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Root separation on generalized lemniscates1
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Abstract. We discuss several positivity type criteria for a polynomial to have all the
roots inside, or outside certain planar semi-algebraic domains. The main examples of such
domains are the quadrature domains for analytic functions. Compared to the classical
separation results for the disk or half-plane, in this more general setting a number of free
parameters enter into the positivity criteria. We also remark that the complements on
the Riemann sphere of these semi-algebraic domains are appropriate for solving bounded
analytic interpolation problems.

Key words: root separation, quadrature domain, positive definite matrix, bounded ana-
lytic interpolation.

1. Introduction

The prototype for the class of planar domains which make the object of
this note is a quadrature domain for complex analytic functions. We first
define the latter, more restrictive family of domains.

Let dA denote the planar Lebesgue measure. Following Aharonov and
Shapiro [2] a bounded domain \Omega of the complex plane is called a quadrature
domain if there exists a finitely supported distribution u on the complex
plane such that supp(u)\subset\Omega and the following Gaussian type quadrature
formula:

\int_{\Omega}fdA=u(f) , f\in L_{a}^{1}(\Omega) ,

holds for all integrable, complex analytic functions f in \Omega . For instance
a disk D(a, r) satisfies such a formula with u(f)=\pi r^{2}f(a) . This class of
domains turns out to have many remarkable properties and connections to
several areas of mathematics. For an account of their theory we refer to the
monograph [16], the papers [2], [6], [7], [8] and the references cited there.

For the purposes of this note we need only know that the boundary
of a quadrature domain \Omega is real algebraic (and irreducible) given by an
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equation of the form:

|P(z)|^{2}= \sum_{k=0}^{d-1}|Q_{k}(z)|^{2} , (1)

where P(z) is a monic polynomial of degree d\geq 1 and each Q_{k}(z) , 0\leq

k\leq d-1 is a polynomial of degree k . This unique form of the boundary
equation comes from operator theory (via the localized resolvent of a certain
matrix) but we do not expand these details here, see [8]. However, in view
of possible applications, it is worth recalling that every bounded planar
domain can be approximated in the Hausdorff distance by a sequence of
quadrature domains, see [6].

The aim of the present note is to show that the classical method of
separating roots due to Hermite and later refined by Routh, Hurwitz, Schur,
Cohn, Li\’enard and Chipard, and many other authors, can be combined with
the form (1) of the equation of the boundary of a planar domain \Omega , to obtain
matricial criteria for the root location of an arbitrary polynomial, with
respect to the domain \Omega . The techical tools used below (Theorem 2.2) are
elementary: the above expression of the defining equation of the domain will
be combined with a simple Hilbert space remark; then Hermite’s separation
method (with respect to the half-space), or Schur’s criterion (with respect
to the disk) will be invoked.

It is interesting to remark that simply connected quadrature domains
are in a sense “dual” to the sub-level domains \omega of the real part of a rational
function R(z) :

\omega=\{z\in C;\Re R(z)<0\} , (2)

treated by Hermite (for root separation purposes) in his original memoir
[9]. Indeed, every simply connected quadrature domain \Omega is of the form
\Omega=rC_{+} , where r is a rational function which is conformal on the upper
half plane C_{+} , see [6]. In this case a simple variable change via the map r
will reduce the root separation problem with respect to \Omega to the upper half
plane, see Proposition 2.1 below.

Via the Bezoutiant of a pair of polynomials, almost all known root
separation criteria can be put into matricial form and can be combined
with classical inertia and stability results, see [5]. This line of research was
amply developed from the perspective of matrix theory and linear control
theory; for references see [4] and [14].



Root separation on generalized lemniscates 707

For an account of the history and vast literature devoted to root location
see [10], and for an updated version [4], [3], and the references cited there.

The defining equation of type (1) of a bounded domain \Omega brings im-
mediately into discussion the recent investigations on complete Nevanlinna-
Pick kernels [1]. We illustrate below, without expanding the subject, (see
Theorem 2.5) how this leads to a simple interpolation statement on the
complement of \Omega in the Riemann sphere.

This note was completed while the second author was visiting the Royal
Institute of Technology-Stockholm. It is a pleasure to thank this institution
for hospitality, and especially Bj\"orn Gustafsson and Harold S. Shapiro for
their interest in this work.

2. Main results

Let d\geq 1 be a fixed integer and let R:Carrow C^{d} be a rational, vector
valued map with the property that \lim_{zarrow\infty}R(z)=0 . Then the open set,
which will be called a generalized lemniscate,

\Omega_{R}=\{z\in C;||R(z)||>1\}

is relatively compact in C , and it contains all the poles of R. Without loss
of generality we can assume that the vector space C^{d} is spanned by the
vectors R(z) , z\in C .

Note that this is a slightly more general set than a quadrature domain,
in which case we can take, with the notation in formula (1) above:

R(z)=( \frac{Q_{0}(z)}{P(z)}, \frac{Q_{1}(z)}{P(z)} , . , \frac{Q_{d-1}(z)}{P(z)})

Suppose first that the domain \Omega=\Omega_{R} above is a simply connected
quadrature domain obtained as the image of the upper half plane by a
rational conformal map r of degree d . There is no accident that the degree
of r and the dimension of the Euclidean space where the map R takes values
coincide, see for instance [8]. Let

f(z)= \prod_{k=1}^{n}(z-\alpha_{k})=z^{n}+c_{1}z^{n-1}+ +c_{n} , (3)

be a monic polynomial of degree n . The zero set of f will henceforth be
denoted V(f) , while the number of zeroes of f contained in a certain set A
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will be denoted by |V(f)\cap A| .
The map f(r(u)) is rational, of degree dn , and its coefficients are poly-

nomial functions of the coefficients c_{1} , . , c_{n} . The counting of the zeroes of
for in the upper half-plane can be identified, following Hermite, with the
inertia data (number of zeroes, and positive, respectively negative squares)
of an associated quadratic form. See [10] for several equivalent statements
of this fact.

Due to the injectivity of r on the upper half plane, remark that the
number of zeroes of f in the domain \Omega is equal to the number of zeroes of
for in c_{+} .

The number of zeroes of f on the boundary of \Omega depends on the double
tangency points of the domain \Omega . Indeed, recall [6] that the conformal map
r may not be injective on the boundary of the upper half plane. Specifically,
there are finitely many pairs (\sigma_{j}, \lambda_{j}) , 1\leq j\leq m , of distinct points of the
extended real axis \hat{R}=R\cup\infty , (\sigma_{j}, \lambda_{j}) , 1\leq j\leq m , with the property that
r(\sigma_{j})=r(\lambda_{j}) , 1\leq j\leq m . Except for this set, the function r is injective on
R. If one of the roots of the polynomial f coincides with one of the points
r(\sigma_{j}) , then the composed function f\circ r will have both points \sigma_{j} , \lambda_{j} in its
zero set.

In conclusion, we have proved the following proposition.

Proposition 2.1 Let r be a rational conformal map of the upper half-
plane onto the quadrature domain \Omega , and assume that \partial\Omega has m double
points (m\geq 0) . Then

|V(f)\cap\Omega|=|V(for)\cap C_{+}| ,

and

|V(f)\cap\partial\Omega|\leq|V(f\circ r)\cap\hat{R}|\leq|V(f)\cap\partial\Omega|+m .

Returning now to the general class of generalized lemniscates \Omega_{R} ass0-

ciated as before to a vector valued rational map R, we remark that a point
\alpha belongs to C\backslash \overline{\Omega_{R}} if and only if, by definition, ||R(\alpha)||<1 . In its turn, the
latter condition is equivalent to |\langle R(\alpha), v\rangle|<1 for all unit vectors v\in C^{d} ,
or at least for the vectors of the form v=R(\beta)/||R(\beta)|| , where \beta is not a
pole of at least one, or a common zero of all, entries of R. Note that in
the last formula R(\alpha) depends rationally on the root \alpha . Schur’s criterion of
separation with respect to the unit disk can then be applied, [15]. In order
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to state the main result, let us introduce the rational function

Q(z, \overline{w})=1-\langle R(z), R(w)\rangle ,

so that the domain \Omega_{R} has the defining equation

\Omega_{R}=\{z\in C;Q(z, \overline{z})<0\} .

Theorem 2.2 Let R:Carrow C^{d} be a rational function satisfying
\lim_{zarrow\infty}R(z)=0 , and let \Pi\subset C be the set of all poles and common zeroes
of R .

Then a monic polynomial f has all its roots \alpha_{1} , \ldots , \alpha_{n} in the open set
C\backslash \overline{\Omega} if and only if for every \beta\in C\backslash \Pi , the polynomial

F_{\beta}(X)= \prod_{j=1}^{n}(X-\frac{1-Q(\alpha_{j},\overline{\beta})}{\sqrt{1-Q(\beta,\overline{\beta})}}) (4)

has all its roots in the unit disk.

Proof Let f be a polynomial with all roots \alpha_{1} , \alpha_{2} , \ldots , \alpha_{n} in the set C\backslash \overline{\Omega} .
Then ||R(\alpha_{i})||<1 for all i , 1\leq i\leq n . Consequently, if \beta\in C\backslash II we obtain:

|\langle R(\alpha_{i}), R(\beta)\rangle|<||R(\beta)|| ,

which is exactly condition (4) in the statement.
Conversely, if (4) holds for all \beta\in C\backslash \Pi , then by reversing the preceding

argument we find that ||R(\alpha_{i})||<1,1\leq i\leq n . \square

Note that the polynomial F_{\beta}(X) is a symmetric function of the roots
\alpha_{j} , 1 \leq j\leq n , hence its coefficients are rational functions of c_{1} , . , c_{n} .
Therefore Schur’s criterion will involve only rational combinations of the
coefficients c_{1} , \ldots , c_{n} .

Specifically, if F(z) is a polynomial with complex coefficients of degree
d, we define the associated polynomials:

\overline{F}(z)=\overline{F(\overline{z})} , F^{*}(z)=z^{d} \overline{F}(\frac{1}{z}) ;

then the inertia of the bilinear form:

G_{F}(X, Y)= \frac{F^{*}(X)\overline{F}^{*}(Y)-F(X)\overline{F}(Y)}{1-XY} ,

gives full information about the root location of F with respect to the unit
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disk. That is, if G_{F} has d_{+} positive squares and d_{-} negative squares, then
the polynomial F has exactly d_{+} roots in the unit disk, d_{-} roots outside the
closed disk, and d-d_{+}-d_{-} roots lie on the unit circle, see [10], Proposition
XVa.

Variations of Theorem 2.2 are readily available: for instance one can
replace the rational map R(z) by a polynomial map, or instead of F_{\beta} one
can consider the polynomial involving the squares of the roots of F_{\beta} , and
so on.

If we want to have more information about the root location of the
polynomial f(z)=(z-\alpha_{1})\cdots(z-\alpha_{n}) , then the scalar products \langle R(\alpha_{j}), v\rangle ,
with v a fixed unit vector, can be replaced by an expression such as
\langle R(\alpha_{j}), S(\overline{\alpha_{j})}\rangle , where S(z) is a vector valued rational function, of norm less
than one in a large disk, where the roots are first estimated to be. Then,
by counting parameters, the degree of S can be chosen to be dependent on
n , the degree of f .

In order to state such a result, we make the following notation: for
S : Carrow C^{d} a vector valued rational map, let

F_{S}(X)= \prod_{j=1}^{n}(X-\langle R(\alpha_{j}), S(\overline{\alpha_{j}})\rangle) . (5)

Note that this polynomial in X depends rationally on the entries \alpha_{j}

and is symmetrical in them. We have then

Corollary 2.3 In the conditions of Theorem 2.2, let U=tD be a disk
centered at the origin, that contains all the roots of the polynomial f(z) .

Let S:Carrow C^{d} be a rational map of degree less than or equal to s on
each entry, satisfying ||S(z)||\leq 1 , z\in U, where we assume: (2s+1)^{d}>dn .

Then, with the above notations, we have:

|V(f) \cap\Omega_{R}|=\max_{S}|V(F_{S})\backslash \overline{D}| ,

and

|V(f) \backslash \overline{\Omega_{R}}|=\min_{S}|V(F_{S})\cap D| .

Proof Let d_{+}=|V(f)\backslash \overline{\Omega_{R}}| and d_{-}=|V(f)\cap\Omega_{R}| .
Since ||S(\overline{\alpha_{j}})||\leq 1 for all j , 1\leq j\leq n , we have \langle R(\alpha_{j}), S(\overline{\alpha_{j}})\rangle)\leq

||R(\alpha_{j})|| . Therefore, the polynomial F_{S} has at least d_{+} zeroes in the unit
disk and at most d_{-} zeroes ouside its closure.
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To see that these bounds are attained, we remark that, due to the
degree assumption, the map S(z) can be chosen to have prescribed values
at every point \overline{\alpha_{i}} , 1\leq j\leq n . Thus we can choose the values S(\overline{\alpha_{j}}) so that
\langle R(\alpha_{j}), S(\overline{\alpha_{j}})\rangle)=||R(\alpha_{j})|| . \square

Going into another direction, it is easy to establish sufficient criteria
for the roots of the polynomial f to be all contained in the exterior of \overline{\Omega} .
Let us denote the defining rational map by R(z)=(R_{1}(z), \ldots, R_{d}(z)) .

Corollary 2.4 In the conditions of Theorem 2.2, let a_{i} , 1\leq i\leq d , be
positive numbers satisfying a_{1}^{2}+a_{2}^{2}+\cdot\cdot+a_{d}^{2}=1 .

Define the polynomials:

F_{i}(X)= \prod_{j=1}^{n}(X-\frac{R_{i}(\alpha_{j})}{a_{i}}) , 1\leq i\leq d . (6)

If the roots of each F_{i} , 1\leq i\leq d , are contained in the unit disk, then
the roots of f are contained in C\backslash \overline{\Omega} .

Proof. It is sufficient to remark that, under the assumption for the roots
of F_{j} , for each fixed j , 1\leq j\leq n , we have

||R( \alpha_{j})||^{2}\leq\sum_{i=1}^{d}||R_{i}(\alpha_{j})||^{2}<\sum_{i=1}^{d}a_{i}^{2}=1 .

\square

Henceforth we denote by \tilde{C}=C\cup\infty the Riemann sphere. Without
aiming at full generality, we consider below a bounded interpolation problem
on the complement \tilde{C}\backslash \Omega of a quadrature domain \Omega with smooth boundary,
defined by the equation:

Q(z, ^{\overline{Z}})=|P(z)|^{2}- \sum_{k=0}^{d-1}|Q_{k}(z)|^{2}<0 . (7)

Recall, cf. formula (1), that P(z) is a degree d polynomial with all roots
contained in \Omega , while Q_{k}(z) are polynomials of degree exactly equal to
k , 0\leq k\leq d-1 .

Theorem 2.5 Let \Omega be a simply-connected, smooth quadrature domain of
equation (7). Let a_{i}\in\Omega^{c}=\tilde{C}\backslash \Omega , 1\leq i\leq n , be distinct points and let
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b_{i}\in D , 1\leq i\leq n .
Then there exists an analytic function f : \Omega^{c}arrow D satisfying the

interpolation constraints f(a_{i})=b_{i} , 1\leq i\leq n , if and only if the matrix

( \frac{1-b_{i}\overline{b_{j}}}{Q(a_{i},\overline{a_{j}})})_{i,j=1}^{n}

is non-negative definite.
Proof According to the main result of [1], we only have to prove that the
bounded multiplier algebra of the Hilbert space H_{1} of analytic functions
with reproducing kernel

\frac{P(z)\overline{P(w)}}{Q(z,\overline{w})} , z , w\in\Omega^{c} ,

coincides with H^{\infty}(\Omega^{c}) . Indeed, due to formula (7), this kernel has the
complete Nevanlinna-Pick property (in the terminology of [1]).

The identification of the multiplier space can be done directly, by an
inspection of the singularity of \frac{1}{Q(z,\overline{w})} along the diagonal, at boundary points
of \Omega^{c} , supposed by assumption to be smooth, or via operator theory, as
sketched below.

Let T be the irreducible hyponormal operator with rank one self-com-
mutator [T^{*}, T]=\xi\otimes\xi and principal function equal to the characteristic
function of \Omega . According to [13], the defining equation of the domain \Omega is
related to the operator T by the equation:

\frac{P(z)\overline{P(w)}}{Q(z,\overline{w})}=1+\langle(T-z)^{-1}\xi, (T-w)^{-1}\xi\rangle , z , w\in\Omega^{c} (8)

Following an idea of D. Xia, cf. the references in [12], we can represent
the operator T as multiplication by the complex variable z on a Hilbert
space H_{2} with reproducing kernel \frac{P(z)\overline{P(w)}}{Q(z,\overline{w})} supported by the boundary \partial\Omega .
This analytic model provides in particular a similarity between T and the
standard Hardy space shift M_{z}\in L(H^{2}(\Omega)) , for details see [12].

On the other hand the spaces H_{1} and H_{2} are in Grothendieck-K\"othe du-
ality, hence H_{1} is isomorphic to H^{2}(\Omega^{c}) , and this implies that the multiplier
algebra of H_{1} is precisely H^{\infty}(\Omega^{c}) .

Indeed, let us consider the direct sum Hilbert space K=C\oplus H_{2} . Then
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formula (8) yields:

\frac{P(z)\overline{P(w)}}{Q(z,\overline{w})}=\langle 1\oplus(T-z)^{-1}\xi, 1\oplus(T-w)^{-1}\xi\rangle .

A generic element in the reproducing Hilbert space H_{1} is of the form

f(z)= \sum_{j=1}^{m}c_{j^{\frac{P(z)\overline{P(w_{j})}}{Q(z,\overline{w_{j}})}}}=\langle 1\oplus(T-z)^{-1}\xi, x\rangle ,

where x= \sum_{j=1}^{m}\overline{c_{j}}(1\oplus(T-w_{j})^{-1}\xi) , and w_{j} are distinct points of \Omega^{c} .
Without loss of generality we can change the constant c_{j} corresponding to
the point at infinity (or add it), so that \sum_{j=1}^{m}c_{j}=0 . In this way the first
component of x is zero and moreover ||f||_{H_{1}}=||x||_{H_{2}} .

Let us denote \Gamma=\partial\Omega and consider the Lebesgue space L^{2}(\Gamma) with
respect to the arc length element. Let g(z) be an analytic function defined
in a neighbourhood of \overline{\Omega} . The main result of [12] asserts that the norms
||g||_{2,\Gamma} and ||g(T)\xi|| are equivalent.

Let f be an analytic function outside \Omega , vanishing at infinity and let g
be an analytic function defined in a neighbourhood of \overline{\Omega} . Then:

\int_{\Gamma}f(z)g(z)dz=-2\pi i\langle g(T)\xi, x\rangle .

The first bilinear form above is what we called the Grothendieck-K\"othe
pairing and it is well known to be non-degenerated. Since the second duality
pair above is non-degenerated, too and the norms ||g||_{2,\Gamma} and ||g(T)\xi|| are
equivalent, we infer that there are positive constants c , C with the property
that:

c||f||_{2,\Gamma}\leq||f||_{H_{1}}=||x||\leq C||f||_{2,\Gamma} .

In particular this implies that the multiplier algebra of the Hilbert space
H_{1} of analytic functions on \Omega^{c} is exactly H^{\infty}(\Omega^{c}) . \square

Note that in Theorem 2.5 above the necessary and sufficient condi-
tion in the statement requires only the defining function of the boundary,
and not more involved kernels, such as the Green function, the Szeg\"o or
Bergman kernels of \Omega^{c} . We will resume elsewhere this interpolation subject
on quadrature domains, in more generality and full detail.
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3. Examples

We consider below two examples, in low degrees, which illustrate the
advantages and the limits of Proposition 2.1, respectively Theorem 2.2.

3.1. Let z=\phi(w)=w^{2}+rw , r>2 , be the conformal map of the unit
disk D onto a quadrature domain \Omega of equation:

|z|^{4}-(2+r^{2})|z|^{2}-r^{2}z-r^{2}\overline{z}+1-r^{2}<0 ,

see [8]. Let f(z)=z^{2}+c_{1}z+c_{2} be a degree two polynomial whose roots
we want to locate with respect to \Omega .

According to Proposition 2.1, we have to compute the composed map:

f\circ\phi(w)=(w^{2}+rw)^{2}+c_{1}(w^{2}+rw)+c_{2}

=w^{4}+2rw^{3}+(r^{2}+c_{1})w^{2}+rc_{1}w+c_{2} ,

and to the latter to apply Schur’s criterion.
Note that in this case there are no multiple points on the boundary, so

that:

|V(f)\cap\Omega|=|V(f\circ\phi)\cap D| ,

and

|V(f)\cap\partial\Omega|=|V(f\circ\phi)\cap\partial D| .

3.2. Suppose now that we have a quadrature domain \Omega of equation

|z|^{4}-z^{2}-\overline{z}^{2}-r^{2}|z|^{2}<0 , r>\sqrt{2} ,

see again [8]. But this time suppose that we do not know the conformal
map of the disk onto \Omega .

First we write the equation of \Omega in canonical form:

|z|^{4}-z^{2}-\overline{z}^{2}-r^{2}|z|^{2}=(z^{2}-1) (\overline{z}^{2}-1) -r|z|^{2}-1 ,

so that an associated rational map is:

R(z)=( \frac{rz}{z^{2}-1}, \frac{1}{z^{2}-1}) .

and \Omega=\{z;||R(z)||>1\} .
Let f(z)=z^{2}+c_{1}z+c_{2}=(z-\alpha_{1})(z-\alpha_{2}) be the polynomial whose roots
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we want to locate (with respect to \Omega ) and let w=(\overline{u}, \overline{v}) be an arbitrary
unit vector in C^{2} .

According to (a weaker version of) Theorem 2.2, we have to form the
polynomial:

F_{w}=(X-\langle R(\alpha_{1}), w\rangle)(X-\langle R(\alpha_{2}), w\rangle)

=(X- \frac{r\alpha_{1}u+v}{\alpha_{1}^{2}-1})(X-\frac{r\alpha_{2}u+v}{\alpha_{2}^{2}-1})=X^{2}-d_{1}X+d_{2} ,

where:

d_{1}=- \frac{r(c_{1}-c_{2}c_{1})u+(c_{1}^{2}-2c_{2}-2)v}{c_{2}^{2}-c_{1}^{2}+2c_{2}+1} ,

and

d_{2}= \frac{r^{2}c_{2}u^{2}-rc_{1}uv+v^{2}}{c_{2}^{2}-c_{1}^{2}+2c_{2}+1} .

Thus, by applying Schur’s criterion, both roots of f lie outside \overline{\Omega} if and
only if |d_{2}|^{2}+|d_{1}-\overline{d_{1}}d_{2}|<1 , for all unit vectors w=(\overline{u}, \overline{v}) .

Our root separation problem is thus reduced to a standard extremum
problem, that of finding the minimum:

min (1-|d_{2}|^{2}-|d_{1}-\overline{d_{1}}d_{2}|)>0 .
|u|^{2}+|v|^{2}=1
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