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Higher derivatives of holomorphic function
with positive real part

Shinji YAMASHITA
(Received September 9, 1998)

Abstract. Upper estimates of |f(")(z)|/ Re f(z), n > 2, of f holomorphic and Re f > 0
in a plane domain are proposed; the equality conditions are considered in detail.

Key words: function with positive real part, Schwarz-Pick’s lemma, hyperbolic domain,
Poincaré density, radius of univalency.

1. Introduction

Let P(€2) be the family of functions f holomorphic with positive real
part Re f > 0 in a domain € in the complex plane C = {z;|z| < +00}. We
shall prove some sharp upper estimates of the quotient | f(™(z)|/ Re f(z) for
feP(Q)at z € Qforn > 2, together with the detailed equality conditions.

The specified case n =1 and Q@ = D = {z; |2| < 1} is well known. For

f e P(D),

O -
Ref(z) = 1_|oP (1)

at each z € D. The extremal functions are essentially £,(z) = (1+az)/(1—
az), where a € 0D = {z; |z| = 1}. More precisely, if the equality holds in
at a point z € D, then

1—aw+ f(w—a)
flw) 1 —aw— B(w—a)’

where 3 € 8D and a € D, so that the equality holds in everywhere in
D; one can prove that f = A¢, + 1B, where

1 — |a|? —2 Im(af) B+a
A=—_14 i ) _
T+ apl Trap? T 15ap

See Section 4 for the details on [1.1).
We begin with the case ! = D and n > 2.

>0, B= € 0D.
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Theorem 1 For f € P(D) the estimate

PARIO: I ni2 (1.2)

Re f(z) = Re &i(l2]) (1 —[2[*)(1 — [2])n! '
holds at each point z € D and for all n > 2. If the equality holds in (1.2)
at a point z € D and for ann > 2, then f = Al, +1iB, for an o € 0D, and
for A >0 and B both real constants. Conversely, if f = Aly+1iB, a € dD;
A > 0 and B both real constants, then the equality holds in (1.2) at each
point of the radius

R(a) = {at;0 <t < 1)

and for each n > 2, whereas the inequality (1.2) is strict at each point of
D\ R(a) and for each n > 2.

In Section 5 we shall prove [Theorem 2 which is proposed in Section 4
and is a version of for a hyperbolic domain € again with the
detailed equality conditions.

2. Proof of Theorem 1

We begin with a lemma.

Lemma 1 Let f be holomorphic in D, let 0 < p < 1, and let A # 0 and
B both be complex constants. Set for a fixred z € D,

pw + 2
f(l%—’z’pw) B =
) = Zbkwk, w€E D. (2.1)
k=0

Then for each n > 1,

(n) A n—1 _
fny)=pw1—vm"§:(nkl)@“”+*mﬂ- (2:2)
' k=0

Proof.  Let g(w) be the left-hand side function in of the variable
w € D. Set

1 — 2
= pw:kz’ w € D, so that dg:p(—_|il-
1+ Zpw (14 zpw)

dw.
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Observe that

— n—1 n—1 .
(l+zpw) — (n 1)(zp)n 1- k k-2 for ’LU#O.

wnt1 prd k
Then
fMz) 1 f)
n!  2mi / (C—z)"“dC
|-
_ A (-1 n—1-k 1 g(w)
‘pn(1—|z|2>nz< k )(z”) 2mi / w2

This is (2.2).
Let P, be the family of functions f € P(D) with f(0) = 1. A typical
member of P, is £, a € dD. For

o0
z)=1+ Z a2
k=1

of P, we have the estimate |ay| < 2 for all k£ > 1 and furthermore, |a;| = 2
if and only if f = /, for an a € D. See [G, p. 80]; the estimate |a;| < 2
follows from the Schwarz inequality: |¢'(0)| <1 for g = (f —1)/(f +1); the
equality holds if and only if g(z) = az for an a € 9D or f = ¢,.

Simple computation shows that

w—b 1—1b|
I ~ = Lo, 2.3
(1 —bw) T3 o] @) (2:3)
in D for all @« € 0D and all b € R(a). O

Proof of Theorem 1. Fix z € D and let
f ( vtz ) — i Tm f(2)

14 zZw > k
= =1 E b . 2.4
We apply to g with p =1, A = Re f(z), and B =i Im f(z). Then
n—1
f(n)( ) Re f(2 n-— 1 —n—-1—k
= E z" 2.
n! (1—|z|2)~ b1, (25)

k=0
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which, together with g € P,, yields that

£ _ 20+ |2)" Re f(z).

2.6
Mo ST O-RPr (20
this is equivalent to [1.2). O

Suppose that the equality holds in or in at z and for an
n > 2. Then |bg1| = 2 for 0 < k < n —1, so that |b1| = 2. Hence g = ¢,
for an o € &D. Since byy1 = 2a**! for all k > 0, it follows that

fi™(z) _ 2a(z +a)™ ' Re f(2)
m! (1—|z2)m

(2.7)
for all m > 1. Since the equality holds in we then have
Z+a" ™ = 1+ )",

so that z € R(a). It then follows from for b = z that

flw) = (Re f(z)) lo ( 1"“_;; ) +i Im f(2) = Al (w) +iB,
where
4=zl Ref(z) >0 and B =Imf(z)
1+ |z| '

Conversely given f = Al,+1iB, a € D, A > 0, B both real constants,
and given n > 2, we have the chain of identities

n!2 ™)) n!2

(1-1[z)1 -zt Ref(z)  (1—[*)(1—[z))*!
if and only if z € R(a).

3. Application of Theorem 1

Suppose that A > 0 is harmonic in D. Then we have a holomorphic
function f with Re f = h in D. Since

f (Z)—2 azn ’



Derivatives of function 27

where

for z =z + iy, n > 1, we have

S 2

Re f T h

J"h

= (3.1)

We then have the estimate of the right-hand side of with the aid of

and (1.2), together with the detailed equality conditions. Notice that,
in the case where n = 1,

|f'|
Re f

= 'grad (log h)’,

where for g = log h,

lgradg| = /g2 + g2.

Let I' be the family of f holomorphic in D such that f(z)+ f(w) # 0
for all z,w € D. In particular, f € I" never vanishes in D and P(D) C T.
We call f € T' a Gel'fer function. In [Y1, Theorem 5, p. 254] we proved
that if f(0) = 1 for f € T, then Re f(2) > 0 in the disk {|z| < 1/v/2}.
The constant 1/v/2 is sharp. For p = (1 + ) /v/2, the function f(z) =
(1-pz)/(14+pz)isinT, f(0) = 1, and further Re f(i/v/2) = 0.

If f €I" and z € D, then for a constant p, 0 < p < 1, the function

f pw + 2
_ 1+ Zpw

=0

of w € D is in I with g(0) = 1. Since |¢'(0)] < 2 (see, for example, [Y1,
(G8))), it follows that

f'(z)
f(2)

the equality holds for f = ¢, at each point z =at, -1 <t < 1.

2
< .
— 1_|z|27

We now obtain
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Corollary to Theorem 1 For f €T the strict inequality

(n) 19./92 n—1
FE)|  w2vaed + v 52)
f(z) (1—1z1%)
holds for all n > 2 and at each z € D.
Proof. Set p=1/ V2 and fix z € D. Then the function
( pw + 2 )
1+ Zpw - k
g(w) = =1+ brw
) =50 2
is in P,. It then follows from (2.2) with A = f(z) that
(n) 12(1 n—1
£0e)| 201+ ple) -
f(z) pr(1—[2[%)

If the equality would hold in for an n > 2, then |bg 1| =2for 0 < k <
n — 1. Hence |b1| = 2, so that there exists a € 0D with g = ¢,. Then f has
(pa + z)/ (14 zZpa) € D as a pole. This is a contradiction. O

4. Hyperbolic domain

A domain © in the plane C is called hyperbolic if C \ €2 contains at
least two points. Let ¢ be a universal covering projection from D onto a
hyperbolic domain Q (a projection ¢ : D — £, for short); ¢ is holomorphic
and ¢’ is zero-free in D. The Poincaré density Ilg is then the function in Q
defined by

[Io(z) = 1

(1~ |w?)l¢' (w)]’
where z = ¢(w); the choice of ¢ and w is immaterial as far as z = ¢(w) is

satisfied.

Let Q and ¥ both be hyperbolic domains and let f : £ — ¥ be holo-
morphic. The Schwarz-Pick lemma is the estimate of |f’| in terms of Il
and Iy, namely,

s (f(2)1f'(2)] < Ha(2) (4.1)

at each point z € Q; see, for example, [Y2, p. 304]. If the equality holds at
a point z € , then fo¢ : D — X is a projection for each projection ¢ :

z € Q,
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D — (), and, moreover, the equality holds in everywhere in §2. See, for
example, and [Y3], for recent researches on the Schwarz-Pick lemma.
The case where (} = D and ¥ is the half-plane H = {w;Re w > 0} is
of our main interest. Since
1
2 Re 2’

Ip(z) and Ilgy(z) =

iR
for f € P(D) is reduced to [1.1}.
To consider the higher derivatives we need a device. For a projection

¢ : D — Q we suppose that z = ¢(w). Let pa(z) be the greatest r such
that 0 < r <1 and ¢ is univalent in

v
{6 i<}

which is the non-Euclidean disk of center w and the non-Euclidean radius
arctanh 7, and also is the disk of

1 — 2
M € D and radius

cente
g 1 —r2|w)|? 1—r2w|? —

Again pq(z) is independent of the particular choice of ¢ and w as far as
z = ¢(w) is satisfied. We may therefore call pq(z) the radius of univalency
of  at z € Q. In particular, the set

AE) = {0(0) £ o] < pala) |, 2= otw) (12)

1

is a simply connected domain depending only on z € Q; A(z) will be con-
sidered in Section 6.

Theorem 2 For f € P(Q) of a hyperbolic domain Q C C the inequality

FME L @a=1)! (Ta()\"
Ref(z) =~ (n_1)! (pn(z)> (43)

holds for each n > 2 and at each z € Q. If the equality holds in (4.3) at a
point z € ) and for an n > 2, then the following two items hold.

(I)  There exist complex constants Q # 0 and R such that Q is the slit
domain

Q:C\{QHR;tS—i}; (4.4)
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in particular, pa(z) = 1.
(IT)  The function f is of the form

_ Q :
f(w)—A\/4w+Q_4R+zB, (4.5)

where A > 0 and B are real constants and the branch of Vo chosen so
that f(R) = A+ iB.

Conversely suppose that f of (4.5) is given in Q of (4.4). Then the
equality holds in (4.3) at each point of the half-line

£={Qhk&t>—é} (4.6)

and for each n > 2, whereas the inequality (4.3) is strict at each point of
Q\ L and for each n > 2.

The function of maps  of (4.4) univalently onto H.
The inequality in the specified case Q = D reads that

1™ (2)] (2n —1)! 1
<2. : 4.7
Ref(x) =0 (-1l (=" 47
at each z € D and for each n > 2. Since
n—1 (271, _ 1)'
>
2 < nl(n = 1) for n> 2,

is worse than [1.2). Hence is not an extension of [Theorem 1.

As preparation for the proof of we begin with the class S
of functions f holomorphic and univalent in D with f(0) = f(0) — 1 = 0.
Typical members of S are the rotations of the Koebe function K = Kj,
namely, K,(z) = z/(1 —az)?, a € D. K.S. Chua’s coefficient theorem [C,
for the inverse function f* of f € S in f(D) is the following.
Let f** be the k-th power of f* (k =1,2,---) having the expansion

fHw) =) Bue(f)uw”
n=k

in a neighborhood of 0. Note that Bg(f) = 1. Then

| Brk(f)| < |Bnk(K) (4.8)
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forn > k> 1. If n > 2 and if the equality holds in (4.8) for a pair n, k
with n > k, then f = K,, for an a € 0D, so that the equality holds in (4.8)
for all n > k > 1. Chua observed that [C, (8) and (16))

2n

BuulK) = (-1y+E (20

), 1<k <n,
n

and further that

’;IBM(K)I - (Z”n_ 1) . (4.9)

For later use we remark that

1 - K*(w) 1
1+ K*(w) 4w +1 (4.10)

because

. 2w+1—-v4dw+1
K (w) =

2w

for w € K(D). It follows from
(Ko)*(w) =aK*(aw), w e Kq(D),
that

Bhi(Ko) = Bup(K)a™*, for 1<k<n and a€dD.

5. Proof of Theorem 2

Supposing first that 0 € Q and ¢(0) = ¢'(0) — 1 = 0 for a projection
¢ : D — €, and further that f(0) = 1, we shall prove that

pa(0)"1 ™ (0)] <9 (2"— 1)

i (5.1)

for all n > 2. Furthermore we shall observe that if the equality holds in
(5.1) for an n > 2, then there exists 8 € dD such that Q = Kz(D) and

1
VApw + 1

for w € €2, the branch satisfying f(0) = 1.

flw) = (5.2)
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Set p = pa(0). Then ®(z) = p~'¢(pz) is a member of S and
F(z) = f(p®(2)) = f(¢(p2))
is of P,. Applying the composite function theorem [T, Theorem 1] to
Fo®* ()= f(p¢), ¢=%(2) € ®(D),

we have

P F ™ (p¢) = (F o @)™ (¢) =Y An(Q)FP(2%(0)), (5.3)

k=1

where

k
Al6) = (1 (5 @@,

and further, (®*)¥=J is the (k — j)-th power of ®* with ($*)® = 1 and
(@*j)(") is the n-th derivative of the j-th power of ®*, 1 < 7 < k < n.
Setting ¢ = 0 in one now has

"0 _ an Bo(@) T 0 (5.4)

n! k!
k=1

Since |F*)(0)| < k!2 for all k£ > 1, and since (4.8) holds for ® € S, one
immediately has (5.1) with the aid of (4.9).

Suppose that the equality holds in (5.1) for an n > 2. Then |Ba1(®)| =
|Bo1(K)| and |F’(0)| = 2. Hence we have o and 3 of 0D such that F = {,
and ® = Kz. If p < 1, then f(¢(pa)) = €u(@) = oo, so that f is not
holomorphic in €. Hence p = 1, so that

f=Fo®" =/{,0(Kg)",

and Q = ¢(D) = ®(D) = Kg(D). To have we next show that o = —
Set v = —a3. Then reads that

f(n ZBnk Kﬁ )(k)( )

= ) (=B)"*|Bur(K)|20"
k=1
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= 2(=B)" Y | Buk(K))|.
k=1

It then follows from (4.9) that

" 2n—1Y _ |/(0)
| Bnk(K)| = = =
> = (")

n n!2

n
Zv’“ank(KM‘ -
k=1
Hence, squaring the left- and the right-most terms one has

Y |Brk(K)|| B (K)|(1 = 4*77) = 0,

where the summation is taken over all k, j with 1 <k <n, 1 < j < n; note
that n > 2. Since Re(1 — v*77) > 0, it follows that Re(1 — ~*~7) = 0 so
that v¥*7 =1fork #j,1 <k <n,1<j <n. Hence v = 1. We thus have,

with the aid of [4.10), that
_ 1+ afK*(Bw) 1-K*(Bw) 1
 1-aBK*(fw) 1+K*(Bw) ABw+1

Given f of in = Kg(D), B8 € 0D, we consider the set F of points
z € Q where the equality holds in for all n > 2. Since w = K3((¢) € Q,
¢ € D, simple calculation yields that

f(w) = £a o (Kp)*(w)

_1-¢? () _(2n—1)!l1_5g 2nt1
feflw) = 1+ B¢ 7 w)] =2 (n—1)! |14+ 45¢ ’
because
(1 1—2n (2n—1)!
kl;[()<§+k):2 C(n-1)"
and further, po(w) = 1, and
1 (A-1¢®)+a¢
1o (w) 11— B¢)3
for ( € D. Hence
M) L @n-D 1=\
Ho(w)” Re f(w) 2 (n—1)! (|1 _ ﬁzCzl) (5.5)

for ¢ € D. Consequently, w = Kg(¢) is in E if and only if 3¢ is on the real
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diameter (—1,1) or equivalently, if and only if
— 1
’wEAE{ﬁt;t>-Z}.

Hence E = A. It is easy to prove that the inequality is strict at each
point z € K3(2) \ A and for each n > 2.

To prove at z = a € Q) we choose a projection ¢ : D — Q, with
#(0) = a and consider the domain

E:{%;CEQ}

for which 0 € ¥ and v = (¢ — a)/#'(0) is a projection ¢ : D — ¥ with
¥(0) = ¢'(0) — 1 = 0. Then the function

fla+¢'(0)w) — i Im f(a)
Re f(a)

is in P(X) with g(0) = 1. Since g(™(0) = ¢'(0)"f™(a)/ Re f(a), since
ps(0) = pa(a), and since |¢'(0)] = 1/IIg(a), we may apply (5.1) to g in X
to have

g(w) =

pa(@)\" 1fP@)]  pe(O) g™ ()] . (2n—1
(nma)) WRef(@)  nl 52( n >

for all n > 2. This is equivalent to for z = a. If the equality holds in
at z = a, thenwe have (I) and (II) with

Q=p3¢0), R=a, A=Ref(a), and B= f(a).
The detailed proof is obvious.

Remark 1. How about the case n = 1 in [Theorem 2?7 Since for
¥ = H is valid, we have

1@l < 2[gp(z) <2

Re f(2)

Suppose that the left- and the right-most are the same in (5.6). Then
pa(z) = 1, so that © must be simply connected, and furthermore, the
equalities hold in for every poit of . The function F' in the proof
must be £, for some o € 0D because |F'(0)| = 2 (and we have no explicit

(5.6)
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form for ® = ¢.) We can also prove (the weaker result)

£ Ta(z)
Ref(z) =~ pal2)

by the same method as in the proof of Theorem 2.

Remark 2. 1t is known that P(€2) = C if the closed set C\ 2 is of logarith-
mic capacity zero. In other words, P(Q2) = Cif Q € Oyp = Og; see [AS, p.
208]. More generally, g is holomorphic and bounded in modulus by M > 0
in Q if and only if f = (g + M)/(9 — M) € P(Q). Hence one observes that
P(Q2) = C if and only if Q € Oyp.

6. Positive harmonic function in

~ Let h > 0 be harmonic in a hyperbolic domain . Then for each A(z)
of we have a holomorphic function f with Re f = h in A(z). Since the
proof of is “local” in its character, we have

o"h(z)| 1 (2n—1)! (Tg(2)\"
oo | B(z) = (n 1)l (pn(2)>

at each z € € and for each n > 1. Actually, for the present f is valid,
and the case n = 1 is obvious by pq(z) < 1. If the equality holds at a point
z € D, then pg(z) = 1, so that f can be defined in the whole Q, the slit
domain of (4.4). The equality conditions are different according as n = 1
orn > 1.

References

[AS]  Ahlfors L.V. and Sario L., Riemann Surfaces. Princeton University Press, Prince-
ton, 1960.

[C] Chua K.S., Derivatives of univalent functions and the hyperbolic metric. Rocky
Mt. J. Math. 26 (1996), 63-75.

[G] Goodman A.W., Univalent Functions. Volume 1. Mariner Publ. Co., Tampa,
Florida, 1983.

[T] Todorov P.G., New explicit formulas for the nth derivative of composite functions.
Pacific J. Math. 92 (1981), 217-236.

[Y1] Yamashita S., Gelfer functions, integral means, bounded mean oscillation, and
univalency. Trans. Amer. Math. Soc. 321 (1990), 245-259.

[Y2] Yamashita S., The Pick version of the Schwarz lemma and comparison of the
Poincaré densities. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 (1994), 291-322.



36 S. Yamashita

[Y3] Yamashita S., Goluzin’s extension of the Schwarz-Pick inequality. J. of Inequal. &
Appl. 1 (1997), 345-356.

Department of Mathematics

Tokyo Metropolitan University
Minami-Osawa, Hachioji

Tokyo 192-0397, Japan

E-mail: yamashin@comp.metro-u.ac.jp



	1. Introduction
	Theorem 1 ...

	2. Proof of Theorem 1
	3. Application of Theorem ...
	4. Hyperbolic domain
	Theorem 2 ...

	5. Proof of Theorem 2
	6. Positive harmonic function ...
	References

