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Analytic foliations and center problem
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Abstract. We prove a real version of Lins Neto’s synthesis Theorem. The technics
used, allow us to give a foliation without Liouvillian first integral and which restricts to
center on the fixed point set of many antiholomorphic involutions leaving F invariant.
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1. Introduction

Let F and o be germs of holomorphic foliation and antiholomorphic
involution at 0 € C2. It is well known that if 6*F = F then F restricts
to a real foliation on the fixed point set of o (Fix,). We say that Fpiy,
is monodromic if to each germ of real analytic curve 7 : Ry — Fix, (o)
corresponds a Poincaré return map P (for ¢t small enough the leaf of F,
which passes through 7(¢) cuts again 7(R{) at P(7(¢))). When P is the
germ of identity, we say that JF/pi. is a center. The simplest example of
center is the one defined by the levels of the function f(x,y) = z2 + 2, or
equivalently by the 1-form w = zdx + ydy. The complexification of F,,,
denoted FC, is the germ of foliation at 0 € C? defined by 1-form w€, whose
restriction on R(Q) is w. This example corresponds to the case where ]-"E has
two holomorphic invariant curves and has the following property (cf. 4.2):

1. for each antiholomorphic involution o which does not fix any invariant
curve of FC and such that o*FC = FC FC /Fix, 18 & center.

When FC has two invariant tangent curves (node), according to Brunella,
, the assumption of center and some generic conditions on w ensure that
there exists an elementary mutiform first integral for w [CM]. We are inter-
ested in centers whose complexification has four invariant curves. That is
the simplest case after the one described above, since the complexification
of a germ of real analytic foliation which is a center has an even number of
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invariant curves (the image of an invariant curve by the standard antiholo-
morphic involution (¢g : (z,y) — (Z,%)) of C2 is an invariant curve and
the presence of invariant curve fixed by ¢g is an obstruction to the mon-
odromicity). The foliation FC, where w = d(z? + y?), is fixed by ¢¢ and
oo : (z,y) — (Z,v/—17) has a holomorphic first integral. More generally it
is proved in that each 1-form w such that the reduction of singularities
of FC is a blowing up, FE has four invariant curves and is fixed by the
last two antiholomorphic involutions, has a holomorphic first integral. The
involutions which leave the foliation fixed are the reason of the existence of
multiform first integrals in this example. Thus we can hope that a foliation
has an elementary or a Liouvillian first integral as soon as it has “many
sections” in which it restricts to centers. The following result proves, in
general, we do not have such an answer:

Proposition 1.1 There is a germ of foliation F at 0 € C? which satisfies
the following properties:

1. For any antiholomorphic involution o which leaves F invariant and
does not fix an invariant curve of F, F/pix, 1S a center.

2. There are two antiholomorphic involutions o1 and o9 which leave F
invariant, which are not conjugate by a holomorphic diffeomorphism
tangent to F and such that F, Fixe, » k=1,2, are centers.

3. F has not a Liouvillian first integral.

4. F has four invariant curves.

Thus we have an example of foliation with a maximal number of “real
sections”, which are not conjugate by any diffeomorphism tangent to the
foliation, while the foliation restricts to center and does not have a Liou-
villian first integral. The exceptional divisor of the minimal reduction of
singularities of a node center has at least two components and some corners
which are linearizable and resonant. Thus the following question is natural:
do there exist some multiform first integrals related to the types of singular-
ities in the corners (linearizable and non-resonant) if F$ has four invariant
curves? The next result gives a negative answer to this question:

Proposition 1.2 There is a real analytic center w such that:
1. FS has four invariant curves,
2. F, has no Liouvillian first integral,
3. the exceptional divisor of the minimal reduction of singularities of fg
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has two components and its corner is linearizable and non resonant.

The proofs of these results consist of building some non dicritical holo-
morphic 1-forms which have some basic properties (cf. 2). For this we gener-
alize a real version of Lins Neto’s synthesis theorem, established by Berthier,
Cerveau and Lins-Neto in a special case. For the understanding of the
assumptions of this, we will describe, in Section 2, the properties of blowing
up of a foliation and antiholomorphic involution which leaves it invariant.
Let 7 : C% — C% be a finite sequence of blowings up, S a finite set of points
consisting of the corners and those points of 7=1(0), Cy,...,C, the irre-
ductible components of 7~!(0) and some group homomorphisms Holy, from
the Poincaré group m;(Ck \ S) to Diff (Cy), where Diff (Cyp) is the group of
holomorphic diffeomorphisms of Cy. We assume that equivariance, com-
patibility and Chern conditions ([Definition 2.5 hold. These conditions are
natural properties of singularities and holonomy groups of the complexifi-
cation of real analytic foliation. Then we have the following result which
generalizes the special case of a blowing-up [BCL]:

Theorem 1.3 (Real synthesis theorem) There is a germ of real analytic
1-form w at 0 in R? such that:
1. up to a homeomorphism 7 is the minimal reduction of singularities of
]—"E and the set of singularities of .7:"5, denoted Sing .7:'3, is equal to S,
2. FC is not dicritical,
3. Holg is the holonomy representation of Cj.

In Section 3, we prove the previous theorem which is the main result
of this paper. Using this theorem, we will show Propositions and
respectively in Sections 5 and 6.

The author is very grateful to M. Berthier, D. Cerveau and the referee
for their helpful comments.

2. Properties of germs of real analytic foliations

Now we describe the blowing up of an antiholomorphic involution in
order to understand the germs of foliations at 0 obtained by complexification
of real analytic foliations. For this we fix the following notations: i = /—1
and ¢p : (z,y) — (&, ) for the standard antiholomorphic involution of C2.
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2.1. Blowing up of antiholomorphic involution

Let F be a foliation and ¢ be an antiholomorphic involution on a com-
plex surface M, such that ¢*F = F. Let m be a singular point and ¢(m)
its image by ¢. We have the following lemma:

Lemma 2.1 There are some local coordinates (Zm, ym) and (Tg(m), Yg(m))
at m and ¢(m) respectively, such that:

(x¢(m)’ y¢(m)) o ¢ o (Tm, ym)_l = ¢o.

Proof. Let (C2,¢) and (Ci(m), ¢') be two germs of local charts of M at
m and ¢(m) respectively. For a suitable choice of endomorphism (resp. en-
domorphisme with real coefficients) of C2, 6, (resp. R) A =6 o (idc(z) +Ro
do o (¢ 0o p o)) is a diffeomorphism which conjugates ¢’ o ¢ o ™! to
®o- 0

Let m = T, g(m) M = Mm7¢(m) — M be a morphism obtained by
blowing up of M at m and ¢(m) simultaneously. Using the previous lemma
it 1s easy to prove:

Lemma 2.2 There is only one antiholomorphic involution q~5 on M such
that pom = mo ¢.

Remark 2.3 The invariance of F under ¢ 1mphes that the strict trans-
form of F by v, F = Fp, #(m) 18 invariant under ¢. In particular the singular
points and the invariant curves are globally invariant. Furthermore, if ¥ is
a curve tranverse to F so is ¢().

2.2. Properties of complexifications of real analytic foliations
Using the process above we obtain the following version of Seidenberg’s
reduction theorem of singularities [MM]:

Theorem 2.4 Let F be a foliation on C% invariant under ¢o. There is a
holomorphic proper map w : C% — C2 and a foliation FC (strict transform
of FC by ) such that:
1. 7 is given by a finite number of blowings-up,
7=1(0) is a divisor with normal crossings,
$oom = o o,
FC s reduced,
¢ FC = FC.

ATl
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2.2.1. Equivariance of the holonomy generators. Let C be a com-
ponent of 771(0) which is assumed to be non dicritical, P € Cy \ Sing F€
and ¥ : Cy — C a germ of holomorphic transversal at P whose image will
be also denoted E The invariance of € under ¢ Implies that:
1. the map ¥’ from Cy to Co which associates ¢g o £() to y is a holo-
morphic transversal of FC at fi(P),

2. for all closed path « of Cy \ Sing FC, with base point P, the following
diagram is commutative:

yooo_% oy
lh‘r lhfk('Y)
y %,

where h, (resp. hj,(,)) is the holonomy diffeomorphism associated to v
(resp. to fi(7)). If we identify ¥ and ¥’ to Cy the previous diagram implies
the equivariance of the holonomy generators:

Ev(z) = hy, () (2)-

2.2.2. Chern conditions. If Cj N Sing F€ = {P,..., P}, then we
choose the closed path «; so that its index around P; is 4;,. We have the
following property which will be called the Chern condition:

either 1. there is 0 < j < r such that h,; is holomorphically linearizable,
or 2. for all 0 < j < r there is p; < 0 such that ) %_; u; = Chern(Cy),
where (h,,)'(0) = exp (2imp;) and Chern(Cy) is the Chern class of Cy.

Indeed according to Poincaré [ko] if condition 1 is not, then each exp (2imp;)
has modulus 1, this means that p; is real. The Camacho-Sad index [CS] of
FC at P; relatively to C, is written:

Ip,(FC,Ck) = nj + nj,

where n; is in Z. Again, according to Poincaré if the germ of FC at
P; is not linearisable, then p; + n; is negative. The Camacho-Sad’s index
theorem ensures:

Chern(Cy) Z Wi+ nj.
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Thus, up to to put u; + n; in the place of p1j, we have either condition 1
or 2.

Conversely, let 7 : C% — C2, be a morphism given by a finite number of
blow up and let C1,...,C, be the irreductible components of 7=1(0). Let
S be a finite set, which consists of corners and those points of 7=1(0) and
for each k in I = {1,...,n}, let Holy : m1(Cx \ S) — Diff(Cp) be a group
representation. The properties of foliations, obtained by complexifications
of real analytic foliations, suggest us the following;:

Definition 2.5
1. We say that the equivariance condition holds if there are an involution

a on I and an antiholomorphic diffeomorphism fi : Cx — Cyk) such

that:

(a) fe(Cx)NS =CypyNS,

(b) if Cr = Cy), then a(k) =k,

(c) CkN C; = ( if and only if Ca(k) N Ca(j) = (),

(d) ¥y € m(Ck\S), Holy(7)(2) = Holysy(fe())(2) (equivariance of

the holonomy generators).

2. We say that the Chern conditions hold when: If CyNS = {Py,..., P}

and 'y;-“ is a closed path in C} \ S whose index around P, is §;;, then

we have:
(a) either there is 0 < j < r such that Holg (fy;“) is holomorphically
linearizable,

(b) or for all 0 < j < r there is u; < 0 such that )%, u; =
Chern(C}), where (Holk('y;-“))’(O) = exp (2imp;).
3. We say that the compatibility conditions, in the corners, hold when:
If Cx N C; = {P}, there is a holomorphic reduced 1-form

w =Mzl +a(z,y))dy + Aay(1 + b(x, y))dx

so that the holonomy generator of the invariant curve x = 0 (resp. y =
0) is conjugate to Holg(vx) (resp. Hol;(v;)), where v, (resp. ;) is a
closed path in C \ S (resp. C; \ §) whose index around P is one.

Remark 2.6 1. Let 7 be the reduction of singularities of the complex-
ification of a real foliation and C4,...,C), the irreductibles components of
771(0). If we define a(k) by ¢o(Ck) = Co(ky and fi as the restriction of bo
to Cy we trivially have the properties (a), (b) and (c) of the Definition 2.5

2. The compatibility conditions are trivially satisfied by the holonomy
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generators associated to the components of the exceptional divisor of the
reduction of singularities of a non dicritical foliation.

3. Proof of theorem 1.3

For each k, 1 < k < n, the synthesis theorem asserts that there are
a complex surface My, a disk bundle Fy : M} — Cj, a foliation F;, and a
point my in M} such that:
1. there is a diffeomorphism ¢ from the zero section, Sk, of F}, to Cj,

the set of singularities of F}, is go,zl(Ck nS),
Fi. has not a node singularity
Sk \ Sing Fy, is a leaf of Fy,

F} is transverse to all the leaves of Fj except the special fibers which
pass through Sing Fj,

my is in Sy \ Sing Fy and fi(pr(mi)) = 0q() (mi),
the Chern class of Sy is equal to the one of Cj,

Sk LN

the holonomy representation of Sy, is:
HO](]:k, Sk) .M (Sk \ Sing fk, mk) — Diff(Co)
g —  Hol([pr(7)]) = hy.

Remark 3.1 The equivariance of the holonomy generators implies that
there is an antiholomorphic diffeomorphism ¢ from Fy Yor(my)) to
Fa”(i)(gok(ma(k))) with @) = ¢! inherited from the standard antiholo-
morphic involution of C such that:

L ¢r(mg) = may,

2. ¢ro h,y o ¢a(k) = hfk(’y) Vv € 7T1(Sk \ Sing]:k).

The following results must be understood up the choice of a suitable
neighbourhood of Si in M}. We have the fondamental:

Lemma 3.2 For each k there is a antiholomorphic diffeomorphism, oy,
My — Moy, which carries the leaves of Fy (resp. Foky) to the one of Fa(k)

(resp. Fi). Furthermore o' = Talk)-

Proof. We are going to extend the germ of diffeomorphism ¢, given in
Remark 3.1. We use essentially the ideas of [BCL]. Let m be a point of
Sk \ Sing Fi, and let v be a path in S \ Sing F; connecting m to my.
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For z in F_ L(pr(m)) close enough to m, the lifting 4 of v, in the leaf
of Fi passing through z, following the fiber bundle Fj ends at the point
h(2) of F; ' (¢r(myi)). We define 0,(z) as the end of the path obtained
by lifting fr(y~!) from ¢k (h,(2)) in the leaves of F, ;) following Fyky. It
does not depend on the choice of the path. Indeed let 4/ be another path
in Sk \ Sing Fr. The compound y; = '~ -7 is an element of my(Sk \
Sing Fj, m) which corresponds to a diffeomorphism h.,. The image o..(2)
of z is obtained by lifting fro (v ~!) from ¢y (h(z)). From the equivariance
of the holonomy generators, we get that:

¢rohy = @p o h,,yl,.y~1,y = @i © h,yl,y—l = @¢roh, o h,y—1
= @k 0 hyy 0 G (Pr 0 hy)
= Rfiopi(n) © d):l((bk o hy)
= ¢k 0 hy.

Thus o./(2) is also obtained by lifting fi o ¢(7'") from ¢ o hy(2). As
dr(m) = de(77h) - dr(y71), we have 0./ (2) = 04(2). Using this process we
find an antiholomorphic diffeomorphism oy from M} = M\ {¢; ' (m) /m €
SingNCy} to M(’l(k) = Mk \ {qﬁ;(lk)(m)/m € SingNCqy)}, such that
0pFaky = Fr. Now we have to extend oy to the invariant curves. Let
m be a singular point of F, and m' = ‘p;&c) o fr. o pr(m). We are going to
define an antiholomorphic involution in order to use a result of . Let
(Vin, (u,v)) and (Vyr, (v/,v")) be two local trivializations of Fj and Fyx)
respectively at the points m and m’ such that:

1. m = (0,0) (resp. m' = (0,0)) is in (u,v) (resp. (v',v"))
2. v =0 (resp. v/ = 0) is a local equation of S (resp. Su(k))-

Let fix a point P in Sk NV, close enough to m but distinct from it. It is
easy to see that one can choose (u,v) and (u',v') so that u’o frou™" and v'o
Ok E (oi(P)) © v~1 are equal to the standard antiholomorphic involution of
C. Up to this choice we define ¢ as follows: (u/,v")ogo(u,v)™! = (@,7). The
holonomy generators equivariance and Proposition 2.1 of imply that
" Fa(k) Vo and Fg v, are holomorphically conjugate by a diffeomorphism
which leaves a fiber bundle invariant . Thus, up to a chart change, we
assume that (Z)*fa(k)/vm = Fk/v,,- 1t is enough to show that ¢ = og) 0 ¢
is bounded to obtain the extension of o,. Note that 1 is holomorphic on
Vin \ Fk“l(gpk(P)) and conjugates Fy v, to itself. The germ of F v, at m
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is defined by a reduced 1-form w,, which is not a node. In order to extend
1) in a neighbourhood of m we proceed as in [BCLJ. O

Lemma 3.3 There are a complex surface M, obtained by gluing together
the My, a foliation S on M, such that for any k in {1,...,n}S/p, = Sk,
and an antitholomorphic involution ¢ on M which leaves S invariant.

Proof. Let {m} be the intersection of two components Cy and C; of 7~1(0)
and put {m'} = Cyx) N Cy(;)- We deal with the case m is different from
m/. Let (Vi, p) be a local chart of My at ¢, ' (m) and whose values are in
a polydisk Ay of C2. Put V) = ox(Vk) and pyk) = do © pk © 0g(k)- By
construction (V,), pa(k)) is a chart of M,y which contains cp;(lk)(m'), with
values in ¢g(Ag), and such that p,x) o o © p]:l = ¢o/a,- In the same way
we can choose a local chart (Vj, p;) (resp. (Va(j), Pa(j))) at <pj_1(m) (resp.
go;é.)(m’ ) with values in a poly disk A; (resp. Ay = @0(4;)) such that
Pa(j) © Tj © ,oj_1 is equal to ¢o/ INT Let 0 be the diffeomorphism from Ay U
Aa(k) to A; U Aa(j) defined by:

1. pjo0op (uk,vx) = (up,vk) and pagy © 8 0 phy (ta(k), Vak) =
(ua(k)’ va(k))'

The compatibility conditions (Definition 2.5) in the corners imply that G; =
(o) Fj and Gy, = (p;' 0 07")* Fi (resp. Gaggy = (05(3))* Fa(j) and Gagry =
(p;&c) o 9_1)*]7a(k)) are holomorphically conjugate. As ¢q carries the leaves
of Gy, (resp. G;) to those of G,y (resp. Gy(jy), there is a holomorphic dif-
feomorphism ¢ : Aj; U Agy — Aj U Ag(j) which commutes with ¢o and so
that:

Identifying each element of Vi (resp. V;) with its image by pj_l otplofo pgl

(resp. p;(lj) oyp~lofo pa&c)) we glue simultaneously:

1. My and M; (resp. Mk and Ma(j))v
2. Fi and fj (resp. Fa(k) and fa(j)),
3. ok and o; (resp. o4k) and 04j))-

Assume now that {m} is equal to {m’}. This means that a(k) =k, a(j) = j
and ;' (m) (resp. cpj_l(m)) is a fixed point of o (resp. o;). From
2.1 we choose a local chart (Vi,pk) (resp. (Vj,p;)) of My (resp. M;) at
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@i (m) (resp. goj_l(m)) with values in a polydisk A of C? such that:
¢o(A)=A and pogop ! = po/p for 1=k,j.

As before the compatibility conditions in the corners imply that G, =
(p,zl)*]:k and G; = (pj_l)*]-'j are holomorphically conjugate. As ¢ leaves Gy,
and G; fixed there is a complexification v of a real analytic diffeomorphism,
from A to A, such that ¢*Gy is equal to ¢*G;. Identifying each element
of Vi with its image by pj_1 oyp~lo pgl we glue My and M, (resp. Fi and
F;, ox and o0;). Gluing as above at each corner, we have done the proof of

Lemma 3.3. ]

As the self intersections of Sy, are the same as the ones of the Cy (com-
ponents of 771(0)), we have a morphism 7 : M — V composed by a finite
number of blowings down, where V' is a neighbourhood of 0 in C2. By Har-
tog’s theorem one can extend o, defined by o o7 = 704, at 0 in C2. From
Lemme 2.1 o is holomorphically conjugate to ¢9. Thus, up a conjugation,
the foliation F, whose strict transform is F , 1s invariant under ¢g and is
therefore a real analytic foliation.

4. Examples

4.1. Example

We give here some informations on the set, Ahi(FC), of antiholomorphic
involutions which leave FS invariant, where w = d(H), with H = z* + y*.
Remark that Ahi(FS) is not a group (the compound of two antiholomorphic
involution is holomorphic). Let ¢q still be the standard antiholomorphic
involution of C? and let us put:

Iso(FS) = {4 € Diff(C2) /3y € Diff(Cq) so that Hoy = po H}
and
Fix(Fy) = { € Diff(C3) / H o ¢ = H},

where Diff(C3) is the group of holomorphic diffeomorphisms of C3. We
assert that:

1. each element of Ahi(FC) tangent to the identity is of the form ¢g o

exp [7(z,y)]X, where 7 is the complexification of an analityc function
of R3,
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2. there is a bijection between the set of elements of Ahi(FC) which are
not tangent to the identity and {p € Diff(Cp) /¢~ 1(2) = ¢(2)}.

The morphism Ly from % to Diff(Cy), which associates to 1 the

element ¢ of Diff(Cp) such that Ho = ¢poh is well defined and
injective. According to an element 1) of Fix(FC) is tangent to the
identity (that is ¥(z,y) = (z + h.o.t, y + h.o.t)) if and only ¥(z,y) =
exp [7(z,y)]X, where 7 is a holomorphic function and X(z,y) = y33% —
3335%. Now let o be an element of Ahi(FC). We have two cases:

1. ¢goo is an element of Fix(FS). There is a holomorphic function 7
such that o = ¢g o exp [T(x,y)]X. As o is an involution, an easy computa-
tion shows that 7 must be the complexification of a real analytic function.
Conversely for each complexification of real analytic function 7, 0 = ¢g o
exp [7(z,y)]X is in Ahi(FS).

2. ¢ o0 is not an element of Fix(FS). Let us put ¢ = Ly(¢g o o).
From the following equations:

H=Ho(¢poo)o(codg) =poHo(cgody)
=gpoHo(ppoo)opg=wpopoHody=popoH

we get that p~1(z) = @(z). Conversely let ¢ be a diffeomorphism of Cy
such that ¢~1(x) = ¢(Z). We are going to show that there exists an element
o of Ahi(FS) which verifies H o g0 0 = ¢ 0o H. Put p(z) = ((p(:zt‘l))}t and
#(x) = @(Z). Since p~1(z) = @(Z) an easy computation shows that ¢ is an
involution. Let  : 02 — C2 be a blowing up, (z,t) and (s, y) the charts of
Cg glued together by y = tx and st = 1. Let us remark that the Hopf’s fiber
bundle (that is the fiber bundle C3 — 7~1(0) given by ¢t = constante) is
transverse to each leaf of ]?E except the special ones which pass through the
singularities and that the holonomy group computed on the transversal t =
0 is generated by h(z) = iz. Moreover for each «, in 71 (7~1(0) \ Sing(F?)),
we have:

(%) hy(z) = ¢o hgoy) © #(2)

We build an antiholomorphic involution & on C2 which leaves FS invariant
as follows: let (z,t) be a point of Cg such that z is close enough to 0 and
(0,t) is not a singularity, and ~ is a path in 7=1(0) \ Sing FC connecting
(0,) to (0,0). The lifting of y in the leaf of FC passing through (z,t)
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following Hopf’s fiber bundle ends at (z,,0). We define 6,(z,t) to be the
end of the path obtained by lifting f(y~!) from ¢(z.,0). As in the proof
of [Theorem 1.3 we find, using equality (*), that 6, does not depend on the
choice of the path, extends to invariant curves and induces an element o
of Ahi(FC). By construction, in the local coordinates (2 = x(1 + t4)%,t),
& o ¢o(z,t) is equal to (¢(2),t) and H(z,t) is equal to z. We have:

H o (¢o05)(z,t) = (#(2))" = ¢(z") = Ho gy 05(z1)

which implies that H o (¢p 0 o) = ¢ o H. Thus the assertion.

4.2. Relation between Poincaré return map and holonomy

Let F be a germ of holomorphic foliation on C3, o an antiholomorphic
involution which leaves it invariant and 7 the minimal reduction of singu-
larities of 7. We assume that F gy,  is monodromic and for simplicity that
o is the standard antiholomorphic involution of C2. Let 3 be the “interval”
of leaf which begins at (z,0) and ends at (P(z),0) where 0 < z is close
enough to 0 and P is the Poincaré return map corresponding to Fpix, -
Let us denote 87 = 8N {0 < y}, B~ = BN {y < 0} and B (resp. 5,
B_) be the strict transform of 3 (resp. 87, 37) by 7. When 7 is a blow-
ing up, as F iy, is monodromic, the Hopf’s fiber bundle is transverse to
F in a neighbourhood of Fix, N 7~1(0). The Hopf’s fiber bundle gives a
homeomorphism between 3% (resp. A7) and 7(]0,1[), where v is a path
~ : [0,1] such that ¥([0,1]) = Fix, N 7~!(0). Thus in this case P is the
holomomy diffeomorphism corresponding to v -~y. When 7 is not a blowing
up 7~1(0) N RZ is not smooth in general and we have not a fiber bundle
transverse to F. But as F/ iy, is monodromic 771(0) N RZ has only saddle
points and we can use as Brunella the Dulac real maps in the corners
or those technics like Berthier and Moussu [BM]. In the particular case of
FE, where w = x dz + y dy for for each antiholomorphic involution o which
does not fix any invariant curve of FC and such that o*FS = FS, FS / Fixy

is a center since 7~ 1(0) N Fix, is homotopic to 771(0) N R2.

5. Proof of proposition 1.1

We build here a germ of foliation satisfying the properties 1, 2 and 3 of
[Proposition 1.1 and whose minimal reduction of singularities is a blowing up.
Furthermore the holonomy group of its exceptional divisor is not resoluble;

thus according to [BCL], [P], it does not have a Liouvillian first integral.
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For this we introduce:

1 hl(x):iK_l(lem),whereezIT_i et K(z) =z + x°,
2. () = —hi(2) = ity

3. ha(z) = hy'(2) = iK (%),

4. ha(z) = hi'(3) = Tends

Obviously hgo hgohgoh; =1dc. Let 7 : C% — CZ be a blowing up at 0 in
C2, (x,t) and (s,y) the charts of (~3(2, glued together by = = sy and st = 1.
Denote by mg (resp. mi1, msg, mg, m4) the point of coordinates (0,0) (resp.
(0,1+1), (0,—1+14), (0,—1—14), (0,1 — 1)) in the chart (x,t) and 71 (resp.
Y2, 73, Y4) & closed path in 7 (771(0) \ {m1, ma, ms, ma}, my) whose index
around m; (resp. mga, mg, my) is one. According to [Theorem 1.3, there is
a real analytic 1-form w such that:

7 is a minimal reduction of singularities of FC,
FC is not dicritical,

Sing FS = {mi1, ma, m3, ma},

the holonomy diffeomorphism A, of 7y is hg.

- o=

Moreover, according to synthesis theorem , we can assume that the strict
transform of FC by 7 is transverse to Hopf’s fiber bundle and all the in-
variant curves, except 7 1(0) \ Sing FC, are fibers of Hopf’s fiber bundle.
As hg o hy(z) = —x, we see that w is a real center since its Poincaré return
map is the square of hoo hy. Let now show that there is an antiholomorphic
involution, o, with Fix, N7~1(0) = {(0,it)/t € RU {oo}} and ]—"S/Fixa is
a center. Remark that Sing FC is invariant under the map f on 7~1(0),
defined by t — —f s — —35, and that:

hye =@¢0hsyo¢, VEk=1,2,34 and ¢(z)=1iz.

We deduce from the above equation that for any v in
m1(m~1(0) \ Sing FC, mg) we have:

(**) h,y = qb o} hf(’y) 0] gb

We build an antiholomorphic involution & on C2 which leaves FC invariant
as follows: let (z,t) be a point of C% such that x is close enough to 0 and
(0,t) is not a singularity, and such that v is a path in 7=1(0) \ Sing FS
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connecting (0,t) to (0,0). The lifting of + in the leaf of FC passing through
(z,t) following Hopf’s fiber bundle ends at (z,,0). We define &,(z,t) to
be the end of the path obtained by lifting f(y~!) from ¢(x,,0). As in the
proof of Theorem 1.3 we find, using the equality (*x), that &, does not
depend on the choice of the path, extends to invariant curves and induces
an antiholomorphic involution of C3 so that:

o*FS = FS and Fix, n7~10) = 4([0,1]) = {(0,4t)/t € RU {c0}}

where the homology class of v is 79 - 7. Furthermore ]:E restricts to a
center on Fix, since h% = id¢. Indeed we have:

h(z) = (h1 o h)*(z) = ’iK*l (ﬁ%)] |

PSR e
_ _g1[ (EF) ]() K(K)(&) =2
- 1+ %) -

Let us show that there is no diffeomorphism, v, tangent to ff which con-
jugates ¢o and o. Assume for instance the converse. On one hand ¥ /7=1(0)
is different from the identity since G /,-1(g) and o /n-1(0) are distinct. On
the other hand we have:

a) eith?}“ 1/;(7711) = ma, z;(mz) = ms3, lz(ms) =My a{ld 15(77%4) =my
b) or ¥(m1) =my, P(mz) = my, P(m3) = ma and P(myg) = ms.

Let ¥ : (t=0),let ¥ = lI~I(ZJ), let @ be a path in W‘l(O)\Sing FC connecting

the intersection of ¥ and 771(0) to the one of ¥’ and 771(0), and let hq

Y — ¥ be the holonomy dlffeomorphlsm associated to it. Up to assume
a), the invariance of FC under 1), ¢ and & implies that ¢(z) = hZ! 0 ¥ (z)

satisfies:

1. o~ tog(z) = if,
2. hi=¢ tohyoop(x).

We have hy(x) = iz — ex? 4 h.o.t and let o(z) = a1z + asx? + h.o.t, with
a1 # 0. From 1. we get:
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= =2
a a a
—ICI_:+|:—2—CL2 :13:| 72 =iz
ai a ay

This is equivalent to say that a; (resp. a2 + a2) is equal to aexp(2”)
(resp. 0), where « is in R. Thus ay is in {R. From 2. we find:

2 2

. 1. 9 . .
iz + —[iag — ea + aglz” = ix + € ix”.

ai
Thus ag is equal to ( 4 ‘/_a) which is not in iR, contradiction. If ¢’ is
another antlholomorphlc involution which does not fix ‘any invariant curve
and leaves F C invariant then either &’ = is equal t0 ¢ /x=1(0) OF 00 /x-1(0)

because Sing FC is invariant under & and ¢o. Thus 4/ = Fix,» N 7~1(0) is
equal to R2 N 771(0) or Fix, N 7~1(0), and therefore FC W | Fix,, 1S & center
since its Poincaré return map is given by:

P:Fixpy N{t=0} — FixyN{t=0}

m — h2,(m).

As the holonomy group of 771(0) contains the following two elements which
are not tangent to the identity at the same order it is not resoluble:

1. —hiohy(x) =z ++22%+ h.ot,
2. hi(z) =z —4v22% + h.ot.
O

Remark 5.1 Let gi(z) = iz + 27, go(z) = —g; *(2), g3(x) = iz — 27,
and g4(x) = —93“1(93). If we substitute g; (resp. g2, g3, g4) to hy (resp. ho,
h3, h4) in the previous proof we obtain a real analytic center, «’, and an
antiholomorphic involution, ¢, at 0 in C? such that:

1. o*FS=F5C

2. Fixy, N7~ 1(0) = {(0,it)/t € RU{o0}}.
As Sing 3’: C N Fix, is empty, the flow box theorem implies that ]-' W' | Fixg is

monodromic. .7-'5, N Fix, is not a center since its Poincaré return map is
given by:

2T 2im

P:exps R — exps R

2im

x — hi(zexps ) = exp%(m —42") + h.o.t.
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6. Proof of proposition 1.2

We are going to build, using 1.3, a real analytic 1-form whose complex-
ification has the properties prescribed. For this we express the following
result [BCL]: there are an irrational A and a germ of real analytic diffeo-
morphism of R at 0 such that the group (exp?™ z, ¢(x)) is free. Moreover,
up a ramification by ¢ —— z? and to change A\ by %, we assume that
o(—z) = —p(x) for z small enough. Let m be a morphism given by a finite
sequence of blowings-up and such that:

1. 7 1(0) has two irreductibles components C; and Cy whose Chern num-
bers are respectively —2 and —1,

2. the complex structure of C(Q) is given by the charts (z2,y), (z1,t2) and
(z,t1) glued together by xoto = 1, z1t; = 1, 1 = yx2 and z = yz1.

Let mg(resp. my, My, mg, m2) be the point whose coordinates are (0,0)
(resp. (1,0), (—1,0), (0,7), (0,—i)) in the chart (x1,t1). Let us choose a
chart (u,v) of C% at mg which does not contain neither myg, nor my , k =
1,2, and such that u = 0 (resp. v = 0) is a local equation of Cj (resp. of C»).
Choose a positive real ¢ enough close to 0 and let introduce the following
paths, which does not contain mg:

1. 71 (resp. 72) is the real path which begins at the point whose coor-
dinates are (0,¢) (resp. (¢,0)) and ends to the one whose coordinates
are (0, —¢) (resp. (—¢,0)) in (u,v),

2. 7] (resp. 74) is the image of the map ¢ € [0, 1] — (0, —e expimt) (resp.
t € [0,1] — (—eexpint,0)).

The [Theorem 1.3 allows us to build a real analytic 1-form, w, such that:

7 is a minimal reduction of singularities of F<,

the singularities of FS are mg, my, M1, mo and g,

C; and Cy are not dicritical,

the holonomy diffeomorphism associated to 71.7] (resp. v2 - 72') is

- W=

Py (u) = exp:*LlE U (1eSp. hoyypy (V) = exp?™ p(v)), where A\; > 0

and exp M1 X exp2itA =1,
5. the germ of FE at mg is Wy, = udv + \vdu.

By construction the holonomy group of Cy is G = (exp:*T v, exp?™ p(v)) =
(exp™ v, — exp®™ (v)) which is free because it is isomorphic to the free
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group (exp?™ v, ¢(v)). According to [BCL], [P] w has no liouvillian first
integral. Let show that w is a center. Since the only real singularity of .7::9
is the corner mg which is a saddle and since C; and Cs are non dicritical,
the flow box theorem assures that F_, is monodromic. In order to prove
that it is a center, let us introduce the Dulac real maps in the corner:

Di:{e}xR*\(u=¢)NRZ — R x{e}\(v=¢)NR3

(g,v) — (61_*1_1v*_11,€),
Dy:R* x{-e}\(v=-)NR2 — {e} xR\ (v=¢)NR3
(u,e) — (e, e MuM),

D3;{—g}xR+\(u:—s)ﬂf{3 —  R7™ x{e}\ (v 6)ﬂf{%

=l

(~&,v) — (TN,
Dy:R x{—e}\(v=—)NRZ — {-e} xR\ (v= —e)NRE
(u, —¢) b (=, =72 (—u)M).
The Poincaré return map is given by:
V+—> P O h;zl 0 D40 hy, 0 Dsohy, o Dyoh, oDi(e,v),
po(u,v) =v.

We easily find that h.(u) = e/ My and hy (v) = e?™/ 2y so:

hy tux {e} C (u,v) — ux{e} C (u,v)

(u,€) — (u,¢€)
and
hy, : {e} xv C (u,v) — {—€} xvC(u,v)
(,v) — (=&,0()).
Thus P is:

P(v) = ¢~ o (=p(-v)).

As ¢(x) = —p(—x) P is equal to the identity and w is a center. O
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