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W^{*}-quantum groups arising from matched
pairs of groups

Takehiko YAMANOUCHI
(Received December 21, 1998)

Abstract. Generalizing the operator algebras defined by Masuda-Nakagami, we in-
troduce a notion of a quasi Woronowicz algebra as a von Neumann algebra version of
quantum groups. It is shown that every matched pair of locally compact groups gives
rise to two quasi Woronowicz algebras dual to each other.
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Introduction

In [M] (see [M1] too), Majid studied the notion of a matched pair of 10-
cally compact groups, and showed, among other things, that every matched
pair gives rise to two Hopf-von Neumann algebras, called the bicrossproduct
Hopf-von Neumann algebras. In general, this bicorssproduct construction
produces noncommutative and noncocommutative algebras. Thus it fur-
nishes abundant examples of nontrivial “W^{*} -quantum groups.” If a matched
pair is modular in the sense of [M], the associated bicrossproduct algebras
turn out to be Kac algebras [ES]. But, if not, which is often the case
when the groups in question are continuous, no one ever examined, to the
best of author’s knowledge, what part in the category of coinvolutive Hopf-
von Neumann algebras the bicrossproduct algebras occupy. The purpose of
this paper is to try to answer this question. To be more precise, we shall
show that the bicrossproduct Hopf-von Neumann algebra associated with a
matched pair of groups is a quasi Woronowicz algebra, which is closely re-
lated to the object investigated in [MN]. According to this result, we find a
concrete example of a deformation automorphism on a Woronowicz algebra
which is not induced from the q-deformation of the quantum groups.

The plan of the paper is as follows. Section 1 is concerned with the
notation which will be used in the sections that follow. We also introduce
the notion of a quasi Woronowicz algebra. The relation to Woronowicz
algebras are briefly discussed. The definition of a matched pair of groups is
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also reviewed. Section 2 is devoted to establishing preliminary results that
will be applied in Section 3. In Section 3, we show the main theorem that
the bicrossproduct Hopf-von Neumann algebra arising from a matched pair
is always a quasi Woronowicz algebra. Finally, in Appendix, we deduce
some formula for a Radon Nikodym derivative with respect to the Haar
measure associated with a bicrossproduct quasi Woronowicz algebra.

1. Notation

In this section, we first give the definition of a quasi Woronowicz algebra.
Then we state fundamental facts on this algebra, introducing the notation
that will be used in our later discussion. Quasi Woronowicz algebras are
almost like Woronowicz algebras introduced in [MN]. It is not too much
to say that what is true for Woronowicz algebras is equally true for quasi
Woronowicz algebras. Thus, for the general theory of quasi Woronowicz
algebras, we may refer readers to [MN]. Our notation will be mainly adopted
from this literature. We also recall the definition of a matched pair of groups.
For the details of this notion, we refer readers to [M], [M1]. See [LW] also.

Given a von Neumann algebra \mathcal{M} and a faithful normal semifinite
weight \psi on \mathcal{M} , we introduce subsets \mathfrak{n}\psi , \mathfrak{m}_{\psi} and \mathfrak{m}_{\psi}^{+} of \mathcal{M} by

\mathfrak{n}_{\psi}=\{x\in \mathcal{M} : \psi(x^{*}x)<\infty\} , \mathfrak{m}\psi=\mathfrak{n}_{\psi}^{*}\mathfrak{n}_{\psi} , \mathfrak{m}_{\psi}^{+}=\mathfrak{m}_{\psi}\cap \mathcal{M}_{+} .

We denote by \pi_{\psi} the standard (GNS) representation associated with \psi .
Its representation space is denoted by \mathfrak{H}\psi . We use the symbol \Lambda_{\psi} for the
canonical embedding of \mathfrak{n}_{\psi} into \mathfrak{H}\psi . Let a_{\psi}=\mathfrak{n}_{\psi}\cap \mathfrak{n}_{\psi}^{*} and set \mathfrak{U}\psi=\Lambda_{\psi}(a_{\psi}) ,
which is the full left Hilbert algebra associated with \psi . For a left bounded
vector \xi\in \mathfrak{H} with respect to the left Hilbert algebra \mathfrak{U}_{\psi} , we write \pi_{l}(\xi) for
the left multiplication operator corresponding to \xi . For a right bounded
vector \eta , we use \pi_{r}(\eta) for the corresponding right multiplication operator.
The modular automorphism group of \psi is denoted by \sigma^{\psi} .

A coinvolutive Hopf-von Neumann algebra is a triple (\mathcal{M}, \delta, R) in which:
(1) \mathcal{M} is a von Neumann algebra;
(2) \delta is an injective normal *-homomorphism, called a coproduct (or a

comultiplication), from \mathcal{M} into \mathcal{M}-\otimes \mathcal{M} with the coassociativity con-
dition: (\delta\otimes id_{\mathcal{M}})\circ\delta=(id_{\mathcal{M}}\otimes\delta)\circ\delta ;

(3) R is a *-antiautomorphism of \mathcal{M} , called a coinvolution or a unitary
antipode, such that R^{2}=id_{\mathcal{M}} and \sigma o(R\otimes R)0\delta=\delta oR , where \sigma is
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the usual flip.
A quasi Woronowicz algebra is a family W=(\mathcal{M}, \delta, R, \tau, h) in which:

(1) (\mathcal{M}, \delta, R) is a coinvolutive Hopf-von Neumann algebra;
(2) \tau is a continuous one-parameter automorphism group of \mathcal{M} , called

the deformation automorphism, which commutes with the coproduct
\delta and the antipode R;

(3) h is a \tau-invariant faithful normal semifinite weight on \mathcal{M} , called the
Haar measure of W, satisfying the following conditions:

(a) Quasi left invariance: For any \phi in \mathcal{M}_{*:}^{+} we have (\phi\otimes h)0\delta(x)=

h(x)\phi(1) for all x\in \mathfrak{m}_{h}^{+};

(b) Strong left invariance: For any x , y\in \mathfrak{n}_{h} and \phi\in \mathcal{M}_{*} which
is analytic with respect to the adjoint action of the deformation
automorphism \tau on \mathcal{M}_{*} , the following equality holds:

(\phi\otimes h)((1\otimes y^{*})\delta(x))=(\phi 0\tau_{-i/2}oR\otimes h)(\delta(y^{*})(1\otimes x)) .

(c) Commutativity: h\circ\sigma_{t}^{h\circ R}=h for all t\in R (or, equivalently,
h\circ R\circ\sigma_{t}^{h}=h\circ R) .

Remark that only difference between a Woronowicz algebra and a quasi
Woronowicz algebra is the requirement that the weight h is left invariant
or quasi left invariant. In other words, in the definition of a Woronowicz
algebra, one requires that h should satisfy (\phi\otimes h)0\delta(x)=h(x)\phi(1) for
all \phi\in \mathcal{M}_{*}^{+} and all x\in \mathcal{M}_{+} . At the present stage, the author does not
know whether left invariance and quasi left invariance are distinct notions,
although it is clear that left invariance implies quasi left invariance. Let
us briefly expalin the reason why we work with quasi Woronowicz algebras
rather than with Woronowicz algebras in this note. In the paper [MN],
there is a crucial gap at the end of the proof of Proposition 3.8. Because
of this gap, we do \underline{not} yet know that the dual Woronowicz algebra in the
sense of [MN] is really a Woronowicz algebra. One can, however, easily
see that the dual \underline{is} a quasi Woronowicz algebra. Moreover, most of the
argument in [MN] goes through perfectly without any change even if we
start with a quasi Woronowicz algebra, not with a Woronowicz algebra. In
particular, the duality for quasi Woronowicz algebras holds true. (There
are some points in which we really have to be careful, but those points
are irrelevant to our discussion that follows). This is why we would like
to insist on working with quasi Woronowicz algebras. Besides, as we see
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in Section 3, every matched pair of (locally compact) groups gives rise to
a quasi Woronowicz algebra. Hence there are plenty of examples of quasi
Woronowicz algebras. It is worth remarking that, if a quasi Woronowicz
algebra W satisfies \tau_{t}=id and \sigma^{hoR}=\sigma^{h} , not only that h\circ\sigma^{h\circ R}=h , then
one can show that W is actually a Kac algebra [ES].

Throughout this section, we fix a quasi Woronowicz algebra W=
(\mathcal{M}, \delta, R, \tau, h) . Identifying \mathcal{M} with \pi_{h}(\mathcal{M}) , we always think of \mathcal{M} as
represented on the Hilbert space \mathcal{F}) :=f\mathfrak{H}_{h} . We denote by \triangle and J the
modular operator and the modular conjugation of h , respectively. Since h

is \tau-invariant, \Lambda_{h}(x)\mapsto\Lambda_{h}(\tau_{t}(x))(x\in \mathfrak{n}_{h}, t\in R) defines a one-parameter
unitary group on \mathfrak{H} . We write H for the analytic generator of this one-
parameter unitary group: H^{it}\Lambda_{h}(x):=\Lambda_{h}(\tau_{t}(x)) . An element \phi\in \mathcal{M}_{*} is
said to be L^{2}(h) bounded if

\sup\{|\phi(x^{*})| : h(x^{*}x)\leq 1\}<\infty .

We denote by \hat{\eta}(\phi) the unique vector in \mathfrak{H} such that \phi(x^{*})=(\hat{\eta}(\phi)|\Lambda_{h}(x))

for x\in \mathfrak{n}_{h} . For \phi , \psi\in \mathcal{M}_{*} , define an element \phi*\psi in \mathcal{M}_{*} by

(\phi*\psi)(x):=(\phi\otimes\psi)(\delta(x)) (x\in \mathcal{M}) .

This operation * turns \mathcal{M}_{*} into a Banach algebra. Let (\mathcal{M}_{*})_{\tau}^{\infty} be the
set of analytic elements in \mathcal{M}_{*} with respect to the action \phi\mapsto\phi\circ\tau_{t} of the
deformation automorphism on \mathcal{M}_{*} . For \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} , put \phi^{\beta}:=\phi^{*}0\tau_{-i/2} oR.
This defines an involution on the subalgebra (\mathcal{M}_{*})_{\tau}^{\infty} . Thanks to quasi left
invariance, the equation

W\Lambda_{h\otimes h}(x\otimes y)=\Lambda_{h\otimes h}(\delta(y)(x\otimes 1)) (x, y\in \mathfrak{n}_{h})

defines an isometry (in fact, a unitary) on \mathfrak{H}\otimes \mathfrak{H} . This unitary W is called
the Kac Takesaki operator of W and satisfies

W_{12}W_{23}=W_{23}W_{13}W_{12} , \delta(x)=W(1\otimes x)W^{*} (x\in \mathcal{M}) .

With W_{J}. the equation

\hat{\pi}(\phi):=(\phi\otimes id)(W^{*}) (\phi\in \mathcal{M}_{*})

defines a homomorphism (resp. *-homomorphism) of \mathcal{M}_{*} (resp. (\mathcal{M}_{*})_{\tau}^{\infty} )
into the set B(\mathfrak{H}) of all bounded operators on \mathfrak{H} . The mapping \hat{\pi} is called
the Fourier representation of W. Let \overline{\mathcal{M}} stand for the von Neumann algebra
generated by \hat{\pi}(\phi)(\phi\in \mathcal{M}_{*}) . By [BS , Proposition 3.5], \overline{\mathcal{M}} is the \sigma-strong*
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closure of the sub\underline{al}gebra\hat{\pi}(\mathcal{M}_{*}) (or the * subalgebra \hat{\pi}((\mathcal{M}_{*})_{\tau}^{\infty}) ). It is
possible to equip \mathcal{M} with a quasi Woronowicz algebra structure as follows:

coproduct : \hat{\delta}(y):=\overline{W}(1\otimes y)\overline{W}^{*} (y\in\overline{\mathcal{M}})

unitary antipode : \hat{R}(y):=JyJ*

deformation
automorphism : \hat{\tau}_{t}:=AdH^{it}

Haar measure : \hat{h}(x) :=\{
||\xi||^{2} , if x^{1/2}=\hat{\pi}_{\ell}(\xi) for \xi\in\hat{\mathfrak{U}} \prime\prime ,

\infty , otherwise,

where \overline{W}=\Sigma W^{*}\Sigma and \Sigma is the flip on \mathfrak{H}\otimes \mathfrak{H}\cdot\hat{\mathfrak{U}} is a left Hilbert algebra
obtained as the image of some suitable * subalgebra in (\mathcal{M}_{*})_{\tau}^{\infty} under the
map \hat{\eta} . In particular, we have

\hat{h}(\hat{\pi}(\omega)^{*}\hat{\pi}(\phi))=(\hat{\eta}(\phi)|\hat{\eta}(\omega))

for L^{2}(h)-bounded functionals \phi , \omega . We denote this quasi Woronowicz
algebra by \overline{W} and call it the \underline{quasi} Woronowicz algebra dual to W. The
Kac-Takesaki operator of \overline{W} is W . The linear mapping \mathcal{F} defined by

\mathcal{F}\Lambda_{\hat{h}}(\hat{\pi}(\phi)):=\hat{\eta}(\phi) ( \phi : L^{2}(h)-bounded)

extends to a unitary, still denoted by \mathcal{F} , from \mathfrak{H}_{\hat{h}} onto \mathfrak{H} . We call this uni-
tary the Fourier transform. Note that \{\overline{\mathcal{M}}, \mathfrak{H}\} is a standard representation.
Thus we regard \triangle:=\wedge\triangle_{\hat{h}} and \hat{J}:=J_{\hat{h}} as acting on the Hilbert space \mathfrak{H} . We
have R(x)=\hat{J}x^{*}\hat{J}(x\in \mathcal{M}) .

In general, if \phi and \psi are faithful normal semifinite weights on a von
Neumann algebra \prime p satisfying \psi\circ\sigma_{t}^{\phi}=\psi (or, equivalently, \phi 0\sigma_{t}^{\psi}=\phi), then,
by [PT], there exists a unique non-singular positive self-adjoint operator
K affiliated with the centralizer \mathcal{P}_{\phi}=\{x\in P : \sigma_{t}^{\phi}(x)=x(t\in R)\} of
\phi such that the Connes’ Radon Nikodym derivative (D\psi : D\phi)_{t} satisfies
(D\psi : D\phi)_{t}=K^{it} for t\in R . For any \epsilon>0 , set K_{\epsilon}:=K(1+\epsilon K)^{-1} . With
this notation, it follows from [PT , Theorem 5.12] that we have

\psi(x)=\lim_{\epsilon\downarrow 0}\phi(K_{\epsilon}^{1/2}xK_{\epsilon}^{1/2}) . (x\in P_{+})

In this case, following the notation in [PT], we write \psi=\phi(K\cdot) . Finally,
for a linear operator T on a Hilbert space, let \mathfrak{D}(T) designate the domain
of T
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Let G_{1} , G_{2} be locally compact groups with left Haar measures \mu_{1} , \mu_{2} .
The identities of G_{1} and G_{2} are both denoted by the letter e . By G_{1} acting
on the topological space G_{2} , we mean a continuous map \alpha : G_{1}\cross G_{2}arrow G_{2}

such that

\alpha_{g}(\alpha_{h}(s))=\alpha_{gh}(s) , \alpha_{e}(s)=s (g, h\in G_{1}, s\in G_{2})

together with a regularity condition: we assume that, for each g\in G_{1} , the
measure \mu_{2}\circ\alpha_{g} is equivalent to \mu_{2} in the sense of absolute continuity, and
that, with the Radon Nikodym derivative d\mu_{2}\circ\alpha_{g}/d\mu_{2} , the map

(g, s) \in G_{1}\cross G_{2}\mapsto\frac{d\mu_{2}\circ\alpha_{g}}{d\mu_{2}}(s)

is jointly continuous.

Definition A system (G_{1}, G_{2}, \alpha, \beta) is called a matched pair if:
(1) G_{1} , G_{2} are locally compact groups;
(2) \alpha is an action of G_{1} on the topological space G_{2} , and \beta is an action of

G_{2} on the topological space G_{1} ;
(3) the following identities {the matched pair condition) holds:

(MP) \{\begin{array}{l}\alpha_{g}(e)=e, \beta_{s}(e)=e\alpha_{g}(st)=\alpha_{\beta_{t}(g)}(s)\alpha_{g}(t), \beta_{s}(gh)=\beta_{\alpha_{h}(s)}(g)\beta_{s}(h)(g,h\in G_{1},s,t\in G_{2})\end{array}

Throughout this note, we fix a matched pair (G_{1}, G_{2}, \alpha, \beta) with left
Haar measures \mu_{i} for G_{i}(i=1,2) . We denote by \chi(g, s) (resp. \Psi ( s , g ))
the Radon Nikodym derivative d\mu_{2}\circ\alpha_{g}/d\mu_{2}(s) (resp. d\mu_{1}\circ\beta_{s}/d\mu_{1}(g) ).
Besides these cocycles, we introduce the following continuous “bicocycle”
\zeta : G_{1}\cross G_{2}arrow(0, \infty) :

\zeta(g, s):=\frac{\chi(g,s)}{\chi(g,e)}=\frac{\Psi(s,g)}{\Psi(s,e)} (g\in G_{1}, s\in G_{2}) .

The important properties which the functions \chi , \Psi , \zeta enjoy are listed in [M ,
Lemma 2.2]. Examples of matched pairs are discussed in [M], [M1], [LW],
[BS]. The action \alpha induces an action, denoted by \alpha again, of G_{1} on the
abelian von Neumann algebra L^{\infty}(G_{2}) by \alpha_{g}(k):=ko\alpha_{g}^{-1}(k\in L^{\infty}(G_{2})) .
Similarly, \beta induces an action \beta of G_{2} on L^{\infty}(G_{1}) . The crossed products
L^{\infty}(G_{2})x_{\alpha}G_{1} and L^{\infty}(G_{1})x_{\beta}G_{2} are called the bicrossproduct Hopf-von
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Neumann algebras associated with the matched pair (G_{1}, G_{2}, \alpha, \beta) . The
coinvolutive Hopf-von Neumann algebra structure of \mathcal{M}=L^{\infty}(G_{2})x_{\alpha}G_{1}

is described as follows (see [M]). Let \mathfrak{H}=L^{2}(G_{1})\otimes L^{2}(G_{2})=L^{2}(G_{1}\cross G_{2}) .
Then define an operator W on \mathfrak{H}\otimes \mathfrak{H} by

\{W\xi\}(g, s;h, t):=\xi(\beta_{t}(h)^{-1}g, s;h, \alpha_{\beta_{t}(h)^{-1}g}(s)t)

(\xi\in \mathfrak{H}\otimes \mathfrak{H}, g, h\in G_{1}, s, t\in G_{2}) .

It turns out that W is a unitary, and that the map \delta given by

\delta(x):=W(1\otimes x)W^{*} (x\in \mathcal{M})

defines a coproduct on \mathcal{M} . Moreover, if we define an operator \hat{J} on \mathfrak{H} by

\{\hat{J}\xi\}(g, s):=\triangle(s)^{-1/2}\Psi(s, g)^{1/2}\overline{\xi(\beta_{s}(g),s^{-1})}

(\xi\in \mathfrak{H}, g\in G_{1}, s\in G_{2}) ,

where \triangle is the modular function on G_{2} , then \hat{J} is a unitary involution, and
the map R defined by

R(x):=\hat{J}x^{*}\hat{J} (x\in \mathcal{M})

is shown to be a coinvolution (i.e., a unitary antipode) on \mathcal{M} .

2. Technical results

This section is devoted to establishing preliminariy results that will
be applied in Section 3, where we shall show that the dual weight on a
bicrossproduct Hopf-von Neumann algebra always satisfies quasi left invari-
ance, strong left invariance and commutativity. It is, however, usually dif-
ficult to show that a weight satisfies the equality in the definition of strong
left invariance, as it stands. Thus our goal of this section is to establish a
condition, equivalent to strong left invariance, which fits our purpose.

Let us assume for the time being that
(1) (\mathcal{M}, \delta, R) is a coinvolutive Hopf-von Neumann algebra;
(2) \tau is a one-parameter automorphism group on \mathcal{M} satisfying condition

(2) in the definition of a quasi Woronowicz algebra;
(3) h is a faithful normal semifinite weight on \mathcal{M} satisfying h\circ\tau_{t}=h for

any t\in R .
For a one-papameter automorphism group \{\alpha_{t}\}_{t\in R} on \mathcal{M} , we denote by
\mathcal{M}_{\alpha}^{\infty} the set of analytic elements in \mathcal{M} with respect to \{\alpha_{t}\}_{t\in R} , i.e., the
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set of all elements x\in \mathcal{M} for which the function t\in R\mapsto\alpha_{t}(x) can be
extended to an entire function on C. With this notation, we define S_{\tau} to
be the set of elements x\in a_{h}\cap \mathcal{M}_{\tau}^{\infty} with \tau_{z}(x)\in a_{h} for any z\in C .

As in Section 1, we introduce a nonsingular positive self-adjoint operator
H on \mathfrak{H} which is the analytic generator of the (strongly continuous) one-
parameter unitary group \{U(t)\} given by

U(t)\Lambda_{h}(x)=\Lambda_{h}(\tau_{t}(x)) (t\in R, x\in \mathfrak{n}_{h}) .

Thus U(t)=H^{it} for all t\in R .
The next lemma can be easily shown, so we leave its proof to readers

as an exercise.

Lemma 2.1 Let x be in S_{\tau} . Then the vector \Lambda_{h}(x) belongs to \mathfrak{D}(H^{iz}) for
any z\in C , and we have

H^{iz}\Lambda_{h}(x)=\Lambda_{h}(\tau_{z}(x)) .

Lemma 2.2 The subspace \Lambda_{h}(S_{\tau}) is dense in \mathfrak{H} . Moreover, S_{\tau} is \sigma -weakly
dense in \mathcal{M} .

Proof. Let x be in a_{h} . We set

x_{n}= \sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\tau_{t}(x)dt , (n=1,2, \ldots) .

Since the \{\tau_{t}\}-invariance of the weight h , \tau_{t}(x) still lies in a_{h} . Thus, if
\xi’\in \mathfrak{U}_{h}’ and \eta\in \mathfrak{H} , then we have

(x_{n} \xi’|\eta)=\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}(\tau_{t}(x)\xi’|\eta)dt

=( \pi_{r}(\xi’)(\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}H^{it}\Lambda_{h}(x)dt)|\eta) ,

where \pi_{r} indicates the right multiplication of the right Hilbert algebra \mathfrak{U}_{h}’ .
Hence we obtain

\pi_{r}(\xi’)(\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}H^{it}\Lambda_{h}(x)dt)=x_{n}\xi’ .

This shows that the vector \sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}H^{it}\Lambda_{h}(x)dt is left bounded, and
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that

\pi_{\ell}(\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}H^{it}\Lambda_{h}(x)dt)=x_{n} .

It follows that x_{n}\in \mathfrak{n}_{h} . Similarly, one can show that x_{n}^{*}\in \mathfrak{n}_{h} . Consequently,
x_{n} belongs to a_{h} .

In the meantime, it is known in general that x_{n} is in \mathcal{M}_{\tau}^{\infty} . and that

\tau_{z}(x_{n})=\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-n(t-z)^{2}}\tau_{t}(x)dt , (z\in C) .

So, we may argue as in the previous paragraph in order to conclude that
\tau_{z}(x_{n}) belongs to a_{h} . Therefore, x_{n} lies in S_{\tau} . Since

\lim_{narrow\infty}||\Lambda_{h}(x_{n})-\Lambda_{h}(x)||=0 , \sigma-weak- \lim_{narrow\infty}x_{n}=x

by the Lebesgue dominated convergence theorem, it follows that \mathfrak{U}_{h}\subseteq

\overline{\Lambda_{h}(S_{\tau})} and a_{h}
\subseteq\overline{S_{\tau}}^{\sigma} This completes the proof. \square

Next we set

S_{\sigma,\tau}=\{x\in a_{h}\cap \mathcal{M}_{\sigma}^{\infty}\cap \mathcal{M}_{\tau}^{\infty} : \sigma_{z}^{h}(x), \tau_{z}(x)\in a_{h}(z\in C)\} .

With this notation, we have

Lemma 2.3 The subspace \Lambda_{h}(S_{\sigma,\tau}) is dense in \mathcal{F}). In addition, S_{\sigma,\tau} is
\sigma -weakly dense in \mathcal{M} .

Proof. Let x\in S_{\tau} , and put

x_{n}= \sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\sigma_{t}^{h}(x)dt , (n\geq 1) .

Then we have x_{n}\in a_{h}\cap \mathcal{M}_{\sigma}^{\infty} . Fix an n\in N for the moment. Since h is
\{\tau_{t}\}-invariant, we find that

\tau_{s}(x_{n})=\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\sigma_{t}^{h}(\tau_{s}(x))dt , (s\in R) .

Hence, if we define a function f on C by

f(z)= \sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\sigma_{t}^{h}(\tau_{z}(x))dt , (z\in C) ,
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then f(s)=\tau_{s}(x_{n}) for any s\in R . Moeover, since x\in S_{\tau} , i.e., \tau_{z}(x)\in a_{h} ,
f(z) belongs to a_{h}\cap \mathcal{M}_{\sigma}^{\infty} . Since f(z) is clearly an entire function, x_{n} is in
\mathcal{M}_{\tau}^{\infty} , and we have \tau_{z}(x_{n})=f(z) for z\in C . This proves that x_{n} lies in
a_{h}\cap \mathcal{M}_{\sigma}^{\infty}\cap \mathcal{M}_{\tau}^{\infty} . Furthermore, since both of the following elements

\sigma_{z}^{h}(x_{n})=\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-n(t-z)^{2}}\sigma_{t}^{h}(x)dt

and

\tau_{z}(x_{n})=\sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\sigma_{t}^{h}(\tau_{z}(x))dt (2.3.1)

belong to a_{h} for any z\in C , it follows that x_{n}\in S_{\sigma,\tau} . As in the preceding
lemma, since

\lim_{narrow\infty}||\Lambda_{h}(x_{n})-\Lambda_{h}(x)||=0 , \sigma-weak- \lim_{narrow\infty}x_{n}=x ,

the assertion now follows from Lemma 2.2. \square

The lemma that follows can be found in [VD , Lemma 4.2]. Van Daele
proved this lemma in the case where the operator K is the modular operator
associated with a left Hilbert algebra. But, as he remarked at the beginning
of Section 4 of [VD], the lemma still holds true for any nonsingular positive
self-adjoint operator.

Lemma 2.4 Let K be a nonsingular positive self-adjoint operator on f\mathfrak{H} .
If r>0 , then one has

K^{-1/2}(K^{-1}+r)^{-1}= \int_{-\infty}^{\infty}\frac{r^{it-1/2}}{e^{\pi t}+e^{-\pi t}}K^{it}dt

in the strong-Operator topology.

Lemma 2.5 Let s\in R . The subspace \Lambda_{h}(S_{\sigma,\tau}) is a core for the operator
H^{s} .

Proof. Let s\in R . Take any x\in S_{\tau} . As we have shown in the proof of
Lemma 2.3, the element

x_{n}= \sqrt{\frac{n}{\pi}}\int_{-\infty}^{\infty}e^{-nt^{2}}\sigma_{t}^{h}(x)dt , (n\geq 1)

belongs to S_{\sigma,\tau} .



W^{*} -quantum groups 83

Meanwhile, if we apply Lemma 2.4 to the operator K=H^{-s} and r=1 ,
then we obtain

H^{s/2}(H^{s}+1)^{-1}= \int_{-\infty}^{\infty}\frac{1}{e^{\pi t}+e^{-\pi t}}H^{-its}dt .

By Lemma 2.1, the vector \Lambda_{h}(x_{n}) is in the domain of H^{z} for any z\in C , in
particular, of H^{-s/2}(H^{s}+1) , so that we have

\Lambda_{h}(x_{n})=H^{s/2}(H^{s}+1)^{-1} H^{-s/2}(H^{s}+1)\Lambda_{h}(x_{n})

= \int_{-\infty}^{\infty}\frac{1}{e^{\pi t}+e^{-\pi t}}H^{-its}(H^{-s/2}(H^{s}+1)\Lambda_{h}(x_{n}))dt

= \int_{-\infty}^{\infty}\frac{1}{e^{\pi t}+e^{-\pi t}}(1+H^{s})H^{-its-s/2}\Lambda_{h}(x_{n})dt (2.5.1)

By Lemma 2.1 again, we have H^{-its-s/2}\Lambda_{h}(x_{n})=\Lambda_{h}(\tau_{-ts+(s/2)i}(x_{n})) . From
the definition of S_{\sigma,\tau} and Equation (2.3.1), it follows that \tau_{-ts+(s/2)i}(x_{n}) still
belongs to S_{\sigma,\tau} . Hence, from the identity above, we have H^{-its-s/2}\Lambda_{h}(x_{n})\in

\Lambda_{h}(S_{\sigma,\tau}) . Consequently, the vector (1+H^{s})H^{-its-s/2}\Lambda_{h}(x_{n}) is in the sub-
space (1+H^{s})\Lambda_{h}(S_{\sigma,\tau}) for any t\in R . From this, together with (2.5.1), it
follows that \Lambda_{h}(x_{n}) lies in the closure of (1+H^{s})\Lambda_{h}(S_{\sigma,\tau}) . Since \Lambda_{h}(x_{n})

converges to \Lambda_{h}(x) , \Lambda_{h}(x) still belongs to this closure. It results from
Lemma 2.2 that (1+H^{s})\Lambda_{h}(S_{\sigma,\tau}) is dense in \mathfrak{H} . Therefore, by [T , Lemma
1.1], the subspace \Lambda_{h}(S_{\sigma,\tau}) is a core for the operator H^{s} . \square

From this point on, we assume further that the weight h is quasi left
invariant. With this assumption, one may prove the following lemma exactly
the same way as in [S , Lemme 11.12].

Lemma 2.6 Let (\mathcal{M}, \delta, R, \tau, h) be as above. Suppose that x , y\in \mathfrak{n}_{h} .
Then, for any \omega\in \mathcal{M}_{*} , both (1\otimes y^{*})\delta(x) and \delta(y^{*})(1\otimes x) belong to \mathfrak{m}_{\omega\otimes h} ,
and one has

(i) \langle W, \omega\otimes\omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle =(\omega\otimes h)((1\otimes y^{*})\delta(x)) ;

(ii) \langle W^{*}, \omega\otimes\omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle =(\omega\otimes h)(\delta(y^{*})(1\otimes x)) ,

where W of course stands for the Kac-Takesaki operator determined by the
system (\mathcal{M}, \delta, R, h) .

As an easy consequence of the previous lemma, we obtain the next.

Lemma 2.7 Let (\mathcal{M}, \delta, R, \tau, h) be as above. Then the weight h is strong-
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ly left invariant if and only if it satisfifies
(\phi\circ\tau_{-i/2}\circ R\otimes id)(W^{*})=(\phi\otimes id)(W) (2.7.1)

for any \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} .

Proof. Let x , y\in \mathfrak{n}_{h} and \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} . Then, with the aid of Lemma 2.6,
it is readily verified that

\langle(\phi 0\tau_{-i/2}oR\otimes id)(W^{*}), \omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle

=(\phi 0\tau_{-i/2}oR\otimes h)(\delta(y^{*})(1\otimes x))

\langle(\phi\otimes id)(W), \omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle

=(\phi\otimes h)((1\otimes y^{*})\delta(x)) .

From these identities, it easily follows that the strong left invariance of h is
equivalent to the equality:

\langle(\phi 0\tau_{-i/2}oR\otimes id)(W^{*}), \omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle

=\langle(\phi\otimes id)(W), \omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\rangle , (x, y\in \mathfrak{n}_{h}, \phi\in(\mathcal{M}_{*})_{\tau}^{\infty}) .

The assertion now follows, since \Lambda_{h}(\mathfrak{n}_{h}) is dense in \mathfrak{H} . \square

Lemma 2.8 Suppose that h is strongly left invariant. If V is a conjugate-
linear isometric involution on \mathfrak{H} implementing the unitary antipode R, then
we have

(VH^{1/2}\zeta_{1}\otimes\xi|W(VH^{-1/2}\zeta_{2}\otimes\eta))=(W((_{2}\otimes\xi)|\zeta_{1}\otimes\eta)

for any \zeta_{1}\in \mathfrak{D}(H^{1/2}) , \zeta_{2}\in \mathfrak{D}(H^{-1/2}) and \xi , \eta\in \mathfrak{H} .

Proof. With the previous notation, let x , y\in S_{\sigma,\tau} . Then put \phi=

\omega_{\Lambda_{h}(x),\Lambda_{h}(y)} . Note that, with the notation of [MN , Definition 2.1], we have
\hat{\eta}(\phi)=\Lambda_{h}(x\sigma_{-i}^{h}(y^{*})) (see also the paragraph preceding Lemma 2.2 of [MN]).

We first claim that \phi is in (\mathcal{M}_{*})_{\tau}^{\infty} , and that \phi 0\tau_{-i/2} =

\omega_{\Lambda_{h}(\tau_{i/2}(x)),\Lambda_{h}(\tau_{-i/2}(y))} . In fact, suppose that a\in S_{\sigma,\tau} . Then the function
t\in R\mapsto\phi(\tau_{t}(a)) certainly has an extension to an entire function \phi(\tau_{z}(a))

on C. Meanwhile, by the definition of \phi and Lemma 2.1, we have

\phi(\tau_{z}(a))=(\hat{\eta}(\phi)|\Lambda_{h}(\tau_{\overline{z}}(a^{*})))=(\Lambda_{h}(x\sigma_{-i}^{h}(y^{*}))|\Lambda_{h}(\tau_{\overline{z}}(a^{*})))

=(\Lambda_{h}(\sigma_{-i}^{h}(y^{*}))|x^{*}H^{i\overline{z}}\Lambda_{h}(a^{*}))

=(\Lambda_{h}(\sigma_{-i}^{h}(y^{*}))|H^{i\overline{z}}\tau_{-\overline{z}}(x^{*})\Lambda_{h}(a^{*}))
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=(\Lambda_{h}(\sigma_{-i}^{h}(y^{*}))|H^{i\overline{z}}\tau_{-\overline{z}}(x^{*})\triangle^{-1/2}J\Lambda_{h}(a))

=(\Lambda_{h}(\sigma_{-i}^{h}(y^{*}))|H^{i\overline{z}}\triangle^{-1/2}JJ\sigma_{-i/2}^{h}(\tau_{-\overline{z}}(x^{*}))J\Lambda_{h}(a))

=(H^{-iz}\Lambda_{h}(\sigma_{-i}^{h}(y^{*}))|\triangle^{-1/2}J\Lambda_{h}(a\tau_{-z}(x)))

=(\Lambda_{h}(\tau_{-z}0\sigma_{-i}^{h}(y^{*}))|\triangle^{-1/2}Ja\Lambda_{h}(\tau_{-z}(x)))

=(\triangle^{-1/2}\Lambda_{h}(\sigma_{-i}^{h}0\tau_{-z}(y^{*}))|Ja\Lambda_{h}(\tau_{-z}(x)))

=(\triangle^{1/2}\Lambda_{h}(\tau_{-z}(y^{*}))|Ja\Lambda_{h}(\tau_{-z}(x)))

=(a\Lambda_{h}(\tau_{-z}(x))|J\triangle^{1/2}\Lambda_{h}(\tau_{-z}(y^{*})))

=(a\Lambda_{h}(\tau_{-z}(x))|\Lambda_{h}(\tau_{-\overline{z}}(y))) .

Since this computation is valid for any a\in S_{\sigma,\tau} , it follows from Lemma 2.3
that \phi belongs to (\mathcal{M}_{*})_{\tau}^{\infty} , and that \phi\circ\tau_{z}=\omega_{\Lambda_{f_{l}}(\tau_{-z}(x)),\Lambda_{h}(\tau_{-\overline{z}}(y))} . This
proves the claim.

As we saw in the proof of Lemma 2.7, the strong left invariance of h

ensures that we have

\langle W^{*}, \phi 0\tau_{-i/2}oR\otimes\omega_{\xi,\eta}\rangle=\langle W, \phi\otimes\omega_{\xi,\eta}\rangle , (\xi, \eta\in \mathfrak{H}) .

From this, together with the preceding paragraph, we obtain

\langle W^{*}, \omega_{\Lambda_{h}(\tau_{i/2}(x)),\Lambda_{h}(\tau_{-i/2}(y))}oR\otimes\omega_{\xi,\eta}\rangle=\langle W, \omega_{\Lambda_{h}(x),\Lambda_{h}(y)}\otimes\omega_{\xi,\eta}\rangle .

Since \omega_{\Lambda_{h}(\tau_{i/2}(x)),\Lambda_{h}(\tau_{-i/2}(y))}
\circ R=\omega_{V\Lambda_{h}(\tau_{-i/2}(y)),V\Lambda_{h}(\tau_{i/2}(x))} with V the im-

plementation of R on \mathfrak{H} , it results that

(W^{*}(V\Lambda_{h}(\tau_{-i/2}(y))\otimes\xi)|V\Lambda_{h}(\tau_{i/2}(x))\otimes\eta)

=(W(\Lambda_{h}(x)\otimes\xi)|\Lambda_{h}(y)\otimes\eta) .

Namely, we have

(VH^{1/2}\Lambda_{h}(y)\otimes\xi|W(VH^{-1/2}\Lambda_{h}(x)\otimes\eta))

=(W(\Lambda_{h}(x)\otimes\xi)|\Lambda_{h}(y)\otimes\eta) , (x, y\in S_{\sigma,\tau}, \xi, \eta\in \mathfrak{H}) .

Since the subspace \Lambda_{h}(S_{\sigma,\tau}) is a core for both H^{1/2} and H^{-1/2} by Lemma
2.5, we can easily deduce the asserted identity. \square

Remark 2.9 (1) From the proof of Lemma 2.8, we find that, conversely,
if the assertion of Lemma 2.8 is the case, then equation (2.7.1) holds true
for any functional \phi in the linear span of elements in \mathcal{M}_{*} of the form
\omega_{\Lambda_{h}(x),\Lambda_{h}(y)} , where x , y\in S_{\sigma,\tau} . We shall soon show that equation (2.7.1) is
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actually valid for \underline{anv}\phi in (\mathcal{M}_{*})_{\tau}^{\infty} .
(2) Note that the linear span which appeared in (1) is a dense sub-

span of (\mathcal{M}_{*})_{\tau}^{\infty} . In fact, if \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} . then, since \{\mathcal{M}, \mathfrak{H}\} is a stan-
dard representation, there are vectors (_{1}, \zeta_{2}\in f\mathfrak{H} such that \phi=\omega_{\zeta_{1},\zeta_{2}} .
By Lemma 2.3, we can choose sequences \{x_{n}\} and \{y_{n}\} in S_{\sigma,\tau} so that
\lim_{narrow\infty}||\Lambda_{h}(x_{n})-\zeta_{1}||=\lim_{narrow\infty}||\Lambda_{h}(y_{n})-\zeta_{2}||=0 . It is now easy to see
that \lim_{narrow\infty}||\phi-\omega_{\Lambda_{h}(x_{n}),\Lambda_{h}(y_{n})}||=0 .

In the next lemma, \hat{\pi} stands for the Fourier representation associated
with the system (\mathcal{M}, \delta, R, \tau, h) as defined in the preceding section.

Lemma 2.10 Suppose that we have

(VH^{1/2}\zeta_{1}\otimes\xi|W(VH^{-1/2}\zeta_{2}\otimes\eta))=(W(\zeta_{2}\otimes\xi)|\zeta_{1}\otimes\eta)

for any (_{1}\in \mathfrak{D}(H^{1/2}), \zeta_{2}\in \mathfrak{D}(H^{-1/2}) and \xi , \eta\in \mathfrak{H} , there V is any
conjugate-linear isometric involution implementing the antipode R on \mathfrak{H} .
Lelx , y\in S_{\sigma,\tau} , and put \phi=\omega_{\Lambda_{h}(x),\Lambda_{h}(y)} . Then \hat{\pi}(\phi)^{*}=\hat{\pi}(\phi\#) .

Proof. A proof has been already obtained in the calculation of the proof
of Lemma 2.8. In fact, by that computation, we see that, if \xi , \eta\in \mathfrak{H} , then,
since \phi^{*}=\omega_{\Lambda_{h}(y),\Lambda_{h}(x)} , we get

(\hat{\pi}(\phi^{Q})\xi|\eta)=(VH^{1/2}\Lambda_{h}(x)\otimes\xi|W(VH^{-1/2}\Lambda_{h}(y)\otimes\eta)) .

In the meantime, we have

(\hat{\pi}(\phi)^{*}\xi|\eta)=\overline{(\phi\otimes\omega_{\eta,\xi})(W^{*})}=(W(\Lambda_{h}(y)\otimes\xi)|\Lambda_{h}(x)\otimes\eta) .

Hence, by assumption, (\hat{\pi}(\phi^{\phi})\xi|\eta)=(\hat{\pi}(\phi)^{*}\xi|\eta) . This proves the lemma.
\square

Lemma 2.11 Let \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} , \xi\in \mathfrak{D}(H^{1/2}) and \eta\in \mathfrak{D}(H^{-1/2}) . Then
we have

(\hat{\pi}(\phi\circ R)H^{1/2}\xi|H^{-1/2}\eta)=(\hat{\pi}(\phi 0\tau_{-i/2}oR)\xi|\eta) .

Proof. Let us consider the two functions F , G below defined on the strip
D=\{z\in C : -1/2\leq{\rm Im} z\leq 0\} , which are continuous on D and analytic
on the interior of D :

F(z)=(\hat{\pi}(\phi oR)H^{iz}\xi|H^{i\overline{z}}\eta) (-1/2\leq{\rm Im} z\leq 0) ,
G(z)=(\hat{\pi}(\phi 0\tau_{z}oR)\xi|\eta) .
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Since \{\mathcal{M}, \mathfrak{H}\} is standard, there are vectors \zeta_{1} , \zeta_{2}\in \mathfrak{H} such that \phi=\omega_{\zeta_{1},\zeta_{2}} .
Let V be any conjugate-linear isometric involution implementing R on \mathfrak{H}

(there is at least one such involution, i.e., the canonical implementation of
R, since \{\mathcal{M}, \mathfrak{H}\} is standard). Then, for any t\in R , we have

F(t)=(\hat{\pi}(\phi oR)H^{it}\xi|H^{it}\eta)=(\hat{\pi}(\omega_{V\zeta_{2},V\zeta_{1}})H^{it}\xi|H^{it}\eta)

=(W^{*}(V(_{2}\otimes H^{it}\xi)|V\zeta_{1}\otimes H^{it}\eta) .

Since (\tau_{t}\otimes\tau_{t})\circ\delta=\delta 0\tau_{t} , it follows from the definition of the Kac-Takesaki
operator that we have (H^{it}\otimes H^{it})W=W(H^{it}\otimes H^{it}) for any t\in R . Hence

F(t)=(W^{*}(H^{-it}V\zeta_{2}\otimes\xi)|H^{-it}V\zeta_{1}\otimes\eta)

=(\hat{\pi}(\omega_{H^{-it}V\zeta_{2},H^{-it}V\zeta_{1}})\xi|\eta) .

But an simple computation shows that \omega_{H^{-it}V\zeta_{2},H^{-it}V\zeta_{1}}=\phi 0\tau_{t} \circ R . Thus
we find that F(t)=G(t) . By the unicity theorem, it follows that F(-i/2)=
G(-i/2) , which proves the assertion. \square

For the next proposition, which is our main result of this section, we
refer readers to [DC] and [W].

Proposition 2.12 Suppose that V is a conjugate-linear isometric involu-
tion on \mathfrak{H} implementing the unitary antipode R. The weight h is strongly
left invariant if and only if we have

(VH^{1/2}\zeta_{1}\otimes\xi|W(VH^{-1/2}\zeta_{2}\otimes\eta))=(W(\zeta_{2}\otimes\xi)|\zeta_{1}\otimes\eta)

(2.12.1)

for any \zeta_{1}\in \mathfrak{D}(H^{1/2}) , (_{2}\in \mathfrak{D}(H^{-1/2}) and \xi , \eta\in \mathfrak{H} .

Proof We have already shown the “only if part in Lemma 2.8. Thus it
remains to prove, by virtue of Lemma 2.7, that the equality (2.12.1) ensures
that the identity (2.7.1) holds for any \phi\in(\mathcal{M}_{*})_{\tau}^{\infty} .

First we note that, as we discussed in Remark 11,(1), Equation (2.7.1) is
true for any functional in the linear span of elements of the form \omega_{\Lambda_{h}(x),\Lambda_{h}(y)} ,
where x , y\in S_{\sigma,\tau} . Let \phi be in (\mathcal{M}_{*})_{\tau}^{\infty} . Take any \xi\in \mathfrak{D}(H^{1/2}) and \eta\in

\mathfrak{D}(H^{-1/2}) . By Remark 2.9,(2), we may choose a sequence \{\phi_{n}\} inside the
linear span appearing in Remark 2.9 so that \lim_{narrow\infty}||\phi_{n}-\phi||=0 . Then,
by Lemma 2.10 and Lemma 2.11,
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((\phi 0\tau_{-i/2}oR\otimes id)(W^{*})\xi|\eta)

=(\hat{\pi}(\phi 0\tau_{-i/2}oR)\xi|\eta)=(\hat{\pi}(\phi\circ R)H^{1/2}\xi|H^{-1/2}\eta)

= \lim_{narrow\infty}(\hat{\pi}(\phi_{n}\circ R)H^{1/2}\xi|H^{-1/2}\eta)

= \lim_{narrow\infty}(\hat{\pi}(\phi_{n}0\tau_{-i/2}oR)\xi|\eta)=\lim_{narrow\infty}(\hat{\pi}(\phi_{n}^{*})^{*}\xi|\eta)

=(\hat{\pi}(\phi^{*})^{*}\xi|\eta)=(\phi\otimes\omega_{\xi,\eta})(W)=((\phi\otimes id)(W)\xi|\eta) .

The density argument now proves that (\phi\circ\tau_{-i/2}oR\otimes id)(W^{*})=(\phi\otimes id)(W) .
\square

3. Bicrossproduct Hopf-von Neumann algebras

Throughout this section, we fix a matched pair (G_{1}, G_{2}, \alpha, \beta) with \mu_{i} a
left Haar measure of G_{i}(i=1,2) . Let us denote by \mathcal{M} the bicrossproduct
Hopf-von Neumann algebra L^{\infty}(G_{2})\lambda_{\alpha}G_{1} associated with this matched
pair. The coproduct and the unitary antipode (coinvolution) of \mathcal{M} will be
denoted respectively by \delta and R. By [M , Proposition 2.7], the bicocycle \zeta

defined in [M, Lemma 2.2] induces a one-parameter automorphism group
\{\tau_{t}\} on \mathcal{M} which commutes with \delta and R:(\tau_{t}\otimes\tau_{t})\circ\delta=\delta 0\tau_{t} , \tau_{t} oR=Ro\tau_{t}

(t\in R) . Finally, we denote by h the dual weight (on \mathcal{M} ) of the canonical
Haar measure, denoted by \mu_{2} again, on L^{\infty}(G_{2}) . Readers should note that
our notation for these objects is different from Majid’s in [M]; he uses \Gamma for
the coproduct, \kappa for the antipode, (_{t} for the one-parameter automorphims
group and \phi for the dual weight. Our goal of this section is to prove that
the system (\mathcal{M}, \delta, R, \tau, h) is a quasi Woronowicz algebra. For this purpose,
since we already know that this system satisfies conditions (1) and (2) in the
definition of a quasi Woronowicz algebra, we need to show that the weight
h enjoys the properties listed in (3) there.

Let \mathfrak{H}=L^{2}(G_{1})\otimes L^{2}(G_{2})=L^{2}(G_{1}\cross G_{2}) . Following the convention,
we denote by \pi_{\alpha} the embedding of L^{\infty}(G_{2}) into the crossed product \mathcal{M}=

L^{\infty}(G_{2})x_{\alpha}G_{1} . So, for any k\in L^{\infty}(G_{2}) , we have

\{\pi_{\alpha}(k)\xi\}(g, s)=k(\alpha_{g}(s))\xi(g, s) , (\xi\in \mathfrak{H}, g\in G_{1}, s\in G_{2}) .

We use the symbol \lambda^{(i)} for the left regular representation of G_{i}(i=1,2) ,
but, if there is no danger of confusion, we will suppress the superscript
“(i) ” in \lambda^{(i)} , and simply write \lambda . With the notation just introduced, the
von Neumann algebra \mathcal{M} is generated by \pi_{\alpha}(L^{\infty}(G_{2})) and \{\lambda_{g}\otimes 1 : g\in G_{1}\} .
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Let K(G_{1}, L^{\infty}(G_{2})) be the space of \sigma-strong* continuous functions from
G_{1} to L^{\infty}(G_{2}) with compact support. As in [H], this space can be turned
into an involutive algebra (see [H , Lemma 2.3 (a)]) with product

(X*Y)(g)= \int_{G_{1}}\alpha_{h}(X(gh))Y(h^{-1})dh , (X, Y\in K(G_{1}, L^{\infty}(G_{2}))) ,

and involution

X^{\mathfrak{p}}(g)=\triangle(g)^{-1}\alpha_{g}^{-1}(X(g^{-1})^{*}) , (X\in K(G_{1}, L^{\infty}(G_{2}))) .

The algebra K(G_{1}, L^{\infty}(G_{2})) has a natural*-representation \mu on \mathfrak{H} defined
by

\mu(X)=\int_{G_{1}}(\lambda_{g}\otimes 1)\pi_{\alpha}(X(g))dg (X\in K(G_{1}, L^{\infty}(G_{2}))) ,

whose image generates the crossed product \mathcal{M}=L^{\infty}(G_{2})x_{\alpha}G_{1} (see [H ,
Lemma 2.3 (e) ]) . Inside K(G_{1}, L^{\infty}(G_{2})) , there is a \#-subalgebra, which is,
under the notation of [H], B_{\mu_{2}}\cap B_{\mu_{2}}^{\Downarrow} , that induces a left Hilbert algebra in
\mathfrak{H} whose left von Neumann algebra is \mathcal{M} ( [H , Lemma 2.12]). In our special
situation, we are interestred more in K(G_{1}\cross G_{2}) , the space of compactly
supported continuous functions on G_{1}\cross G_{2} , rather than this subalgebra.
Observe that K(G_{1}\cross G_{2}) can be naturally considered as a subspace of
K(G_{1}, L^{\infty}(G_{2})) . In fact, it is easy to see that K(G_{1}\cross G_{2}) is a j}-subalgebra

of the \#-subalgebra mentioned above. Moreover, it can be shown without
difficulty that K(G_{1}\cross G_{2}) is dense in B_{\mu_{2}}\cap B_{\mu_{2}}^{\#} , as left Hilbert algebras,
with respect to the \#-graph norm. Hence K(G_{1}\cross G_{2})(\subseteq \mathfrak{H}=L^{2}(G_{1}\cross G_{2}))

induces a left Hilbert algebra \mathfrak{T} equivalent to the one induced by B_{\mu_{2}}\cap B_{\mu_{2}}^{\Downarrow} ,
where the multiplication*and the involution \# are given by

(X*Y)(g, s)= \int_{G_{1}}X(gh, \alpha_{h}^{-1}(s))Y(h^{-1}, s)dh ,

(X, Y\in \mathfrak{T}=K(G_{1}\cross G_{2}) , g\in G_{1} , s\in G_{2}) ;

X^{\#}(g, s)=\triangle(g)^{-1}\overline{X(g^{-1},\alpha_{g}(s))} ,

(X\in K(G_{1}\cross G_{2}), g\in G_{1}, s\in G_{2}) .

Then \mu(X) is just the left multiplication by X\tau In particular, the corre-
sponding left von Neumann algebra is again \mathcal{M} , and the weight associated
with it is the dual weight h . It then follows from Theorem 3.2 of [H] that
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the weight h satisfies

h( \mu(X)^{*}\mu(X))=\int_{G_{1}}\mu_{2}(X(g, \cdot)^{*}X(g, \cdot))dg

= \int_{G_{1}}(\int_{G_{2}}|X(g, s)|^{2}ds)dg ,

(X\in \mathfrak{T}=K(G_{1}\cross G_{2})) . (3.1)

Next we quickly review the construction of the one-parameter automor-
phism group \{\tau_{t}\} . For this, we first introduce a (possibly unbounded) linear
operator H on \mathfrak{H} by using the bicocycle \zeta as follows:

\{H\xi\}(g, s)=\zeta(g, s)\xi(g, s) , (\xi\in \mathfrak{D}(H)) ,

where \mathfrak{D}(H)=\{\xi\in \mathfrak{H} : \zeta\xi\in \mathfrak{H}\} . It is easily verified that H is a densely de-
fined, nonsingular, positive, self-adjoint linear operator. By [M , Proposition
2.7], the restriction \tau_{t} of the automorphism Ad H^{it} to \mathcal{M} is a coinvolutive
Hopf-von Neumann algebra automorphism.

Lemma 3.2 The one-parameter automorphism group \{\tau_{t}\} satisfifies
\tau_{t}(\pi_{\alpha}(k))=\pi_{\alpha}(k) , (k\in L^{\infty}(G_{2}), t\in R) ;

\tau_{t}(\lambda_{g}\otimes 1)=\pi_{\alpha}(\zeta(.q^{-1}, \cdot)^{-it})(\lambda_{g}\otimes 1) , (g\in G_{1}, t\in R) .

Moreover, \{\tau_{t}\} preserves the dual weight h:ho\tau_{t}=h(t\in R) .

Proof. It is only a matter of computation to verfiy the first two identities,
so we leave it to readers.

From the asserted two equalities, it follows that, for any X\in K(G_{1} ,
L^{\infty}(G_{2})) ,

\tau_{t}(\mu(X))=\int_{G_{1}}(\lambda_{g}\otimes 1)\pi_{\alpha}(\overline{\tau}_{t}(X)(g))dg , (3.2.1)

where \overline{\tau}_{t}(X)\in K(G_{1}, L^{\infty}(G_{2})) is defined by \overline{\tau}_{t}(X)(g)=\alpha_{g}^{-1}(\zeta(g^{-1}, \cdot)^{-it})

X(g)(g\in G_{1}) . If X, Y\in K(G_{1}\cross G_{2}) , then we have \overline{\tau}_{t}(X)(g, s)\overline{\overline{\tau}}_{t}(Y)(g, s)=

X(g, s)\overline{Y(g,s)} . From this and (3.1), we find that h\circ\tau_{t} equals h on the \sigma-

weakly dense*-subalgebra \mu(K(G_{1}\cross G_{2}))^{*}\mu(K(G_{1}\cross G_{2})) contained in \mathfrak{m}_{h} .
In the meantime, by [H , Theorem 3.2] (or by [M , Lemma 2.8]), one has
\sigma_{t}^{h}(\mu(X))=\mu(\overline{\sigma}_{t}^{h}(X)) for any X\in K(G_{1}, L^{\infty}(G_{2})) , where

\overline{\sigma}_{t}^{h}(X)(g)=\triangle(g)^{it}\chi(g, \cdot)^{it}X(g) , (g\in G_{1}) . (3.2.2)
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Hence it results that (i) the *-subalgebra \mu(K(G_{1}\cross G_{2}))^{*}\mu(K(G_{1}\cross G_{2}))

is left stable under the modular automorphism group \sigma^{h} ; (ii) \overline{\tau}_{t} and \overline{\sigma}_{s}^{h}

commute, which in turn implies that \tau_{t} commutes with \sigma_{s}^{h} . Consequently,
h\circ\tau_{t} is \sigma^{h}-invariant. Therefore, by [PT , Proposition 5.9], it follows that
ho\tau_{t}=h . \square

Lemma 3.3 The dual weight h satisfifies
(\tau_{t}\otimes\sigma_{t}^{h})\circ\delta=\delta 0\sigma_{t}^{h} . (t\in R) .

Proof. By [M , Lemma 2.9], the one-parameter automorphism group \{\tau_{t}\}

enjoys the following property:

(id\otimes\tau_{-t}0\sigma_{t}^{h})0\delta=\delta 0\tau_{-t}0\sigma_{t}^{h} , (t\in R) .

Since \tau_{t} “commutes” with the coproduct \delta , the equality above is equivalent
to the asserted identity. \square

Lemma 3.4 The dual weight h is quasi left invariant.

Proof. By the proof of [M, Lemma 2.10], we see that, for any x , y\in
\mu(K(G_{1}\cross G_{2})) ,

(h\otimes h)((x^{*}\otimes 1)\delta(y^{*}y)(x\otimes 1))=h(x^{*}x)h(y^{*}y) .

It follows from this that \delta(y)(x\otimes 1)\in \mathfrak{n}_{h\otimes h} , and that the Kac-Takesaki
operator W_{h} in the sense of [MN] given by

W_{h}(\Lambda_{h}(x)\otimes\Lambda_{h}(y))=\Lambda_{h\otimes h}(\delta(y)(x\otimes 1))

(x, y\in\mu(K(G_{1}\cross G_{2})))

is precisely the unitary W introduced in [M , Theorem 2.6] to define the
coproduct \delta . Hence, if \zeta_{1} , \zeta_{2}\in \mathfrak{T}’ and x , y\in\mu(K(G_{1}\cross G_{2})) , then

(\pi_{r}(\zeta_{1})\otimes\pi_{r}(\zeta_{2}))W_{h}(\Lambda_{h}(x)\otimes\Lambda_{h}(y))=\delta(y)(x\otimes 1)(\zeta_{1}\otimes\zeta_{2}) ,

(3.4.1)

where \pi_{r} in general denotes the right multiplication associated with a left
Hilbert algebra. Let b\in \mathfrak{n}_{h} and set \xi=\Lambda_{h}(b) . The vector \xi is then left
bounded with respect to \mathfrak{T} . So, by [HI, Theorem 5], there exists a sequence
\{y_{n}\} in \mu(K(G_{1}\otimes G_{2})) such that ||y_{n}||\leq||b|| , \lim_{narrow\infty}||\Lambda_{h}(y_{n})-\xi||=0 .
In particular, we have s-\lim_{narrow\infty}y_{n}=b . Thus, if (_{1}, (_{2}\in \mathfrak{T}’ and x\in
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\mu(K(G_{1}\cross G_{2})) , then, by (3.4.1),

(\pi_{r}(\zeta_{1})\otimes\pi_{r}(\zeta_{2}))W_{h}(\Lambda_{h}(x)\otimes\Lambda_{h}(b))

= \lim_{narrow\infty}(\pi_{r}(\zeta_{1})\otimes\pi_{r}(\zeta_{2}))W_{h}(\Lambda_{h}(x)\otimes\Lambda_{h}(y_{n}))

= \lim_{narrow\infty}\delta(y_{n})(x\otimes 1)(\zeta_{1}\otimes(_{2})=\delta(b)(x\otimes 1)(\zeta_{1}\otimes\zeta_{2}) .

By a similar argument as above, we may show that

(\pi_{r}(\zeta_{1})\otimes\pi_{r}(\zeta_{2}))W_{h}(\Lambda_{h}(a)\otimes\Lambda_{h}(b))

=\delta(b)(a\otimes 1)(\zeta_{1}\otimes(_{2}), (a, b\in \mathfrak{n}_{h}, \zeta_{1}, \zeta_{2}\in \mathfrak{T}’) .

This implies that W_{h}(\Lambda_{h}(a)\otimes\Lambda_{h}(b)) is a left bounded vector associated
with the left Hilbert algebra \mathfrak{T}\otimes \mathfrak{T} , and that (\mu\otimes\mu)(W_{h}(\Lambda_{h}(a)\otimes\Lambda_{h}(b)))=

\delta(b)(a\otimes 1) . In particular, \delta(b)(a\otimes 1) belongs to \mathfrak{n}_{h\otimes h} and

(\pi_{r}(\zeta_{1})\otimes\pi_{r}(\zeta_{2}))W_{h}(\Lambda_{h}(a)\otimes\Lambda_{h}(b))

=(\pi_{r}(\zeta_{1})\otimes\pi_{r}((_{2}))\Lambda_{h\otimes h}(\delta(b)(a\otimes 1)) .

It is now easy to see that

W_{h}(\Lambda_{h}(a)\otimes\Lambda_{h}(b))=\Lambda_{h\otimes h}(\delta(b)(a\otimes 1)) .

Since W_{h} is an isometry, it results that

(h\otimes h)((a^{*}\otimes 1)\delta(b^{*}b)(a\otimes 1))=h(a^{*}a)h(b^{*}b) , (a, b\in \mathfrak{n}_{h}) .

By the same argument as in the proof of [S , Lemme II.8], we have

(id\otimes h)\circ\delta(a)=h(a) 1

for any a\in \mathfrak{m}_{h}^{+} . This proves the lemma. \square

Lemma 3.5 The dual weight h is strongly left invariant.

Proof. By the second claimed equality of [M , Lemma 2.9], we have

(W_{h}(\hat{J}\delta\otimes H^{-1/2}\eta)|\hat{J}\gamma\otimes H^{1/2}\xi)=(\gamma\otimes\eta|W_{h}(\delta\otimes\xi))

for any \delta , \gamma , \xi , \eta\in \mathfrak{T}=K(G_{1}\cross G_{2})\subseteq \mathfrak{H} , where \hat{J} is the unitary involution
on \mathcal{F}) introduced in [M, Theorem 2.6]. Since \mathfrak{T} is dense in \mathfrak{H} , this equality is
still valid even if both \delta and \gamma are arbitrary vectors in \mathfrak{H} . So let us replace
\delta and \gamma in the equation by H^{-1/2}\delta and H^{1/2}\gamma(\delta, \gamma\in \mathfrak{T}) , respectively.
Moreove, since the bicocyle \zeta>0 is continuous, the vectors \xi , \eta can be
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respectively replaced by \zeta^{-1/2}\xi and \zeta^{1/2}\eta(\xi, \eta\in \mathfrak{T}) . Consequently, we get

(W_{h}(\hat{J}H^{-1/2}\delta\otimes\eta)|\hat{J}H^{1/2}\gamma\otimes\xi)

=(\gamma\otimes\eta|W_{h}(\delta\otimes\xi)) . (\delta, \gamma, \xi, \eta\in \mathfrak{T})

Meanwhile, it is plain to see that the subspace \mathfrak{T} is a core for both H^{1/2}

and H^{-1/2} . From this, together with density of \mathfrak{T} in \mathfrak{H} , we finally obtain

(W_{h}(\hat{J}H^{-1/2}(_{1}\otimes\xi)|\hat{J}H^{1/2}\zeta_{2}\otimes\eta)=(\zeta_{2}\otimes\xi|W_{h}(\zeta_{1}\otimes\eta))

for any \zeta_{1}\in \mathfrak{D}(H^{-1/2}) , \zeta_{2}\in \mathfrak{D}(H^{1/2}) and \xi , \eta\in \mathfrak{H} . From Proposition 2.12
and the fact that \hat{J} implements the coinvolution R, it follows that the weight
h is strongly left invariant. \square

Lemma 3.6 The weight h is \sigma^{h\circ R} -invariant, i.e. , we have

h\circ\sigma_{t}^{hoR}=h (t\in R) .

Proof. First, as shown in the proof of [M , Theorem 2.6], we have

R(\mu(X))=\mu(\overline{R}(X)) (X\in K(G_{1}\cross G_{2})) ,

where \overline{R}(X)\in K(G_{1}\cross G_{2}) is defined as follows:

\overline{R}(X)(g, s):=\frac{\Psi(s,g)}{\triangle(\beta_{s}(g))}\zeta(g, s)^{-1/2}X(\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1}) .

Let X be in K(G_{1}\cross G_{2}) . Using the identity above and (3.2.2), we get

\overline{R}(\overline{\sigma}_{-t}^{h}(\overline{R}(X)))(g, s)

=\chi(\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1})^{-it}\triangle(\beta_{s}(g))\zeta(g, s)^{-1/2}

\cross\frac{\Psi(s,g)}{\triangle(\beta_{s}(g))}\overline{R}(X)(\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1}) .

Meanwhile, we have

\overline{R}(X)(\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1})

= \frac{\Psi(\alpha_{g}(s)^{-1},\beta_{s}(g)^{-1})}{\triangle(\beta_{\alpha_{g}(s)^{-1}}(\beta_{s}(g)^{-1}))}\zeta(\beta_{s}(g)^{-1}, \alpha_{s}(g)^{-1})^{-1/2}

\cross X(\beta_{\alpha_{g}(s)^{-1}}(\beta_{s}(g)^{-1})^{-1}, \alpha_{\beta_{s}(g)^{-1}}(\alpha_{g}(s)^{-1})^{-1}) .

Thanks to the matched pair condition (MP) and [M , Lemma 2.2], one finds

\beta_{\alpha_{g}(s)^{-1}}(\beta_{s}(g)^{-1})^{-1}=g , \alpha_{\beta_{s}(g)^{-1}}(\alpha_{g}(s)^{-1})^{-1}=s
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\Psi(\alpha_{g}(s)^{-1}, \beta_{s}(g)^{-1})=\frac{\triangle(\beta_{s}(g))}{\triangle(g)}\Psi(s^{-1}, e) ,

\chi(\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1})=\frac{\triangle(\alpha_{g}(s))}{\triangle(s)}\chi(g^{-1}, e) ,

((\beta_{s}(g)^{-1}, \alpha_{g}(s)^{-1})=((g, s) .

These identities yield

\overline{R}(\overline{\sigma}_{-t}^{h}(\overline{R}(X)))(g, s)=[\frac{\triangle(\alpha_{g}(s))}{\triangle(s)}]-it\chi(g, e)^{it}\triangle(\beta_{s}(g))^{it}X(g, s) .

So, if, for each t\in R , we define an element \overline{\sigma}_{t}^{hoR}(X)\in K(G_{1}\cross G_{2}) by

\overline{\sigma}_{t}^{hoR}(X)(g, s):=[\frac{\triangle(\alpha_{g}(s))}{\triangle(s)}]-it\chi(g, e)^{it}\triangle(\beta_{s}(g))^{it}X(g, s) ,

then, since \sigma_{t}^{h\circ R}=Ro\sigma_{-t}^{h} oR, we have

\sigma_{t}^{hoR}(\mu(X))=\mu(\overline{\sigma}_{t}^{hoR}(X)) . (3.6.1)

Let r, t\in R . From (3.2.2) and (3.6.1), it can be easily verified that

\overline{\sigma}_{-t}^{hoR}(\overline{\sigma}_{r}^{h}(\overline{\sigma}_{t}^{hoR}(X)))=\overline{\sigma}_{r}^{h}(X) .

From this, it follows that \sigma_{-t}^{hoR}\circ\sigma_{r}^{h}\circ\sigma_{t}^{hoR}(\mu(X))=\sigma_{r}^{h}(\mu(X)) , which implies

\sigma_{t}^{hoR}\circ\sigma_{r}^{h}=\sigma_{r}^{h}\circ\sigma_{t}^{h\circ R} (r, t \in R) . (3.6.2)

Now let us take an arbitrary r\in R and fix it. Set \psi=h\circ\sigma_{r}^{h\circ R} . By (3.6.2),
it is obvious that \sigma^{\psi}=\sigma^{h} . Moreover, for any X, Y\in K(G_{1}\cross G_{2}) , one finds

\psi(\mu(Y)^{*}\mu(X))

=h(\mu(\overline{\sigma}_{r}^{hoR}(Y))^{*}\mu(\overline{\sigma}_{r}^{hoR}(X))) by (10)

= \int_{G_{1}}(\int_{G_{2}}\overline{\sigma}_{r}^{hoR}(X)(g, s)\overline{\overline{\sigma}_{r}^{hoR}(Y)(g,s)}ds)dg by (3.1)

= \int_{G_{1}}(\int_{G_{2}}X(g, s)\overline{Y(g,s)}ds)dg=h(\mu(Y)^{*}\mu(X)) .

This shows that \psi equals h on the \sigma-weakly dense*-subalgebra \mu(K(G_{1}\cross

G_{2}))^{*}\mu(K(G_{1}\cross G_{2})) of \mathfrak{m}_{h} , stable under the modular automorphism group
\sigma^{h} . Therefore, by [PT , Proposition 5.9], we conclude that \psi=h . \square
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We summarize what we have established so far in the theorem that
follows.

Theorem 3.7 Suppose that (G_{1}, G_{2}, \alpha, \beta) is a matched pair. Then the
bicrossproduct Hopf-von Neumann algebras L^{\infty}(G_{2})x_{\alpha}G_{1} and L^{\infty}(G_{1})x_{\beta}

G_{2} associated with it are quasi Woronowicz algebras. Moreover, these quasi
Woronowicz algebras are dual to each other.

Proof. From Lemmas 3.2, 3.4, 3.5, 3.6, it follows that (L^{\infty}(G_{2})x_{\alpha}

G_{1} , \delta , R , \tau , h) is a quasi Woronowicz algebra. The discussion in the case
of L^{\infty}(G_{1})\lambda_{\beta}G_{2} goes parallel to the one made so far in this section. The
assertion that these Woronowicz algebras are dual to each other can be ver-
ified from the argument given in Section 3 of [M]. The details are left to
readers. \square

Remark. If the quasi Woronowicz algebra \mathcal{M}=L^{\infty}(G_{2})x_{\alpha}G_{1} is compact,
i.e., the Haar measure h is bounded, then, since h is the dual weight of the
Haar measure of G_{2} , it entails that G_{1} is discrete, and that G_{2} is compact.
From this, it follows that the matched pair is modular in the sense of [M].
Thus the quasi Woronowicz algebra \mathcal{M} becomes a compact Kac algebra.

Appendix –The Radon Nikodym derivative (D(h\circ R):Dh)_{t}

The purpose of this appendix is to find the formula for the Radon
Nikodym derivative (D(h\circ R) : Dh)_{t} for the quasi Woronowicz algebra
(L^{\infty}(G_{2})n_{\alpha}G_{1}, \delta, R, \tau, h) associated with a matched pair (G_{1}, G_{2}, \alpha, \beta) .
This, together with the results in the preceding section, more or less com-
pletes listing all the relevant information on the bicrossproduct quasi
Woronowicz algebra arising from a matched pair of groups. To give an ex-
plicit description of this Radon Nikodym derivative, we need some prepara-
tory results. In the following discussion, we retain the notation established
so far.

Let us introduce a one-parameter unitary group V(t) on \mathfrak{H} by

\{V(t)\xi\}(g, s):=[\frac{\triangle(s)}{\triangle(\alpha_{g}(s))} \frac{\triangle(\beta_{s}(g))}{\triangle(g)}]^{it}\triangle(s)^{-it}\Psi(s, g)^{-it}\xi(g, s)

(\xi\in \mathfrak{H}, g\in G_{1}, s\in G_{2}) .
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With Q a nonsingular positive self-adjoint operator on \mathfrak{H} given by

\{Q\xi\}(g, s):=[\frac{\triangle(s)}{\triangle(\alpha_{g}(s))} \frac{\triangle(\beta_{s}(g))}{\triangle(g)}]\triangle(s)^{-1}\Psi(s, g)^{-1}\xi(g, s)

(\xi\in \mathfrak{D}(Q)) ,

where \mathfrak{D}(Q)=\{\xi\in \mathfrak{H} : (g, s) \mapsto[\frac{\triangle(s)}{\triangle(\alpha_{g}(s))} \frac{\triangle(\beta_{s}(g))}{\triangle(g)}]\triangle(s)^{-1}\Psi(s, g)^{-1}\xi(g, s)

is in \mathfrak{H} }, it is easy to see that V(t)=Q^{it} for any t\in R .
We start with the next lemma.

Lemma A.I For each t\in R , V(t) belongs to \mathcal{M} .

Proof. Let u(\cdot) be the unitary representation of G_{1} on L^{2}(G_{2}) defined in
[M , Proposition 2.4]. This is a representation that implements the action \alpha

of G_{1} on L^{\infty}(G_{2}) . Next let \rho(\cdot) stand for the right regular representation
of G_{1} . Then, by the commutation theorem for crossed products (see [H ,
Theorem 2.1] for example), we know that \mathcal{M}’ is generated by C\otimes L^{\infty}(G_{2})

and \{\rho(g)\otimes u(g) : g\in G_{1}\}’ . It is easily checked that [V(t), 1\otimes k]=0 for
any k\in L^{\infty}(G_{2}) . Thus it remains to show that [V(t), \rho(g)\otimes u(g)]=0 for
all g\in G . Let \xi\in \mathfrak{H} . Then

\{V(t)(\rho(g)\otimes u(g))\xi\}(h, s)

=[ \frac{\triangle(s)}{\triangle(\alpha_{h}(s))} \frac{\triangle(\beta_{s}(h))}{\triangle(h)}]^{it}

\cross\triangle(s)^{-it}\Psi(s, h)^{-it}\triangle(g)^{1/2}\chi(g^{-1}, s)^{1/2}\xi(hg, \alpha_{g^{-1}}(s)) .

In the meantime, we have

\{(\rho(g)\otimes u(g))V(t)\xi\}(h, s)

= \triangle(g)^{1/2}\chi(g^{-1}, s)^{1/2}[\frac{\triangle(\alpha_{g^{-1}}(s))}{\triangle(\alpha_{hg}(\alpha_{g^{-1}}(s)))} \frac{\triangle(\beta_{\alpha_{g^{-1}}(s)}(hg))}{\triangle(hg)}]

it

\cross\triangle(\alpha_{g^{-1}}(s))^{-it}\Psi(\alpha_{g^{-1}}(s), hg)^{-it}\xi(hg, \alpha_{g^{-1}}(s)) .

From condition (MP) and [M, Lemma 2.2],

\beta_{\alpha_{g^{-1}}(s)}(hg)=\beta_{s}(h)\beta_{s}(g^{-1})^{-1} .

\Psi(\alpha_{g^{-1}}(s), hg)=\frac{\triangle(g^{-1})}{\triangle(\beta_{s}(g^{-1}))}\Psi(s, h) .



W^{*} -quantum groups 97

Consequently, one obtains

\{(\rho(g)\otimes u(g))V(t)\xi\}(h, s)

=[ \frac{\triangle(s)}{\triangle(\alpha_{h}(s))} \frac{\triangle(\beta_{s}(h))}{\triangle(h)}]^{it}\triangle(s)^{-it}\Psi(s, h)^{-it}

\cross\triangle(g)^{1/2}\chi(g^{-1}, s)^{1/2}\xi(hg, \alpha_{g^{-1}}(s))

=\{V(t)(\rho(g)\otimes u(g))\xi\}(h, s) .

This completes the proof. \square

The next lemma follows from a straightforward calculation, using the
identity on the modular operator \triangle_{h} of the weight h deduced in [M , Lemma
2.8]. Hence we leave the verification to readers.

Lemma A.2 For each t\in R , the unitary V(t) belongs to the centralizer
\mathcal{M}_{h} of the weight h .

Lemma A.3 The one-parameter automorphism group Ad V(t) on \mathcal{M} sat-
isfifies

Ad V(t)(\pi_{\alpha}(k))=\pi_{\alpha}(k) , (k\in L^{\infty}(G_{2})) ;

Ad V(t)(\lambda_{g}\otimes 1)=\pi_{\alpha}(F_{t,g})(\lambda_{g}\otimes 1) , (g\in G_{1}, t\in R) ,

where, for each t\in R and g\in G_{1} , F_{t,g} is a function in L^{\infty}(G_{2}) given by

F_{t,g}(s):=[ \frac{\triangle(s)}{\triangle(\alpha_{h^{-1}}(s))} \frac{\triangle(\beta_{s}(h^{-1}))}{\triangle(h^{-1})}]-it\zeta(h^{-1}, s)^{it} (s\in G_{2}) .

Proof The first identity is trivial. For the second identity, let h\in G_{1} .
We first find from the matched pair condition (MP) that, for any \xi\in \mathfrak{H} ,

\{V(t)(\lambda_{h}\otimes 1)V(-t)\xi\}(g, s)

=[ \frac{\triangle(\alpha_{g}(s))}{\triangle(\alpha_{h^{-1}g}(s))} \frac{\triangle(\beta_{\alpha_{g}(s)}(h^{-1}))}{\triangle(h^{-1})}]-it

\cross\Psi(s, g)^{-it}\Psi(s, h^{-1}g)^{it}\xi(h^{-1}g, s) .

By [M , Lemma 2.2], we have

\Psi(s, g)=\frac{\triangle(\beta_{s}(g))}{\triangle(g)}\Psi(\alpha_{g}(s), e) ,
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\Psi(s, h^{-1}g)=\frac{\triangle(\beta_{s}(g))}{\triangle(g)}\Psi(\alpha_{g}(s), h^{-1}) .

From this, it follows that, with F_{t,h} the function defined in the assertion of
this lemma, we have

\{V(t)(\lambda_{h}\otimes 1)V(-t)\xi\}(g, s)=F_{t,h}(\alpha_{g}(s))\xi(h^{-1}g, s)

=\{\pi_{\alpha}(F_{t,h})(\lambda_{h}\otimes 1)\xi\}(g, s) .

This proves the lemma. \square

Lemma A.4 We have

Ad V(t)\circ\sigma_{t}^{h}=\sigma_{t}^{h\circ R}

for all t\in R .

Proof. Let X be in K(G_{1}\cross G_{2}) . We use the notation introduced in the
preceding lemma. By (3.2.2) and Lemma A.3, we have

Ad V(t)\circ\sigma_{t}^{h}(\mu(X))

=AdV(t)(\mu(\overline{\sigma}_{t}^{h}(X)))

= \int_{G_{1}} Ad V(t)(\lambda_{g}\otimes 1)\pi_{\alpha}(\overline{\sigma}_{t}^{h}(X)(g))dg

= \int_{G_{1}}\triangle(g)^{it}\chi(g, \cdot)\pi_{\alpha}(F_{t,g})(\lambda_{g}\otimes 1)\pi_{\alpha}(X(g))dg

= \int_{G_{1}}\triangle(g)^{it}\chi(g, \cdot)^{it}(\lambda_{g}\otimes 1)\pi_{\alpha}(\alpha_{g^{-1}}(F_{t,g})X(g))dg .

As a (bounded) continuous function on G_{2} , one has, for any s\in G_{2} ,

\{\triangle(g)^{it}\chi(g, \cdot)^{it}\alpha_{g^{-1}}(F_{t,g})X(g)\}(s)

=\triangle(g)^{it}\chi(g, s)^{it}F_{t,g}(\alpha_{g}(s))X(g, s)

= \triangle(g)^{it}\chi(g, s)^{it}[\frac{\triangle(\alpha_{g}(s))}{\triangle(\alpha_{g^{-1}}(\alpha_{g}(s)))}
\frac{\triangle(\beta_{\alpha_{g}(s)}(g^{-1}))}{\triangle(g^{-1})}]-it

\cross\zeta(g^{-1}, \alpha_{g}(s))^{it}X(g, s)

=[ \frac{\triangle(\alpha_{g}(s))}{\triangle(s)}]-it\triangle(\beta_{s}(g))^{it}\chi(g, s)^{it}\zeta(g^{-1}, \alpha_{g}(s))^{it}X(g, s)

=[ \frac{\triangle(\alpha_{g}(s))}{\triangle(s)}]-it\triangle(\beta_{s}(g))^{it}\chi(g, e)^{it}X(g, s) .
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This shows that

\{\triangle(g)^{it}\chi(g, \cdot)^{it}\alpha_{g^{-1}}(F_{t,g})X(g)\}(s)=\overline{\sigma}_{t}^{hoR}(X)(g, s) .

From this, it follows that Ad V(t)\circ\sigma_{t}^{h}(\mu(X))=\sigma_{t}^{hoR}(\mu(X)) . \square

Proposition A.5 The Radon Nikodym derivative (D(h\circ R) : Dh)_{t} of
hoR with respect to h is the one-parameter unitary group V(t)=Q^{it}

defifined above. In particular, we have h\circ R=h(Q\cdot) .

Proof It suffices by Lemma A.2 to prove the last assertion.
Note first that, by Lemma A.2, the operator Q is affiliated with the

centralizer \mathcal{M}_{h} . Thus, with the notation in [PT], it makes sense to consider
the weight h(Q\cdot) . Let \psi=h(Q\cdot) . From Lemma A.4, we have \sigma^{\psi}=\sigma^{h\circ R} .
By using condition (MP) and the identity on \overline{R} mentioned in the proof of
Lemma 3.6, it can be verified that

h oR(\mu(Y)^{*}\mu(X))=\int_{G_{1}}\int_{G_{2}}\triangle(s)^{-1}\Psi(s, e)^{-1}X(g, s)\overline{Y(g,s)}dsdg ,

(X, Y\in K(G_{1}\cross G_{2})) .

In the meantime, for any \epsilon>0 , put Q_{\epsilon}:=Q(1+\epsilon Q)^{-1} , which belongs to
\mathcal{M}_{h} , due to Lemma A.2. Let X\in K(G_{1}\cross G_{2}) . Note that, as an vector in
\mathfrak{H} , X is in \mathfrak{D}(Q) . By definition, we have

\psi(\mu(X)^{*}\mu(X))=\lim_{\epsilon\downarrow 0}h(\mu(X)^{*}\mu(X)Q_{\epsilon})

= \lim_{\epsilon\downarrow 0}(\Lambda_{h}(\mu(X)Q_{\epsilon})|\Lambda_{h}(\mu(X)))

= \lim_{\epsilon\downarrow 0}(J_{h}Q_{\epsilon}J_{h}\Lambda_{h}(\mu(X))|\Lambda_{h}(\mu(X)))

= \lim_{\epsilon\downarrow 0}(J_{h}Q_{\epsilon}J_{h}X|X)

=(J_{h}QJ_{h}X|X) ,

where J_{h} is the modular conjugation of the weight h . Since

\{J_{h}\xi\}(g, s)=\triangle(g)^{-1/2}\chi(g, s)\overline{\xi(g^{-1},\alpha_{g}(s))} , (\xi\in \mathfrak{H}) ,

we find from a direct computation that

(J_{h}QJ_{h}X|X)= \int_{G_{1}}\int_{G_{2}}\triangle(s)^{-1}\Psi(s, e)^{-1}|X(g, s)|^{2}dsdg .
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Hence, by the polarization trick, we obtain

hoR(\mu(Y)^{*}\mu(X))=\psi(\mu(Y)^{*}\mu(X)) .

It follows that \psi equals hoR on the \sigma-weakly dense*-subalgebra \mu(K(G_{1}\cross

G_{2}))^{*}\mu(K(G_{1}\cross G_{2})) of \mathfrak{m}_{h\circ R} , invariant under \sigma^{h\circ R} . Therefore, by [PT ,
Proposition 5.9], we conclude that \psi coincides with h\circ R. \square
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