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Local equivalence of Sacksteder and
Bourgain hypersurfaces
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Abstract. Finding examples of tangentially degenerate submanifolds (submanifolds
with degenerate Gauss mappings) in an Euclidean space R^{4} that are noncylindrical and
without singularities is an important problem of differential geometry. The first example
of such a hypersurface was constructed by Sacksteder in 1960. In 1995 Wu published an
example of a noncylindrical tangentially degenerate algebraic hypersurface in R^{4} whose
Gauss mapping is of rank 2 and which is also without singularities. This example was
constructed (but not published) by Bourgain.

In this paper, the authors analyze Bourgain’s example, prove that, as was the case
for the Sacksteder hypersurface, singular points of the Bourgain hypersurface are located
in the hyperplane at infinity of the space R^{4} , and these two hypersurfaces are locally
equivalent.

Key words: Gauss mapping, varieties with degenerate Gauss mappings, hypercubic, Sack-
steder, Bourgain.

1. It is important to find examples of tangentially degenerate submanifolds
in order to understand the theory of such manifolds. These examples prove
the existence of tangentially degenerate submanifolds and help to illustrate
the theory. The first known example of a tangentially degenerate hyper-
surface of rank 2 without singularities in R^{4} was constructed by Sacksteder
[S60]. This example was examined from the differential geometry point
of view by Akivis in [A87]. In particular, Akivis proved that the Sackst-
eder hypersurface has no singularities since they “went to infinity” In the
same paper, Akivis presented a series of examples generalizing Sacksteder’s
example in R^{4} , constructed a new series of examples of three-dimensional
submanifolds V^{3}\subset P^{n}(\mathbb{R}) , n\geq 4 , of rank 2, whose focal surfaces are imag-
inary, and proved existence of submanifolds of this kind. Note that more
examples of tangentially degenerate submanifolds without singularities can
be found in [I98, 1995 I99b]. The examples are essentially based on classical
Cartan’s hypersurfaces (see [C39]).

Mori [M94] claims that he constructed “a one-parameter family of com-
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plete nonruled deformable hypersurfaces in R^{4} with rank r=2 almost
everywhere” However, it follows immediately from his formulas that the
hypersurfaces of his family are ruled hypersurfaces. Moreover, they are
cylinders.

Also much progress on the study of tangentially degenerate submani-
folds over the complex numbers has been made in [GH79], [L99], and [AGL].
In these papers and in the papers [FW95], [W95], and [WZOI], one can find
more examples of tangentially degenerate submanifolds over the complex
numbers.

Recently Wu [W95] published an example of a noncylindrical tangen-
tially degenerate algebraic hypersurface in an Euclidean space R^{4} which has
a degenerate Gauss mapping but does not have singularities. This example
was constructed (but not published) by Bourgain (see also [I98, I99a, I99b] ).
In the present paper, we investigate Bourgain’s example from the point of
view of the paper [A87] (see also Section 4.7 of our book [AG93]). In par-
ticular, we prove that, as was the case for the Sacksteder hypersurface, the
Bourgain hypersurface has no singularities since they “went to infinity”
Namely this analysis suggested an idea that Bourgain’s and Sacksteder’s
examples must be equivalent. Moreover, this analysis showed that a hyper-
surface constructed in these examples is torsal, i.e., it is stratified into a
one-parameter family of plane pencils of straight lines.

In addition, at the end of our paper we prove that the examples of
Bourgain and Sacksteder are locally equivalent.

2. In Cartesian coordinates x_{1} , x_{2} , x_{3} , x_{4} of the Euclidean space R^{4} , the
equation of the Bourgain hypersurface B is

x_{1}x_{4}^{2}+x_{2}(x_{4}-1)+x_{3}(x_{4}-2)=0 (1)

(see [W95] or [198, I99a, I99b] ). Equation (1) can be written in the form

x_{1}x_{4}^{2}+(x_{2}+x_{3})x_{4}-(x_{2}+2x_{3})=0 . (2)

Make in (2) the following admissible change of Cartesian coordinates:

x_{2}+x_{3}arrow x_{2} , x_{2}+2x_{3}arrow x_{3} .

Then equation (2) becomes

x_{1}x_{4}^{2}+x_{2}x_{4}-x_{3}=0 . (3)
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Introduce homogeneous coordinates in R^{4} by setting x_{i}= \frac{z_{i}}{z_{0}}, i=
1,2,3,4 . Then equation (3) takes the form

f=z_{1}z_{4}^{2}+z_{0}z_{2}z_{4}-z_{0}^{2}z_{3}=0 . (4)

Equation (4) defines a cubic hypersurface F in the space \overline{R}^{4}=R^{4}\cup P_{\infty}^{3}

which is an enlarged space R^{4} , i.e., it is the space R^{4} enlarged by the
hyperplane at infinity P_{\infty}^{3} (whose equation is z_{0}=0 ).

Denote by A_{\alpha} , \alpha=0,1,2,3,4 , fixed basis points of the space \overline{R}^{4}

Suppose that these points have constant normalizations, i.e., that dA_{\alpha}=0 .
An arbitrary point z\in\overline{R}^{4} can be written in the form z= \sum_{\alpha}z_{\alpha}A_{\alpha} . We
will take a proper point of the space \overline{R}^{4} as the point A_{0} , and take points at
infinity as the points A_{1} , A_{2} , A3, A_{4} .

Equation (4) shows that the proper straight line A_{0}\wedge A_{4} defined by the
equations z_{1}=z_{2}=z_{3}=0 and the plane at infinity defined by the equations
z_{0}=z_{4}=0 belong to the hypersurface F defined by equation (4).

We write the equations of the hypersurface F in a parametric form. To
this end, we set

z_{0}=1 , z_{4}=p , z_{1}=u , z_{3}=pv .

Then it follows from (4) that

z_{2}=v-pu .

This implies that an arbitrary point z\in F can be written as

z=A_{0}+uA_{1}+vA_{2}+p(A_{4}-uA_{2}+vA_{3}) . (5)

The parameters p , u , v are independent nonhomogeneous parameters on
the hypersurface F

3. Let us find singular points of the hypersurface F Such points are
defined by the equations \frac{\partial f}{\partial z_{\alpha}}=0 . It follows from (4) that

\{\begin{array}{l}\frac{\partial f}{\partial z_{0}}=z_{2}z_{4}-2z_{0}z_{3},\frac{\partial f}{\partial z_{1}}=z_{4}^{2}, \frac{\partial f}{\partial z_{2}}=z_{0}z_{4},\frac{\partial f}{\partial z_{4}}=2z_{1}z_{4}+z_{0}z_{2}.\end{array} \frac{\partial f}{\partial z_{3}}=-z_{0}^{2} , (6)
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All these derivatives vanish simultaneously if and only if z_{0}=z_{4}=0 . Thus
the 2-plane at infinity \sigma=A_{1}\wedge A_{2}\wedge A_{3} is the locus of singular points of
the hypersurface F .

Consider a point B_{0}=A_{0}+pA_{4} on the straight line A_{0}\wedge A_{4} . By (4),
to the point B_{0} there corresponds the straight line a(p) in the 2-plane at
infinity \sigma , and the equation of this straight line is

p^{2}z_{1}+pz_{2}-z_{3}=0 . (7)

The family of straight lines a(p) depends of the parameter p, and its envelope
is the conic C defined by the equation

z_{2}^{2}+4z_{1}z_{3}=0 . (8)

The straight line a(p) is tangent to the conic C at the point

B_{1}(p)=A_{1}-2pA_{2}-pA_{3}2 . (9)

Equation (9) is a parametric equation of the conic C . The point

\frac{dB_{1}}{dp}=-2(A_{2}+pA_{3}) (10)

belongs to the tangent line to the conic C at the point B_{1}(p) .
Consider the 2-planes \tau=B_{0}\wedge B_{1}\wedge\frac{dB_{1}}{dp} . Such 2-planes are completely

determined by the location of the point B_{0} on the straight line A_{0}\wedge A_{4} ,
and they form a one-parameter family. All these 2-planes belong to the
hypersurface F In fact, represent an arbitrary point z of the 2-plane \tau in
the form

z= \alpha B_{0}+\beta B_{1}-\frac{1}{2}\dot{\gamma}\frac{dB_{1}}{dp}

(10)
=\alpha A_{0}+\beta A_{1}+(-2p\beta+\gamma)A_{2}+(-p^{2}\beta+p\gamma)A_{3}+p\alpha A_{4} .

The coordinates of the point z are

z_{0}=\alpha , z_{1}=\beta , z_{2}=\gamma-2p\beta , z_{3}=p(\gamma-p\beta) , z_{4}=p\alpha . (12)

Substituting these values of the coordinates into equation (4), one can see
that equation (4) is identically satisfied. Thus the hypersurface F is foliated
into a one-parameter family of 2-planes \tau(p)=B_{0}\wedge B_{1}\wedge\frac{dB_{1}}{dp} .

In a 2-plane \tau(p) consider a pencil of straight lines with center at B_{1} .
The straight lines of this pencil are defined by the point B_{1} and the point
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B_{2}=A_{2}+pA_{3}+q(A_{0}+pA_{4}) . The straight lines B_{1}\wedge B_{2} depend on two
parameters p and q . These lines belong to the 2-plane \tau(p) , and along with
this 2-plane they belong to the hypersurface F Thus they form a foliation
on the hypersurface F .

We prove that this foliation is a Monge-Amp\‘ere foliation. In the space
\overline{R}^{4} , we introduce the moving frame formed by the points

\{\begin{array}{l}B_{0}=A_{0}+pA_{4},B_{1}=A_{1}-2pA_{2}-pA_{3}2,B_{2}=A_{2}+pA_{3}+qA_{0}+pqA_{4},B_{3}=A_{3},B_{4}=A_{4}.\end{array} (13)

It is easy to prove that these points are linearly independent, and the points
A_{\alpha} can be expressed in terms of the points B_{\alpha} as follows

\{\begin{array}{l}A_{0}=B_{0}-pB_{4},A_{1}=B_{1}+2pB_{2}-pB_{3}2-2pqB_{0},A_{2}=B_{2}-pB_{3}-qB_{0},A_{3}=B_{3},A_{4}=B_{4}.\end{array} (14)

Consider a displacement of the straight lines B_{1}\wedge B_{2} along the hyper-
surface F . Suppose that Z is an arbitrary point of this straight line,

Z=B_{1}+\lambda B_{2} . (15)

Differentiating (15) and taking into account (14) and dA_{\alpha}=0 , we find that

dZ\equiv(2qdp+\lambda dq)B_{0}+\lambda dp(B_{3}+qB_{4}) (mod B_{1} , B_{2} ). (16)

It follows from relation (16) that
1. A tangent hyperplane to the hypersurface F is spanned by the points

B_{1} , B_{2} , B_{0} , and B_{3}+qB_{4} . This hyperplane is fixed when the point
Z moves along the straight line B_{1}\wedge B_{2} . Thus the hypersurface F is
tangentially degenerate of rank 2, and the straight lines B_{1}\wedge B_{2} form
a Monge-Amp\‘ere foliation on F .
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2. The system of equations

\{

2qdp+\lambda dq=0 ,

\lambda dp=0

(17)

defines singular points on the straight line B_{1}\wedge B_{2} , and on the hy-
persurface F it defines torses. The system of equations (17) has a
nontrivial solution with respect to dp and dq if and only if its determi-
nant vanishes: \lambda^{2}=0 . Hence by (15), a singular point on the straight
line B_{1}\wedge B_{2} coincides with the point B_{1} . For \lambda=0 , system (17)
implies that dp=0 , i.e., p=const . Thus it follows from (9) that the
point B_{1}\in C is fixed, and as a result, the torse corresponding to this
constant parameter p is a pencil of straight lines with center at B_{1}

located in the 2-plane \tau(p)=B_{0}\wedge B_{1}\wedge B_{2} .
3. All singular points of the hypersurface F belong to the conic C\subset P^{\infty}

defined by equation (8). Thus if we consider the hypersurface F in an
Euclidean space R^{4} , then on F there are no singular points in a proper
part of this space.

4. The hypersurface F considered in the proper part of an Euclidean
space is not a cylinder since its rectilinear generators do not belong to
a bundle of parallel straight lines. A tw0-parameter family of rectilin-
ear generators of F decomposes into a one-parameter family of plane
pencils of parallel lines.

4. No one of properties 1-4 characterizes Bourgain’s hypersurfaces com-
pletely: they are necessary but not sufficient for these hypersurfaces. The
following theorem gives a necessary and sufficient condition for a hypersur-
face to be of Bourgain’s type.

Theorem 1 Let l be a proper straight line of an Euclidean space R^{4} en-
larged by the plane at infinity P_{\infty}^{3} , and let C be a conic in the 2-plane \sigma .
Suppose that the straight line l and the conic C are in a projective corre-
spondence. Let B_{0}(p) and B_{1}(p) be two correspondinq points of l and C,
and let \tau be the 2-plane passing through the point B_{0} and tangent to the
conic C at the point B_{1} . Then
(a) when the point B_{0} is moving along the straight line l , the plane \tau

describes a Bourgain hypersurface, and
(b) any Bourgain hypersurface satisfies the above construction.
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Proof. The necessity (b) of the theorem hypotheses follows from our previ-
ous considerations. We prove the sufficiency (a) of these hypotheses. Take
a fixed frame \{A_{u}\} , u=0,1,2,3,4 , in the space R^{4} enlarged by the plane
at infinity P_{\infty}^{3} as follows: its point A_{0} belongs to l , the point A_{4} is the point
at infinity of l , and the points A_{1} , A_{2} , and A3 are located at the 2-plane
at infinity \sigma in such a way that a parametric equation of the straight line
l is B_{0}=A_{0}+pA_{4} , and the equation of C has the form (9). The plane
\tau is defined by the points B_{0} , B_{1} , and \frac{dB_{1}}{dp} . The parametric equations of
this plane have the form (12). Excluding the parameters \alpha , \beta , \gamma , and p
from these equations, we will return to the cubic equation (4) defining the
Bourgain hypersurface B in homogeneous coordinates. \square

The method of construction of the Bourgain hypersurface used in the
proof of Theorem 1 goes back to the classical methods of projective geometry
developed by Steiner [St32] and Reye [R68].

5. In conclusion we prove the following theorem.

Theorem 2 The Sacksteder hypersurface S and the Bourgain hypersur-
face B are locally equivalent, and the former is the standard covering of the
latter.

Proof. In an Euclidean space R^{4} , in Cartesian coordinates x_{1} , x_{2} , x_{3} , x_{4} ,
the equation of the Sacksteder hypersurface S (see [S60]) has the form

x_{4}=x_{1} cos x_{3}+x_{2} sin x_{3} . (18)

The right-hand side of this equation is a function on the manifold M^{3}=

\mathbb{R}^{2}\cross S^{1} since the variable x_{3} is cyclic. Equation (18) defines a hypersurface
on the manifold M^{3}\cross \mathbb{R} . The circumference S^{1}=\mathbb{R}/2\pi \mathbb{Z} has a natural
projective structure of P^{1} . In the homogeneous coordinates x_{3}= \frac{u}{v} , the
mapping S^{1} –

P^{1} , can be written as x^{3}
– (u, v) . By removing the point

\{v=0\} from S^{1} , we obtain a l-t0-l correspondence

S^{1}-\{v=0\}rightarrow \mathbb{R}^{1} . (19)

Now we can consider the Sacksteder hypersurface S in R^{4} or, if we enlarge
R^{4} by the plane at infinity P_{\infty}^{3} , in the space P^{4} .

Next we show how by applying the mapping S^{1}
–

P^{1} , we can trans-
form equation (18) of the Sacksteder hypersurface S into equation(4) of the
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Bourgain hypersurface B . We write this mapping in the form

x_{3}=2 \arctan\frac{u}{v} , \frac{u}{v}\in R , |x_{3}|<\pi . (20)

It follows from (20) that

\{\begin{array}{l}\frac{u}{v}=tan\frac{x_{3}}{2},cosx_{3}=\frac{1-tan^{2}\frac{x_{3}}{2}}{1+tan^{2}\frac{x_{3}}{2}}=\frac{v^{2}-u^{2}}{v^{2}+u^{2}},sinx_{3}=\frac{2tan\frac{x_{3}}{2}}{1+tan^{2}\frac{x_{3}}{2}}=\frac{2uv}{v^{2}+u^{2}}.\end{array} (21)

Substituting these expressions into equation (18), we find that

x_{4}(u^{2}+v^{2})=x_{1}(v^{2}-u^{2})+2x_{2}uv ,

i.e.,

(x_{4}+x_{1})u^{2}+(x_{4}-x_{1})v^{2}-2x_{2}uv=0 . (22)

Make a change of variables

z_{1}=x_{4}-x_{1} , z_{2}=-2x_{2} , z_{3}=x_{1}+x_{4} , z_{0}=u , z_{4}=v .

As a result, we reduce equation (22) to equation (4). It follows that the
Sacksteder hypersurface S defined by equation (18) is locally equivalent to
the Bourgain hypersurface defined by equation (4).

Note also that if the cyclic parameter x_{3} changes on the entire real axis
\mathbb{R} , then we obtain the standard covering of the Bourgain hypersurface B by
means of the Sacksteder hypersurface S. \square
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