\mathbb{Z}_{k}, \mathbb{Z}_{k})

\cong\oplus_{i}\mathbb{Z}_{k}/f_{i}\mathbb{Z}_{k} .

So we note that there exists a (non-natural) isomorphism:

D^{*}\cong D .

Then the following proposition is essential.

Proposition 3 (Shiromoto and Yoshida [8]) Let D be a\mathbb{Z}_{k} submodule of
V:=(\mathbb{Z}_{k})^{n} and M\subseteq N:=\{1,2, . . ’ n\} . Then there is the following exact
sequence as \mathbb{Z}_{k} -modules:

Oarrow D(N-M)arrow V(N-M)incarrow f(D^{\perp})^{*}arrow D^{\perp}(resM)^{*}arrow 0 ,

where the maps inc, res denote the inclusion map, the restriction map, re-
spectively, and the map f is defined by

f : y\mapsto(\hat{y} : _{X}\mapsto\langle x, y\rangle) .

3. Main results

In this section, we only consider linear codes over \mathbb{Z}_{p^{m}} , where p is a
prime number. For any \mathbb{Z}_{p^{m}} submodule D of V:=(\mathbb{Z}_{p^{m}})^{n} , we define

S(D):=\{x\in D|px=0\} ,
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where 0=(0, 0, . . , 0 ) (\in V) . Since there exists an element x\in S(D) such
that wt(x)=d(D) , we note that

d(S(D))=d(D) . (4)

Lemma 1 If C is a linear code of length n over \mathbb{Z}_{p^{m}} , then

d(C_{F})=d(C) .

Proof We can assume that C has a generator matrix of the form

G= \{\begin{array}{l}G_{0}pG_{1}\vdots p^{m-1}G_{m-1}\end{array}\} ,

where the number of row vectors of G is equal to rank(C) (cf. [1]). Let C_{F}^{0}

be the linear code with generator matrix G’= \{\begin{array}{l}G_{0}\vdots G_{m-1}\end{array}\} Since

S(C)=p^{m-1}C_{F}^{0}:=\{x\in C_{F}^{0}|px=0\}

and p^{m-1}C_{F}=p^{m-1}C_{F}^{0} , we have

p^{m-1}C_{F}\subseteq C\subseteq C_{F} .

From (1) and (4), d(C_{F})\leq d(C)\leq d(p^{m-1}C_{F})=d(C_{F}) . \square

Remark 1 Lemma 1 suggests that though we can take C_{F} in the various
way for C , d(C_{F}) is uniquely decided by d(C) for all C_{F} .

Using Proposition 3, we can prove Proposition 1 (see [8]) and TheO-
rem 1.

Proof of Theorem 1. We put D:=(C^{\perp})_{f} . Since D^{\perp}(\supseteq C) is a \mathbb{Z}_{p^{m}} -free
submodule of V and rank(D^{\perp})=n- rank(D) = rank(C), then D^{\perp}=C_{F} .
Take an arbitrary subset M\subseteq N such that |M|=d(C)-1 , then D^{\perp}(M)^{*}=

0 from Lemma 1. By Proposition 3,

Oarrow D(N-M)arrow V(N-M)incarrow f(D^{\perp})^{*}arrow 0 .
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Because of (D^{\perp})^{*}\cong D^{\perp} , we have the following relation:

V(N-M)\cong D(N-M)\oplus D^{\perp} .

Thus

rank(C)=) rank(D^{\perp})\leq rank(V(N-M))

(=|N-M|=n-d(C)+1) .

(We note that this inequality coincides with the Singleton bound for PropO-
sition 1.) We assume that C is an MDS code, that is, d(C)=n-rank(C)+l.
Since we note that D(N-M)=\{0\} for any M, so

|N-M|\leq d(D)-1

\leq n- rank(D)

=rank(C)=|N-M| .

Thus we have the following equation:

d(D)-1=n- rank(D)

Hence the theorem follows. \square

Using Theorem 1, in the case that C is a free code, we have the following
corollary (a similar result for group codes over cyclic groups can be found
in [9] ) .

Corollary 1 Let C be a free code of length n over \mathbb{Z}_{p^{m}} . If C is an MDS
code, then C^{\perp}is also an MDS code.

Remark 2 Theorem 1 also claims that though we can take (C^{\perp})_{f} in the
various way, if C is an MDS code, then d((C^{\perp})_{f}) is uniquely decided by
d(C) for all (C^{\perp})_{f} .

We have an information on the number A_{C}(i) for any MDS code C .
We remark that a similar result for linear codes over finite fields is found in
[6] and [7].

Theorem 2 Let C be a linear code of length n and of rank over \mathbb{Z}_{p^{m}} .

If C is MDS, then

A_{C}(i) \leq(\begin{array}{l}ni\end{array})i-j\sum_{=0}^{d(C)}(-1)^{j} (\begin{array}{l}ij\end{array}) (p^{m(i-d(C)+1-j)}-1) .
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Proof. We put D:=(C^{\perp})_{f} . By Theorem 1, both D and D^{\perp}(\supseteq C) are
MDS (free) codes. Since |D|=(p^{m})^{f- rank(C^{\perp})}=p^{m(n-r)} , the equation of
Proposition 2 can be written in the form

\sum_{i=0}^{n}A_{D^{\perp}}(i)z^{i}=\frac{1}{p^{m(n-r)}}\sum_{i=0}^{n}A_{D}(i)(1-z)^{i}(1+(p^{m}-1)z)^{n-i} .

Replacing z by z^{-1} and then multiplying by z^{n} in the above equation, we
have

\sum_{i=0}^{n}A_{D^{\perp}}(i)z^{n-i}=\frac{1}{p^{m(n-r)}}\sum_{i=0}^{n}A_{D}(i)(z-1)^{i}(z+p^{m}-1)^{n-i} .

Differentiating this equation s times and substituting z=1 , we have

\frac{1}{p^{mr}}\sum_{i=0}^{n-s} (\begin{array}{ll}n -i s\end{array}) A_{D^{\perp}}(i)= \frac{1}{p^{ms}}\sum_{i=0}^{s} (\begin{array}{l}n-in-s\end{array}) A_{D}(i) .

We use the facts that A_{D^{\perp}}(0)=1 , A_{D^{\perp}}(i)=0 for i=1 , \ldots , n-r, and
A_{D}(0)=1 , A_{D}(i)=0 for i=1 , . , r . Then, for s\leq r ,

\sum_{i=n-r+1}^{n-s} (\begin{array}{ll}n -i s\end{array}) A_{D^{\perp}}(i)=(\begin{array}{l}ns\end{array}) (p^{m(r-s)}-1) , s=0,1 , \ldots , r-1 .

From (3), we note that A_{C}(i)\leq A_{D^{\perp}}(i) , i=n-r+1 , \ldots , n . Hence, the
theorem follows. \square

Remark 3 We remark that if C is a free code, then the equality holds in
Theorem 2.

Moreover, we give the matrix characterization of MDS codes over \mathbb{Z}_{p^{m}} ,
similar results are found in [3] and [9]. A nonzero linear code C over \mathbb{Z}_{p^{m}} has
a generator matrix which after a suitable permutation of the coordinates
can be written in the form

G=(\begin{array}{l}I_{k_{0}} A_{0,1} A_{0,2} A_{0,3}0 pI_{k_{1}} pA_{1,2} pA_{l,3}0 0 p^{2}I_{k_{2}} p^{2}A_{2,3}.... .. 0 ,...............\cdot...0 0 0 0\end{array}

p^{m-1}.\cdot.\cdot I_{k_{m-1}}^{\cdot}.

p^{m-1}A_{m-1,m}p^{2}A_{2,m}..\cdot.\cdot.)pA_{1,m}A_{0,m} , (5)
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where I_{k_{i}} denotes the k_{i}\cross k_{i} identity matrix for any i (cf. [2]). In this case,
we remark that

k_{0}+k_{1}+k_{2}+\cdot\cdot+k_{m-1}=rank(C) ,

k_{0}=f-rank(C).

For a linear code C with generator matrix G of the form (5), let

G’:=(\begin{array}{llllllll}I_{k_{0}} A_{0,1} A_{0,2} A_{0,3} A_{0,m}0 I_{k_{1}} A_{1,2} A_{l,3} A_{1,m}0 0 I_{k_{2}} A_{2,3} \ddots A_{2,m}\vdots \vdots 0 .. ’ \ddots\ddots \vdots\vdots \vdots \vdots |.. ..| \ddots\ddots \vdots 0 0 0 0 I_{k_{m-1}} A_{m-1,m}\end{array})

Then G’ can be modified to the form G’:=(I_{r}|M) by the elementary row
transformation, where r=rank(C) . Since \mathbb{Z}_{p^{m}} is a \mathbb{Z}_{p^{m}} -module, we have
the following lemma from Theorem 2.1 in [3].

Lemma 2 Let D be a free code of length n and rank(D) =r over \mathbb{Z}_{p^{m}}

with parity check matrix of the form (-M|I_{n-r}) . Then D is MDS iff the
determinant of every h\cross h submatrix h=1,2 , \ldots , \min\{n-r, r\} , of the
matrix M is a unit in \mathbb{Z}_{p^{m}} .

Using the above lemma, we get the matrix characterization of MDS
codes over \mathbb{Z}_{p^{m}} .

Theorem 3 Let C be a linear code of length n and rank(C) =r over
\mathbb{Z}_{p^{m}} with generator matrix G of the form (5). Then C is MDS iff the
determinant of every h\cross h submatrix h=1,2 , . , \min\{n-r, r\} , of lhe
matrix M of G’=(I_{r}|M) is a unit in \mathbb{Z}_{p^{m}} .

Proof. Let D be the linear code with generator matrix G’ From Lem-
ma 1, we note D is a free code of rank(Z)) =r and d(D)=d(C) . So C is
MDS iff D is MDS. Furthermore, D has a parity check matrix

(-M^{T}|I_{n-r})\square
.

Hence the theorem follows from Lemma 2.
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