Higher derivatives of holomorphic function with positive real part

Shinji Yamashita

(Received September 9, 1998)

Abstract. Upper estimates of $|f^{(n)}(z)|/\operatorname{Re} f(z)$, $n \geq 2$, of f holomorphic and $\operatorname{Re} f > 0$ in a plane domain are proposed; the equality conditions are considered in detail.

Key words: function with positive real part, Schwarz-Pick's lemma, hyperbolic domain, Poincaré density, radius of univalency.

1. Introduction

Let $\mathcal{P}(\Omega)$ be the family of functions f holomorphic with positive real part $\operatorname{Re} f > 0$ in a domain Ω in the complex plane $\mathbf{C} = \{z; |z| < +\infty\}$. We shall prove some sharp upper estimates of the quotient $|f^{(n)}(z)|/\operatorname{Re} f(z)$ for $f \in \mathcal{P}(\Omega)$ at $z \in \Omega$ for $n \geq 2$, together with the detailed equality conditions.

The specified case n=1 and $\Omega=D\equiv\{z;\,|z|<1\}$ is well known. For $f\in\mathcal{P}(D),$

$$\frac{|f'(z)|}{\text{Re }f(z)} \le \frac{2}{1 - |z|^2} \tag{1.1}$$

at each $z \in D$. The extremal functions are essentially $\ell_{\alpha}(z) = (1 + \alpha z)/(1 - \alpha z)$, where $\alpha \in \partial D \equiv \{z; |z| = 1\}$. More precisely, if the equality holds in (1.1) at a point $z \in D$, then

$$f(w) \equiv \frac{1 - \overline{a}w + \beta(w - a)}{1 - \overline{a}w - \beta(w - a)},$$

where $\beta \in \partial D$ and $a \in D$, so that the equality holds in (1.1) everywhere in D; one can prove that $f = A\ell_{\gamma} + iB$, where

$$A = \frac{1 - |a|^2}{|1 + a\beta|^2} > 0, \quad B = \frac{-2 \operatorname{Im}(a\beta)}{|1 + a\beta|^2}, \quad \text{and} \quad \gamma = \frac{\beta + \overline{a}}{1 + a\beta} \in \partial D.$$

See Section 4 for the details on (1.1).

We begin with the case $\Omega = D$ and $n \geq 2$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C99; Secondary 31A05.

Theorem 1 For $f \in \mathcal{P}(D)$ the estimate

$$\frac{|f^{(n)}(z)|}{\operatorname{Re} f(z)} \le \frac{\ell_1^{(n)}(|z|)}{\operatorname{Re} \ell_1(|z|)} = \frac{n!2}{(1-|z|^2)(1-|z|)^{n-1}}$$
(1.2)

holds at each point $z \in D$ and for all $n \geq 2$. If the equality holds in (1.2) at a point $z \in D$ and for an $n \geq 2$, then $f = A\ell_{\alpha} + iB$, for an $\alpha \in \partial D$, and for A > 0 and B both real constants. Conversely, if $f = A\ell_{\alpha} + iB$, $\alpha \in \partial D$; A > 0 and B both real constants, then the equality holds in (1.2) at each point of the radius

$$\mathcal{R}(\alpha) = \{ \overline{\alpha}t; 0 \le t < 1 \}$$

and for each $n \geq 2$, whereas the inequality (1.2) is strict at each point of $D \setminus \mathcal{R}(\alpha)$ and for each $n \geq 2$.

In Section 5 we shall prove Theorem 2 which is proposed in Section 4 and is a version of Theorem 1 for a hyperbolic domain Ω again with the detailed equality conditions.

2. Proof of Theorem 1

We begin with a lemma.

Lemma 1 Let f be holomorphic in D, let $0 < \rho \le 1$, and let $A \ne 0$ and B both be complex constants. Set for a fixed $z \in D$,

$$\frac{f\left(\frac{\rho w + z}{1 + \overline{z}\rho w}\right) - B}{A} = \sum_{k=0}^{\infty} b_k w^k, \quad w \in D.$$
 (2.1)

Then for each $n \geq 1$,

$$\frac{f^{(n)}(z)}{n!} = \frac{A}{\rho^n (1 - |z|^2)^n} \sum_{k=0}^{n-1} {n-1 \choose k} (\overline{z}\rho)^{n-1-k} b_{k+1}.$$
 (2.2)

Proof. Let g(w) be the left-hand side function in (2.1) of the variable $w \in D$. Set

$$\zeta = \frac{\rho w + z}{1 + \overline{z}\rho w}, \quad w \in D, \quad \text{so that} \quad d\zeta = \frac{\rho(1 - |z|^2)}{(1 + \overline{z}\rho w)^2} dw.$$

Observe that

$$\frac{(1+\overline{z}\rho w)^{n-1}}{w^{n+1}} = \sum_{k=0}^{n-1} {n-1 \choose k} (\overline{z}\rho)^{n-1-k} w^{-k-2} \quad \text{for } w \neq 0.$$

Then

$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2\pi i} \int_{\left|\frac{\zeta-z}{1-\overline{z}\zeta}\right| = \frac{\rho}{2}} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta$$

$$= \frac{A}{\rho^n (1-|z|^2)^n} \sum_{k=0}^{n-1} \binom{n-1}{k} (\overline{z}\rho)^{n-1-k} \frac{1}{2\pi i} \int_{|w| = \frac{1}{2}} \frac{g(w)}{w^{k+2}} dw.$$

This is (2.2).

Let \mathcal{P}_o be the family of functions $f \in \mathcal{P}(D)$ with f(0) = 1. A typical member of \mathcal{P}_o is ℓ_{α} , $\alpha \in \partial D$. For

$$f(z) = 1 + \sum_{k=1}^{\infty} a_k z^k$$

of \mathcal{P}_o we have the estimate $|a_k| \leq 2$ for all $k \geq 1$ and furthermore, $|a_1| = 2$ if and only if $f = \ell_\alpha$ for an $\alpha \in \partial D$. See [G, p. 80]; the estimate $|a_1| \leq 2$ follows from the Schwarz inequality: $|g'(0)| \leq 1$ for g = (f-1)/(f+1); the equality holds if and only if $g(z) \equiv \alpha z$ for an $\alpha \in \partial D$ or $f = \ell_\alpha$.

Simple computation shows that

$$\ell_{\alpha} \left(\frac{w - b}{1 - \bar{b}w} \right) \equiv \frac{1 - |b|}{1 + |b|} \, \ell_{\alpha}(w) \tag{2.3}$$

in D for all $\alpha \in \partial D$ and all $b \in \mathcal{R}(\alpha)$.

Proof of Theorem 1. Fix $z \in D$ and let

$$g(w) = \frac{f\left(\frac{w+z}{1+\overline{z}w}\right) - i\operatorname{Im} f(z)}{\operatorname{Re} f(z)} = 1 + \sum_{k=1}^{\infty} b_k w^k.$$
 (2.4)

We apply Lemma 1 to g with $\rho = 1$, A = Re f(z), and B = i Im f(z). Then

$$\frac{f^{(n)}(z)}{n!} = \frac{\operatorname{Re} f(z)}{(1-|z|^2)^n} \sum_{k=0}^{n-1} {n-1 \choose k} \overline{z}^{n-1-k} b_{k+1}, \tag{2.5}$$

which, together with $g \in \mathcal{P}_o$, yields that

$$\frac{|f^{(n)}(z)|}{n!} \le \frac{2(1+|z|)^{n-1}\operatorname{Re} f(z)}{(1-|z|^2)^n};\tag{2.6}$$

this is equivalent to (1.2).

Suppose that the equality holds in (1.2) or in (2.6) at z and for an $n \geq 2$. Then $|b_{k+1}| = 2$ for $0 \leq k \leq n-1$, so that $|b_1| = 2$. Hence $g = \ell_{\alpha}$ for an $\alpha \in \partial D$. Since $b_{k+1} = 2\alpha^{k+1}$ for all $k \geq 0$, it follows that

$$\frac{f^{(m)}(z)}{m!} = \frac{2\alpha(\overline{z} + \alpha)^{m-1} \operatorname{Re} f(z)}{(1 - |z|^2)^m}$$
 (2.7)

for all $m \geq 1$. Since the equality holds in (2.6) we then have

$$|\overline{z} + \alpha|^{n-1} = (1 + |z|)^{n-1},$$

so that $z \in \mathcal{R}(\alpha)$. It then follows from (2.3) for b = z that

$$f(w) = \left(\operatorname{Re} f(z)\right) \ell_{\alpha} \left(\frac{w-z}{1-\overline{z}w}\right) + i \operatorname{Im} f(z) = A\ell_{\alpha}(w) + iB,$$

where

$$A=rac{1-|z|}{1+|z|}\operatorname{Re} f(z)>0 \quad ext{and} \quad B=\operatorname{Im} f(z).$$

Conversely given $f = A\ell_{\alpha} + iB$, $\alpha \in \partial D$, A > 0, B both real constants, and given $n \geq 2$, we have the chain of identities

$$\frac{n!2}{(1-|z|^2)|1-\alpha z|^{n-1}} = \frac{|f^{(n)}(z)|}{\operatorname{Re} f(z)} = \frac{n!2}{(1-|z|^2)(1-|z|)^{n-1}}$$

if and only if $z \in \mathcal{R}(\alpha)$.

3. Application of Theorem 1

Suppose that h > 0 is harmonic in D. Then we have a holomorphic function f with Re f = h in D. Since

$$f^{(n)}(z) = 2 \frac{\partial^n h(z)}{\partial z^n},$$

where

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

for z = x + iy, $n \ge 1$, we have

$$\frac{|f^{(n)}|}{\operatorname{Re} f} = \frac{2}{h} \left| \frac{\partial^n h}{\partial z^n} \right|. \tag{3.1}$$

We then have the estimate of the right-hand side of (3.1) with the aid of (1.1) and (1.2), together with the detailed equality conditions. Notice that, in the case where n = 1,

$$\frac{|f'|}{\operatorname{Re} f} = \left| \operatorname{grad} \left(\log h \right) \right|,$$

where for $g = \log h$,

$$|\operatorname{grad} g| = \sqrt{g_x^2 + g_y^2}.$$

Let Γ be the family of f holomorphic in D such that $f(z)+f(w)\neq 0$ for all $z,w\in D$. In particular, $f\in \Gamma$ never vanishes in D and $\mathcal{P}(D)\subset \Gamma$. We call $f\in \Gamma$ a Gel'fer function. In [Y1, Theorem 5, p. 254] we proved that if f(0)=1 for $f\in \Gamma$, then $\operatorname{Re} f(z)>0$ in the disk $\{|z|<1/\sqrt{2}\}$. The constant $1/\sqrt{2}$ is sharp. For $p=(1+i)/\sqrt{2}$, the function $f(z)=(1-\overline{p}z)/(1+pz)$ is in Γ , f(0)=1, and further $\operatorname{Re} f(i/\sqrt{2})=0$.

If $f \in \Gamma$ and $z \in D$, then for a constant ρ , $0 < \rho \le 1$, the function

$$g(w) = \frac{f\left(\frac{\rho w + z}{1 + \overline{z}\rho w}\right)}{f(z)}$$

of $w \in D$ is in Γ with g(0) = 1. Since $|g'(0)| \leq 2$ (see, for example, [Y1, (G8)]), it follows that

$$\left| \frac{f'(z)}{f(z)} \right| \le \frac{2}{1 - |z|^2};$$

the equality holds for $f = \ell_{\alpha}$ at each point $z = \overline{\alpha}t$, -1 < t < 1.

We now obtain

Corollary to Theorem 1 For $f \in \Gamma$ the strict inequality

$$\left| \frac{f^{(n)}(z)}{f(z)} \right| < \frac{n! 2\sqrt{2}(|z| + \sqrt{2})^{n-1}}{(1 - |z|^2)^n}$$
(3.2)

holds for all $n \geq 2$ and at each $z \in D$.

Proof. Set $\rho = 1/\sqrt{2}$ and fix $z \in D$. Then the function

$$g(w) = \frac{f\left(\frac{\rho w + z}{1 + \overline{z}\rho w}\right)}{f(z)} = 1 + \sum_{k=1}^{\infty} b_k w^k$$

is in \mathcal{P}_o . It then follows from (2.2) with A = f(z) that

$$\left| \frac{f^{(n)}(z)}{f(z)} \right| \le \frac{n! 2(1+\rho|z|)^{n-1}}{\rho^n (1-|z|^2)^n}. \tag{3.3}$$

If the equality would hold in (3.3) for an $n \geq 2$, then $|b_{k+1}| = 2$ for $0 \leq k \leq n-1$. Hence $|b_1| = 2$, so that there exists $\alpha \in \partial D$ with $g = \ell_{\alpha}$. Then f has $(\rho \overline{\alpha} + z)/(1 + \overline{z}\rho \overline{\alpha}) \in D$ as a pole. This is a contradiction.

4. Hyperbolic domain

A domain Ω in the plane \mathbf{C} is called hyperbolic if $\mathbf{C} \setminus \Omega$ contains at least two points. Let ϕ be a universal covering projection from D onto a hyperbolic domain Ω (a projection $\phi: D \to \Omega$, for short); ϕ is holomorphic and ϕ' is zero-free in D. The Poincaré density Π_{Ω} is then the function in Ω defined by

$$\Pi_{\Omega}(z) = \frac{1}{(1-|w|^2)|\phi'(w)|}, \quad z \in \Omega,$$

where $z = \phi(w)$; the choice of ϕ and w is immaterial as far as $z = \phi(w)$ is satisfied.

Let Ω and Σ both be hyperbolic domains and let $f:\Omega\to\Sigma$ be holomorphic. The Schwarz-Pick lemma is the estimate of |f'| in terms of Π_{Ω} and Π_{Σ} , namely,

$$\Pi_{\Sigma}(f(z))|f'(z)| \le \Pi_{\Omega}(z) \tag{4.1}$$

at each point $z \in \Omega$; see, for example, [Y2, p. 304]. If the equality holds at a point $z \in \Omega$, then $f \circ \phi : D \to \Sigma$ is a projection for each projection ϕ :

 $D \to \Omega$, and, moreover, the equality holds in (4.1) everywhere in Ω . See, for example, [Y2] and [Y3], for recent researches on the Schwarz-Pick lemma.

The case where $\Omega = D$ and Σ is the half-plane $H = \{w; \text{Re } w > 0\}$ is of our main interest. Since

$$\Pi_D(z) = \frac{1}{1 - |z|^2} \quad \text{and} \quad \Pi_H(z) = \frac{1}{2 \text{ Re } z},$$

(4.1) for $f \in \mathcal{P}(D)$ is reduced to (1.1).

To consider the higher derivatives we need a device. For a projection $\phi: D \to \Omega$ we suppose that $z = \phi(w)$. Let $\rho_{\Omega}(z)$ be the greatest r such that $0 < r \le 1$ and ϕ is univalent in

$$\left\{ \zeta; \left| \frac{\zeta - w}{1 - \overline{w}\zeta} \right| < r \right\}$$

which is the non-Euclidean disk of center w and the non-Euclidean radius arctanh r, and also is the disk of

center
$$\frac{w(1-r^2)}{1-r^2|w|^2} \in D$$
 and radius $\frac{r(1-|w|^2)}{1-r^2|w|^2} \le 1$.

Again $\rho_{\Omega}(z)$ is independent of the particular choice of ϕ and w as far as $z = \phi(w)$ is satisfied. We may therefore call $\rho_{\Omega}(z)$ the radius of univalency of Ω at $z \in \Omega$. In particular, the set

$$\Delta(z) = \left\{ \phi(\zeta); \left| \frac{\zeta - w}{1 - \overline{w}\zeta} \right| < \rho_{\Omega}(z) \right\}, \quad z = \phi(w), \tag{4.2}$$

is a simply connected domain depending only on $z \in \Omega$; $\Delta(z)$ will be considered in Section 6.

Theorem 2 For $f \in \mathcal{P}(\Omega)$ of a hyperbolic domain $\Omega \subset \mathbf{C}$ the inequality

$$\frac{|f^{(n)}(z)|}{\operatorname{Re} f(z)} \le 2 \cdot \frac{(2n-1)!}{(n-1)!} \left(\frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)}\right)^n \tag{4.3}$$

holds for each $n \geq 2$ and at each $z \in \Omega$. If the equality holds in (4.3) at a point $z \in \Omega$ and for an $n \geq 2$, then the following two items hold.

(I) There exist complex constants $Q \neq 0$ and R such that Ω is the slit domain

$$\Omega = \mathbf{C} \setminus \left\{ Qt + R; \ t \le -\frac{1}{4} \right\}; \tag{4.4}$$

in particular, $\rho_{\Omega}(z) \equiv 1$.

(II) The function f is of the form

$$f(w) = A\sqrt{\frac{Q}{4w + Q - 4R}} + iB,$$
 (4.5)

where A > 0 and B are real constants and the branch of $\sqrt{}$ is chosen so that f(R) = A + iB.

Conversely suppose that f of (4.5) is given in Ω of (4.4). Then the equality holds in (4.3) at each point of the half-line

$$\mathcal{L} = \left\{ Qt + R; \ t > -\frac{1}{4} \right\} \tag{4.6}$$

and for each $n \geq 2$, whereas the inequality (4.3) is strict at each point of $\Omega \setminus \mathcal{L}$ and for each $n \geq 2$.

The function of (4.5) maps Ω of (4.4) univalently onto H.

The inequality (4.3) in the specified case $\Omega = D$ reads that

$$\frac{|f^{(n)}(z)|}{\operatorname{Re} f(z)} \le 2 \cdot \frac{(2n-1)!}{(n-1)!} \cdot \frac{1}{(1-|z|^2)^n} \tag{4.7}$$

at each $z \in D$ and for each $n \ge 2$. Since

$$2^{n-1} < \frac{(2n-1)!}{n!(n-1)!}$$
 for $n \ge 2$,

(4.7) is worse than (1.2). Hence Theorem 2 is not an extension of Theorem 1.

As preparation for the proof of Theorem 2 we begin with the class S of functions f holomorphic and univalent in D with f(0) = f'(0) - 1 = 0. Typical members of S are the rotations of the Koebe function $K = K_1$, namely, $K_{\alpha}(z) = z/(1-\alpha z)^2$, $\alpha \in \partial D$. K.S. Chua's coefficient theorem [C, Theorem 2] for the inverse function f^* of $f \in S$ in f(D) is the following. Let f^{*k} be the k-th power of f^* ($k = 1, 2, \cdots$) having the expansion

$$f^{*k}(w) = \sum_{n=k}^{\infty} B_{nk}(f)w^n$$

in a neighborhood of 0. Note that $B_{kk}(f) = 1$. Then

$$|B_{nk}(f)| \le |B_{nk}(K)| \tag{4.8}$$

for $n \geq k \geq 1$. If $n \geq 2$ and if the equality holds in (4.8) for a pair n, k with n > k, then $f = K_{\alpha}$ for an $\alpha \in \partial D$, so that the equality holds in (4.8) for all $n \geq k \geq 1$. Chua observed that $[\mathbf{C}, (8)]$ and (16)

$$B_{nk}(K) = (-1)^{n-k} \frac{k}{n} \binom{2n}{n-k}, \quad 1 \le k \le n,$$

and further that

$$\sum_{k=1}^{n} |B_{nk}(K)| = \binom{2n-1}{n}. \tag{4.9}$$

For later use we remark that

$$\frac{1 - K^*(w)}{1 + K^*(w)} = \frac{1}{\sqrt{4w + 1}} \tag{4.10}$$

because

$$K^*(w) = \frac{2w + 1 - \sqrt{4w + 1}}{2w}$$

for $w \in K(D)$. It follows from

$$(K_{\alpha})^*(w) = \overline{\alpha}K^*(\alpha w), \quad w \in K_{\alpha}(D),$$

that

$$B_{nk}(K_{\alpha}) = B_{nk}(K)\alpha^{n-k}$$
, for $1 \le k \le n$ and $\alpha \in \partial D$.

5. Proof of Theorem 2

Supposing first that $0 \in \Omega$ and $\phi(0) = \phi'(0) - 1 = 0$ for a projection $\phi: D \to \Omega$, and further that f(0) = 1, we shall prove that

$$\frac{\rho_{\Omega}(0)^n |f^{(n)}(0)|}{n!} \le 2 \binom{2n-1}{n} \tag{5.1}$$

for all $n \geq 2$. Furthermore we shall observe that if the equality holds in (5.1) for an $n \geq 2$, then there exists $\beta \in \partial D$ such that $\Omega = K_{\beta}(D)$ and

$$f(w) = \frac{1}{\sqrt{4\beta w + 1}}\tag{5.2}$$

for $w \in \Omega$, the branch satisfying f(0) = 1.

S. Yamashita

Set
$$\rho = \rho_{\Omega}(0)$$
. Then $\Phi(z) = \rho^{-1}\phi(\rho z)$ is a member of \mathcal{S} and $F(z) \equiv f(\rho\Phi(z)) = f(\phi(\rho z))$

is of \mathcal{P}_o . Applying the composite function theorem [T, Theorem 1] to

$$F \circ \Phi^*(\zeta) = f(\rho\zeta), \quad \zeta = \Phi(z) \in \Phi(D),$$

we have

$$\rho^n f^{(n)}(\rho\zeta) = (F \circ \Phi^*)^{(n)}(\zeta) = \sum_{k=1}^n A_{nk}(\zeta) F^{(k)}(\Phi^*(\zeta)), \tag{5.3}$$

where

$$A_{nk}(\zeta) = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} {k \choose j} (\Phi^*)^{k-j} (\zeta) (\Phi^{*j})^{(n)} (\zeta),$$

and further, $(\Phi^*)^{k-j}$ is the (k-j)-th power of Φ^* with $(\Phi^*)^0 = 1$ and $(\Phi^{*j})^{(n)}$ is the *n*-th derivative of the *j*-th power of Φ^* , $1 \leq j \leq k \leq n$. Setting $\zeta = 0$ in (5.3) one now has

$$\frac{\rho^n f^{(n)}(0)}{n!} = \sum_{k=1}^n B_{nk}(\Phi) \frac{F^{(k)}(0)}{k!}.$$
 (5.4)

Since $|F^{(k)}(0)| \leq k!2$ for all $k \geq 1$, and since (4.8) holds for $\Phi \in \mathcal{S}$, one immediately has (5.1) with the aid of (4.9).

Suppose that the equality holds in (5.1) for an $n \geq 2$. Then $|B_{21}(\Phi)| = |B_{21}(K)|$ and |F'(0)| = 2. Hence we have α and β of ∂D such that $F = \ell_{\alpha}$ and $\Phi = K_{\beta}$. If $\rho < 1$, then $f(\phi(\rho \overline{\alpha})) = \ell_{\alpha}(\overline{\alpha}) = \infty$, so that f is not holomorphic in Ω . Hence $\rho = 1$, so that

$$f = F \circ \Phi^* = \ell_{\alpha} \circ (K_{\beta})^*,$$

and $\Omega = \phi(D) = \Phi(D) = K_{\beta}(D)$. To have (5.2) we next show that $\alpha \overline{\beta} = -1$. Set $\gamma = -\alpha \overline{\beta}$. Then (5.4) reads that

$$\frac{f^{(n)}(0)}{n!} = \sum_{k=1}^{n} B_{nk}(K_{\beta}) \frac{(\ell_{\alpha})^{(k)}(0)}{k!}$$
$$= \sum_{k=1}^{n} (-\beta)^{n-k} |B_{nk}(K)| 2\alpha^{k}$$

$$= 2(-\beta)^n \sum_{k=1}^n \gamma^k |B_{nk}(K)|.$$

It then follows from (4.9) that

$$\sum_{k=1}^{n} |B_{nk}(K)| = {2n-1 \choose n} = \frac{|f^{(n)}(0)|}{n!2} = \left| \sum_{k=1}^{n} \gamma^k |B_{nk}(K)| \right|.$$

Hence, squaring the left- and the right-most terms one has

$$\sum |B_{nk}(K)||B_{nj}(K)|(1-\gamma^{k-j})=0,$$

where the summation is taken over all k, j with $1 \le k \le n$, $1 \le j \le n$; note that $n \ge 2$. Since $\text{Re}(1 - \gamma^{k-j}) \ge 0$, it follows that $\text{Re}(1 - \gamma^{k-j}) = 0$ so that $\gamma^{k-j} = 1$ for $k \ne j$, $1 \le k \le n$, $1 \le j \le n$. Hence $\gamma = 1$. We thus have, with the aid of (4.10), that

$$f(w) = \ell_{\alpha} \circ (K_{\beta})^*(w) = \frac{1 + \alpha \overline{\beta} K^*(\beta w)}{1 - \alpha \overline{\beta} K^*(\beta w)} = \frac{1 - K^*(\beta w)}{1 + K^*(\beta w)} = \frac{1}{\sqrt{4\beta w + 1}}.$$

Given f of (5.2) in $\Omega = K_{\beta}(D)$, $\beta \in \partial D$, we consider the set E of points $z \in \Omega$ where the equality holds in (4.3) for all $n \geq 2$. Since $w = K_{\beta}(\zeta) \in \Omega$, $\zeta \in D$, simple calculation yields that

$$\operatorname{Re} f(w) = \frac{1 - |\zeta|^2}{|1 + \beta \zeta|^2}, \quad |f^{(n)}(w)| = 2 \cdot \frac{(2n-1)!}{(n-1)!} \left| \frac{1 - \beta \zeta}{1 + \beta \zeta} \right|^{2n+1},$$

because

$$\prod_{k=0}^{n-1} \left(\frac{1}{2} + k \right) = 2^{1-2n} \cdot \frac{(2n-1)!}{(n-1)!},$$

and further, $\rho_{\Omega}(w) \equiv 1$, and

$$\frac{1}{\Pi_{\Omega}(w)} = \frac{(1 - |\zeta|^2)|1 + \beta\zeta|}{|1 - \beta\zeta|^3}$$

for $\zeta \in D$. Hence

$$\frac{|f^{(n)}(w)|}{\Pi_{\Omega}(w)^n \operatorname{Re} f(w)} = 2 \cdot \frac{(2n-1)!}{(n-1)!} \left(\frac{1-|\zeta|^2}{|1-\beta^2\zeta^2|}\right)^{n-1}$$
(5.5)

for $\zeta \in D$. Consequently, $w = K_{\beta}(\zeta)$ is in E if and only if $\beta \zeta$ is on the real

34 S. Yamashita

diameter (-1,1) or equivalently, if and only if

$$w\in\Lambda\equiv\left\{\overline{\beta}t;\,t>-\frac{1}{4}\right\}.$$

Hence $E = \Lambda$. It is easy to prove that the inequality (4.3) is strict at each point $z \in K_{\beta}(\Omega) \setminus \Lambda$ and for each $n \geq 2$.

To prove (4.3) at $z = a \in \Omega$ we choose a projection $\phi : D \to \Omega$, with $\phi(0) = a$ and consider the domain

$$\Sigma = \left\{ \frac{\zeta - a}{\phi'(0)}; \, \zeta \in \Omega \right\}$$

for which $0 \in \Sigma$ and $\psi = (\phi - a)/\phi'(0)$ is a projection $\psi : D \to \Sigma$ with $\psi(0) = \psi'(0) - 1 = 0$. Then the function

$$g(w) = \frac{f(a + \phi'(0)w) - i \operatorname{Im} f(a)}{\operatorname{Re} f(a)}$$

is in $\mathcal{P}(\Sigma)$ with g(0) = 1. Since $g^{(n)}(0) = \phi'(0)^n f^{(n)}(a) / \operatorname{Re} f(a)$, since $\rho_{\Sigma}(0) = \rho_{\Omega}(a)$, and since $|\phi'(0)| = 1/\Pi_{\Omega}(a)$, we may apply (5.1) to g in Σ to have

$$\left(\frac{\rho_{\Omega}(a)}{\Pi_{\Omega}(a)}\right)^n \frac{|f^{(n)}(a)|}{n! \operatorname{Re} f(a)} = \frac{\rho_{\Sigma}(0)^n |g^{(n)}(0)|}{n!} \le 2 \binom{2n-1}{n}$$

for all $n \ge 2$. This is equivalent to (4.3) for z = a. If the equality holds in (4.3) at z = a, thenwe have (I) and (II) with

$$Q = \overline{\beta}\phi'(0), \quad R = a, \quad A = \operatorname{Re} f(a), \quad \text{and} \quad B = f(a).$$

The detailed proof is obvious.

Remark 1. How about the case n=1 in Theorem 2? Since (4.1) for $\Sigma=H$ is valid, we have

$$\frac{|f'(z)|}{\operatorname{Re} f(z)} \le 2\Pi_{\Omega}(z) \le 2\frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)}.$$
(5.6)

Suppose that the left- and the right-most are the same in (5.6). Then $\rho_{\Omega}(z) = 1$, so that Ω must be simply connected, and furthermore, the equalities hold in (5.6) for every poit of Ω . The function F in the proof must be ℓ_{α} for some $\alpha \in \partial D$ because |F'(0)| = 2 (and we have no explicit

form for $\Phi = \phi$.) We can also prove (the weaker result)

$$\frac{|f'(z)|}{\operatorname{Re} f(z)} \le 2 \frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)}$$

by the same method as in the proof of Theorem 2.

Remark 2. It is known that $\mathcal{P}(\Omega) = \mathbf{C}$ if the closed set $\mathbf{C} \setminus \Omega$ is of logarithmic capacity zero. In other words, $\mathcal{P}(\Omega) = \mathbf{C}$ if $\Omega \in O_{HP} = O_G$; see [AS, p. 208]. More generally, g is holomorphic and bounded in modulus by M > 0 in Ω if and only if $f = (g + M)/(g - M) \in \mathcal{P}(\Omega)$. Hence one observes that $\mathcal{P}(\Omega) = \mathbf{C}$ if and only if $\Omega \in O_{AB}$.

6. Positive harmonic function in Ω

Let h > 0 be harmonic in a hyperbolic domain Ω . Then for each $\Delta(z)$ of (4.2) we have a holomorphic function f with Re f = h in $\Delta(z)$. Since the proof of Theorem 2 is "local" in its character, we have

$$\left| \frac{\partial^n h(z)}{\partial z^n} \right| \frac{1}{h(z)} \le \frac{(2n-1)!}{(n-1)!} \left(\frac{\Pi_{\Omega}(z)}{\rho_{\Omega}(z)} \right)^n$$

at each $z \in \Omega$ and for each $n \ge 1$. Actually, (4.3) for the present f is valid, and the case n = 1 is obvious by $\rho_{\Omega}(z) \le 1$. If the equality holds at a point $z \in D$, then $\rho_{\Omega}(z) = 1$, so that f can be defined in the whole Ω , the slit domain of (4.4). The equality conditions are different according as n = 1 or n > 1.

References

- [AS] Ahlfors L.V. and Sario L., *Riemann Surfaces*. Princeton University Press, Princeton, 1960.
- [C] Chua K.S., Derivatives of univalent functions and the hyperbolic metric. Rocky Mt. J. Math. **26** (1996), 63–75.
- [G] Goodman A.W., *Univalent Functions*. Volume I. Mariner Publ. Co., Tampa, Florida, 1983.
- [T] Todorov P.G., New explicit formulas for the nth derivative of composite functions. Pacific J. Math. **92** (1981), 217–236.
- [Y1] Yamashita S., Gelfer functions, integral means, bounded mean oscillation, and univalency. Trans. Amer. Math. Soc. **321** (1990), 245–259.
- [Y2] Yamashita S., The Pick version of the Schwarz lemma and comparison of the Poincaré densities. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 (1994), 291–322.

[Y3] Yamashita S., Goluzin's extension of the Schwarz-Pick inequality. J. of Inequal. & Appl. 1 (1997), 345–356.

Department of Mathematics
Tokyo Metropolitan University
Minami-Osawa, Hachioji
Tokyo 192-0397, Japan
E-mail: yamashin@comp.metro-u.ac.jp