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On purifiable torsion-free rank-one subgroups

Takashi OKUYAMA
(Received March 6, 2000)

Abstract. First, we give a necessary and sufficient condition for a torsion-free rank-0ne
subgroup of an arbitrary abelian group to be purifiable in a given group and show that
all pure hulls of a purifiable torsion-free rank-0ne subgroup are isomorphic. Next, we
show that if a T(G)-high subgroup A of an abelian group G is purifiable in G , then there
exists a subgroup T’ of T(G) such that G=H\oplus T’ for every pure hull H of A in G .
An abelian group G is said to be a strongly ADE decomposable group if there exists a
purifiable T(G)-high subgroup of G. We present an example G such that not all T(G)-
high subgroups of a strongly ADE decomposable group G are purifiable in G . Moreover,
we characterize the strongly ADE decomposable groups of torsion-free rank 1. Finally,
we use previous results to give a necessary and sufficient condition for an abelian group
of torsion-free rank 1 to be splitting.

Key words: purifiable subgroup, strongly ADE decomposable group, height-matrix, pure
hull, splitting mixed group.

A subgroup A of an arbitrary abelian group G is said to be purififiable
in G if there exists a pure subgroup H of G containing A which is minimal
among the pure subgroups of G that contain A . Such a subgroup H is said
to be a pure hull of A in G .

Hill and Megibben [7] established properties of pure hulls of p-groups
and characterized the p-groups for which all subgroups are purifiable.

Next, Benabdallah and Irwin [2] introduced the concept of almost-dense
subgroups of p-groups and used it to give the struc rure of pure hulls of
purifiable subgroups of p-groups.

Furthermore, Benabdallah and Okuyama [3] introduced a new invari-
ant, the s0-called n -th overhangs of a subgroup of a p-group, which are
related to the n-th relative Ulm-Kaplansky invariant. Using it, they ob-
tained a necessary condition for subgroups to be purifiable.

Benabdallah, Charles, and Mader [1] introduced the concept of max-
imal vertical subgroups supported by a given subsocle of a p-group and
characterized the p-groups for which the necessary condition given in [3] is
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also sufficient.
As for isomorphism of pure hulls, we obtained several results in [10] and

[11]. Other results about purifiable subgroups of p-groups are contained in
[4], [5], [8], [9], [10], and [11].

Recently, in [13], we extended the concept of almost-dense subgroups
from p-groups to arbitrary abelian groups and began to study purifiable
subgroups of arbitrary abelian groups. Though we characterized the groups
for which all subgroups are purifiable, we have not yet given a necessary
and sufficient condition to be purifiable even for torsion-free subgroups of
arbitrary abelian groups.

In this note, in Section 2, we determine the structure of pure hulls of
purifiable torsion-free rank-0ne subgroups A of arbitrary abelian groups G.
Such pure subgroups H are ADE groups. We also began to study ADE
groups in [12].

Let G be an arbitrary abelian group, g\in G , and p_{n}(n\geqq 1) a listing of
all primes in increasing order. Then we associate the height-matrix \mathbb{H}(g) ,
an infinite matrix with ordinal numbers for entries, as follows;

\mathbb{H}(g)=(h_{p_{n}}^{*}.(g)h_{p_{1}}^{*}(g)||\cdot

h_{p_{n}}^{*}(p_{n}g)h_{p_{1}}^{*}(p_{1}g) h_{p_{n}}^{*}(p_{n}^{k}g)h_{p1}^{*}(p_{1}^{k}g)

.\cdot|)

The element in the (n, k)-position of \mathbb{H}(g) is the generalized p_{n}-height of
p_{n}^{k}g , for all n\geqq 1 and k\geqq 0 . The element in the (n, k)-position of \mathbb{H}(g)

is denoted by \mathbb{H}_{n,k}(g) . The nth row of \mathbb{H}(g) is called the p_{n}-indicator of
g . \mathbb{H}_{n,k}(g)=\infty means that p_{n}^{k}g is an element of the maximal j9-divisib1e
subgroup of G .

In Section 3, we give a necessary and sufficient condition for a torsion-
free rank-0ne subgroup A of an arbitrary abelian group G to be purifiable
in G. In fact, A is purifiable in G if and only if, for every a\in A and all
n\geqq 1 , the p_{n}-indicator of a is one of the following two types:

(1) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(a)<\omega and
\mathbb{H}_{n,r_{n}+i}(a)=\mathbb{H}_{n,r_{n}}(a)+i for all i\geqq 0 ;

(2) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{r\iota}}(a)=\infty and if
r_{n}>0 , then \mathbb{H}_{n,r_{n}-1}(a)<\omega .

Moreover, we show that all pure hulls of A are isomorphic.
In Section 4, we study purifiable T(G)-high subgroups of arbitrary
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abelian groups G . We prove that if a T(G)-high subgroup N of G is puri-
fiable in G , then there exists a subgroup T’ of T(G) such that G=H\oplus T’

for every pure hull H of N in G and all pure hulls of N in G are isomorphic.
An arbitrary abelian group G is said to be a strongly ADE decomposable

group if there exists a T(G)-high subgroup of G to be purifiable in G .
We know an ADE group that is not splitting. (See [6, Vol. 2, Example 2,

186]). Though splitting groups are strongly ADE decomposable groups,
the converse is not true.

In Section 5, we present a strongly ADE decomposable group G of
torsion-free rank 1 for which not all T(G)-high subgroups are purifiable in G .
We also characterize the groups G of torsion-free rank 1 for which all T-high
subgroups of G are purifiable in G . Moreover, we give a characterization
of strongly ADE decomposable groups of torsion-free rank 1. In fact, an
arbitrary abelian group G of torsion-free rank 1 is ADE decomposable if
and only if there exists an element a\in G\backslash T(G) such that, for all n\geqq 1 ,
the p_{n}-indicator of a is one of the following two types:

(1) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(a)<\omega and
\mathbb{H}_{n,r_{n}+i}(a)=\mathbb{H}_{n,r_{n}}(a)+i for all i\geqq 0 ;

(2) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(a)=\infty and if
r_{n}>0 , then \mathbb{H}_{n,r_{n}-1}(a)<\omega .

In [14], Stratton established a necessary and sufficient condition for arbi-
trary abelian groups of torsion-free rank 1 to be splitting. We use the
previous results to obtain the same result. In fact, an arbitrary abelian
group G of torsion-free rank 1 is splitting if and only if there exists an ele-
ment a\in G\backslash T(G) such that, for all n\geqq 1 , the p_{n}-indicator of a is one of
the following two types:

(1) \mathbb{H}_{n,0}(a)<\omega and \mathbb{H}_{n,k}(a)=\mathbb{H}_{n,0}(a)+k for all k\geqq 0 ;
(2) \mathbb{H}_{n,0}(a)=\infty .

From the previous two characterizations, we can see that ADE decomposi-
tions are weaker than splitting.

All groups considered are arbitrary abelian groups. The terminologies
and notations not expressly introduced follow the usage of [6]. Throughout
this note, let p be a prime. The p-part and the torsion part T(G) of any
arbitrary abelian group G is denoted by G_{p} and T, respectively. The p-
height of an element g of G means the generalized p-height, denoted by
h_{p}(g) instead of h_{p}^{*}(g) .
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1. Notation and Basics

We recall definitions and properties mentioned in [13]. We frequently
use them in this note. Throughout this section, let G be an arbitrary abelian
group and A a subgroup of G .

Definition 1.1 A is said to be p-almost-dense in G if, for every p-pure
subgroup K of G containing A , the torsion part of G/K is p-divisible.
Moreover, A is said to be almost-dense in G if A is p-almost-dense in G for
every prime p .

Proposition 1.2 [13, Proposition 1.3] A is p-almost-dense in G if and
only if, for all integers n\geqq 0 , A+p^{n+1}G\supseteq p^{n}G[p] .

Proposition 1.3 [13, Proposition 1.4] The following properties are equiv-
alent:
(1) A is almost-dense in G ;
(2) for all integers n\geqq 0 and all primes p, A+p^{n+1}G\supseteq p^{n}G[p] ;

Definition 1.4 A is said to be p-purififiable[purififiable] in G if, among the
p-pure[pure] subgroups of G containing A , there exists a minimal one. Such
a minimal p-pure[pure] subgroup is called a p-pure[pure] hull of A .

Proposition 1.5 [13, Theorem 1.8] There exists no proper p-pure sub-
group of G containing A if and only if the following conditions hold:
(1) A is p-almost-dense in G ;
(2) G/A is a p-group;
(3) there exists a nonnegative integer m such that p^{m}G[p]\subseteq A .

Proposition 1.6 [13, Theorem 1.11] There exists no proper pure sub-
group of G containing A if and only if the following three conditions hold:
(1) A is almost-dense in G ;
(2) G/A is torsion;
(3) for every prime p, there exists a nonnegative integer m_{p} such that

p^{m_{p}}G[p]\subseteq A .

Proposition 1.7 [13, Theorem 1.12] A is purififiable in G if and only if,
for every prime p, A is p purifiable in G .

Definition 1.8 For every nonnegative integer n , we define the n-th p-
overhang of A in G to be the verctor space
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V_{p,n}(G, A)= \frac{(A+p^{n+1}G)\cap p^{n}G[p]}{(A\cap p^{n}G)[p]+p^{n+1}G[p]} .

Moreover, A is said to be p-vertical in G if V_{p,n}(G, A)=0 for all n\geqq 0 .

It is convenient to use the following notations for the numerator and
the denominator of V_{p,n}(G, A) :

A_{G}^{n}(p)=(A+p^{n+1}G)\cap p^{n}G[p]=((A\cap p^{n}G)+p^{n+1}G)[p]

and

A_{n}^{G}(p)=(A\cap p^{n}G)[p]+p^{n+1}G[p] .

If A is torsion-free, then A_{n}^{G}(p)=p^{n+1}G[p] . Moreover, if A is torsion-
free and p-almost-dense in G , then

V_{p,n}(G, A)= \frac{p^{n}G[p]}{p^{n+1}G[p]} .

Hence V_{p,n}(G, A) is nth Ulm-Kaplansky invariant of G_{p} .

Proposition 1.9 [13, Lemma 4.2 (1)] V_{p,m+n}(G, A)=V_{p,n}(p^{m}G, A\cap p^{m}G)

for all n , m\geqq 0 .

Proposition 1.10 [13, Proposition 2.2] For every p-pure subgroup K of
G containing A,

V_{p,n}(G, A)\cong V_{p,n}(K, A)

for all n\geqq 0 .

Proposition 1.10 leads to the following intrinsic necessary condition for
p-purifiability of subgroups.

Proposition 1.11 [13, Theorem 2.3] If A is p-purififiable in G , then there
exists a nonnegative integer m such that V_{p,n}(G, A)=0 for all n\geqq m .

For convenience, we call a subgroup A an eventually p-vertical subgroup
if there exists a nonnegative integer m such that V_{p,n}(G, A)=0 for all n\geqq

m, and A is said to be p-neat in G if A\cap pG=pA .

Proposition 1.12 [13, Proposition 2.6] Let A be p-neat in G. Then A is
p-pure in G if and only if A is p-vertical in G .
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Proposition 1.13 [13, Theorem 2.8] IfAp=0, then following properties
are equivalent:
(1) A is p-verlical in G ;
(2) (A+p^{n}G)[p]=A[p]+p^{n}G[p] for all 7l \geqq 1 ;
(3) if a\in A such that h_{p}(a)<\omega , then h_{p}(pa)=fi_{p}(a)+1 .

Proposition 1.14 [13, Theorem 4.1 (2)] If A\cap p^{m}G is p-purififiable in
p^{m}G for some m\geqq 0 , then A is p-purififiable in G .

2. The Structure of Pure Hulls

In this section, we consider the structure of pure hulls of purifiable
torsion-free rank-0ne subgroups of arbitrary abelian groups. Before doing
it, we give a useful lemma.

Lemma 2.1 Let G be an abelian group and A a torsion-free rank-One
subgroup of G. Then we have:
(1) for all n\geqq 1 , \dim(V_{p,n}(G, A))\leqq 1 ;

(2) p^{\omega}(G/A)[p] \cap\frac{G[p]+A}{A}\subseteq\frac{p^{\omega}G+A}{A}[p] ;

(3) if A is p-neat in G, then p^{\omega}(G/A)[p]= \frac{p^{\omega}G+A}{A}[p] and

dim ( \frac{p^{\omega}(G/A)[p]}{(p^{\omega}G[p]+A)/A})\leqq 1 .

Proof (1) Suppose that \dim(V_{p,n}(G, A))>1 . There exist x_{i}\in A_{G}^{n}(p)\backslash

A_{n}^{G}(p) for i=1,2 and a subgroup S of V_{p,n}(G, A) such that

V_{p,n}(G, A)=\langle x_{1}+A_{n}^{G}(p)\rangle\oplus\langle x_{2}+A_{n}^{G}(p)\rangle\oplus S .

For i=1,2 , there exist a_{i}\in A and g_{i}\in G such that x_{i}=a_{i}+p^{n+1}g_{i} . Since
r(A)=1 , there exist integers \alpha_{i} for i=1,2 such that (\alpha_{1}, \alpha_{2})=1 and
\alpha_{1}a_{1}+\alpha_{2}a_{2}=0 . Then \alpha_{1}x_{1}+\alpha_{2}x_{2}=p^{n+1}(\alpha_{1}g_{1}+\alpha_{2}g_{2})\in p^{n+1}G[p]\subseteq

A_{n}^{G}(p) . This is a contradiction. Hence \dim(V_{p,n}(G, A))\leqq 1 for all n\geqq 1 .
(2) Let x+A\in p^{\omega}(G/A) with x\in G[p] . Without loss of generality,

we may assume that h_{p}(x)<\omega . Let r=h_{p}(x) . For all n\geqq 0 , there exist
b_{n}\in A and h_{n}\in G such that x=b_{n}+p^{r+n+1}h_{n} . Since r(A)=1 , there
exist integers \beta_{n} and \gamma_{n} such that (\beta_{n}, \gamma_{n})=1 and \beta_{n}b_{0}+\gamma_{n}b_{n}=0 . Then

(\beta_{n}+\gamma_{n})x=p^{r+1}(\beta_{n}h_{0}+\gamma_{n}p^{n}h_{n}) .



On purififiable torsion-free rank-One subgroups 379

By a similar argument, (\beta_{n}, p)=(\gamma_{n},p)=1 and p divides \beta_{n}+\gamma_{n} . Hence
p^{r+1}(\beta_{n}h_{0}+\gamma_{n}p^{n}h_{n})=0 and p^{r+1}h_{0}\in p^{\omega}G .

(3) If A is p–neat in G , then (G/A)[p]= \frac{G[p]+A}{A} . By (2), it is immediate
that p^{\omega}(G/A)[p]= \frac{p^{\omega}G+A}{A}[p] . Suppose that \dim(\frac{p^{\omega}(G/A)[p]}{(p^{\omega}G[p]+A)/A})>1 . We can
write

p^{\omega}(G/A)[p]= \langle y_{1}+A\rangle\oplus\langle y_{2}+A\rangle\oplus S’\oplus\frac{p^{\omega}G[p]+A}{A}

for some y_{i}\in G[p] for i=1,2 and some subsocle S’ of G/A . Then h_{p}(y_{i})<

\omega for i=1,2 . Let r_{i}=h_{p}(y_{i}) for i=1,2 . For i=1,2 , there exist c_{i}\in A

and k_{i}\in p^{\omega}G such that

y_{i}=c_{i}+k_{i} .

Since r(A)=1 , there exist integers \delta_{i} for i=1,2 such that (\delta_{1}, \delta_{2})=1 and
\delta_{1}c_{1}+\delta_{2}c_{2}=0 . Then

\delta_{1}y_{1}+\delta_{2}y_{2}\in p^{\omega}G[p] .

This is a contradiction. \square

By Proposition 1.6 and [12, Proposition 2.2], we have:

Proposition 2.2 Let G be an abelian group and A a subgroup of G. If
A is purififiable in G and H is a pure hull of A in G, then we have:
(1) A is almost-dense in H;
(2) H/A is torsion;
(3) for every prime p, there exists a nonnegative integer t_{p} such that

p^{t_{p}}H[p]\subset A ;

(4) if p is a prime such that pA=A, then H_{p}=0 .

Standing Assumption 2.3 Let G be an abelian group and A a torsion-
free rank-0ne subgroup of G . Suppose that A is purifiable in G . Let H be
a pure hull of A in G and N a T(H)-high subgroup of H containing A .

We recall the definition of an ADE group.

Definition 2.4 Let A be a torsion-free group. An abelian group G is said
to be an almost dense extension group (ADE group) of A if A is almost-
dense and T-high in G . Such a subgroup A is called a moho subgroup of
G .



380 T. Okuyama

It is immediate that H as in Proposition 2.2 is an ADE group with A
as a moho subgroup. By Lemma 2.1 and Proposition 2.2, we have:

Lemma 2.5 Assume 2.3. For every prime p such that H_{p}\neq 0 , there
exist a positive integer n_{p} and y_{pi}’\in H_{p} for 1\leqq i\leqq n_{p} such that

H_{p}=\oplus_{i=1}^{n_{p}}\langle y_{pi}’\rangle .

Setting p^{t_{pi}}=o(y_{pi}’) for 1\leqq i\leqq n_{p} , t_{pi}<t_{pi+1} for 1\leqq i\leqq n_{p}-1 .

Lemma 2.6 Assume 2.3. For every prime p such that H_{p}\neq 0 , let H_{p} be
a p-group as in Lemma 2.5. Then h_{p}^{H/N}(p^{t_{pi}-1}y_{pi}’+N)=h_{p}^{H/A}(p^{t_{pi}-1}y_{pi}’+

A) for 1\leqq i\leqq n_{p} .

Proof Since A is almost-dense in H, t_{pi}\leqq h_{p}^{H/A}(p^{t_{pi}-1}y_{pi}’+A)\leqq

h_{p}^{H/N}(p^{t_{pi}-1}y_{pi}’+N) . Let d_{pi} and e_{pi} be ordinals such that d_{pi}\geqq t_{pi} and
e_{pi}\geqq t_{pi} . Suppose that there exist a_{pi}\in A , b_{pi}\in N , g_{pi}\in p^{d_{pi}}H , and
h_{pi}\in p^{e_{pi}}H such that p^{t_{pi}-1}y_{pi}’=a_{pi}+g_{pi}=b_{pi}+h_{pi} . Since r(N)=1 ,
there exist integers \alpha_{pi} , \beta_{pi} such that (\alpha_{pi}, \beta_{pi})=1 and \alpha_{pi}a_{pi}+\beta_{pi}b_{pi}=0 .
Then

(\alpha_{pi}+\beta_{pi})p^{t_{pi}-1}y_{pi}’=\alpha_{pi}g_{pi}+\beta_{pi}h_{pi} .

By a similar argument of Lemma 2.1, (\alpha_{pi},p)=(\beta_{pi},p)=1 , p divides \alpha_{pi}+

\beta_{pi}A).’
and \alpha_{pi}g_{pi}+\beta_{pi}h_{pi}=0 . Hence h_{p}^{H/N}(p^{t_{pi}-1}y_{pi}’+N)=h_{p}^{H/A}(p^{t_{pi}-1}y_{pi}’+\square

Lemma 2.7 Assume 2.3. For every prime p such that H_{p}\neq 0 , let H_{p} be
as in Lemma 2.5. If h_{p}^{G/A}(p^{t_{pn_{p}}-1}y_{pn_{p}}’+A)<\omega , then there exist integers
c_{pi} , a_{pi}\in A , and k_{pi}’\in H for 1\leqq i\leqq n_{p} such that

p^{t_{pi}-1}y_{pi}’=a_{pi}+p^{c_{pi}-1}k_{pi}’ and (H/N)_{p}=\oplus_{i=1}^{n_{p}}\langle k_{pi}’+N\rangle ,

where o(k_{pi}’+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p} and t_{p1}<c_{p1}<t_{p2}<c_{p2}< <
t_{pn_{p}}<c_{pn_{p}} .

Proof For 1\leqq i\leqq n_{p} , let d_{pi}=h_{p}^{H/N}(p^{t_{pi}-1}y_{pi}’+N) . By Lemma 2.6,
there exist a_{pi}\in A and k_{pi}’\in p^{d_{pi}’}H such that

p^{t_{pi}-1}y_{pi}’=a_{pi}+k_{pi}’ .
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By Proposition 2.2, we have t_{pi}<d_{pi}+1 . Suppose that t_{pi+1}\leqq d_{pi}+1 .
Since r(A)=1 , there exist integers \alpha_{pi} , \alpha_{pi+1} such that (\alpha_{pi}, \alpha_{pi+1})=1

and \alpha_{pi}a_{pi}+\alpha_{pi+1}a_{pi+1}=0 . Hence

\alpha_{pi}p^{t_{pi}-1}y_{pi}’+\alpha_{pi+1}p^{t_{pi+1}-1}y_{pi+1}’=\alpha_{pi}k_{pi}’+\alpha_{pi+1}k_{pi+1}’ .

Since (\alpha_{pi}, \alpha_{pi+1})=1 , p divides \alpha_{pi} and (\alpha_{pi+1},p)=1 . Then
\alpha_{pi+1}p^{t_{pi+1}-1}y_{pi+1}’\in p^{t_{pi+1}}H . This is a contradiction. Hence d_{pi}+1<t_{pi+1}

for 1\leqq i\leqq n_{p}-1 and h_{p}^{H/N}(p^{t_{pi}-1}y_{pi}’+N)=h_{p}^{G/A}(p^{t_{pi}-1}y_{pi}’+A)=d_{pi}

for 1\leqq i\leqq n_{p} . Then, for 1\leqq i\leqq n_{p} , there exists k_{pi}’\in H such that
k_{pi}’=p^{d_{pi}}k_{pi}’ . Moreover, for 1\leqq i\leqq n_{p} , we have o(k_{pi}’+N)=p^{d_{pi}+1} . Let
c_{pi}=d_{pi}+1 . Since N is T(H)-high in H , we have (H/N)[p]= \frac{H[p]+N}{N}\cong

H[p] . Therefore (H/N)_{p}=\oplus_{i=1}^{n_{p}}\langle k_{pi}’+N\rangle . \square

Lemma 2.8 Assume 2.3. For every prime p such that H_{p}\neq 0 , let H_{p} be
as in Lemma 2.5. If p^{t_{pn_{p}-1}}y_{pn_{p}}’+A\in p^{\omega}(G/A)[p] , then there exist integers
c_{pi} , a_{pi}\in A , and k_{pi}’\in H for 1\leqq i\leqq n_{p}-1 and a subgroup D^{(p)} of H such
that

p^{t_{pi}-1}y_{pi}’=a_{pi}+p^{c_{pi}-1}k_{pi}’ and

(H/N)_{p}=\oplus_{i=1}^{n_{p}-1}\langle k_{pi}+N\rangle\oplus D^{(p)}/N ,

where o(k_{pi}’+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p}-1 , t_{p1}<c_{p1}<t_{p2}<c_{p2}< <
t_{pn_{p}} , D^{(p)}/N\cong Z[p^{\infty}] , and (D^{(p)}/N)[p]=\langle p^{t_{pn_{p}}-1}y_{pn_{p}}’+N\rangle .

Proo/. By Lemma 2.7, for 1\leqq i\leqq n_{p}-1 , h_{p}^{G/A}(p^{t_{pi}-1}y_{pi}’+A)<\omega . Let
c_{pi}-1=h_{p}(p^{t_{pi}-1}y_{pi}’+A) . Then there exist a_{pi}\in A and k_{pi}’\in H such that

p^{t_{pi}-1}y_{pi}’=a_{pi}+p^{c_{pi}-1}k_{pi}’ .

By a similar proof of Lemma 2.7, we have o(k_{pi}’+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p}-1

and t_{p1}<c_{p1}<t_{p2}<c_{p2}< <t_{pn_{p}} . Since (H/N)[p]= \frac{H[p]+N}{N}\cong H[p] ,
there exists a subgroup D^{(p)} of H such that

(H/N)_{p}=\oplus_{i=1}^{n_{p}-1}\langle k_{pi}’+N\rangle\oplus D^{(p)}/N ,

where D^{(p)}/N\cong Z[p^{\infty}] . By Lemma 2.1 (3), it is immediate that
(D^{(p)}/N)[p]=\langle p^{t_{pn_{p}}-1}y_{pn_{p}}’+N\rangle . \square
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Let N be a neat subgroup of G , b\in N , and m_{p}=h_{p}^{N}(b) for every prime
p. If m_{p}<\infty , then there exists b_{p}\in N such that h_{p}^{N}(b_{p})=0 . Since N is
neat in G , h_{p}(b_{p})=0 .

Theorem 2.9 Assume 2.3. For every prime p such that H_{p}\neq 0 , let H_{p}

be as in Lemma 2.5.
(1) If h_{p}^{G/A}(p^{t_{pn_{p}}-1}y_{pn_{p}}’+A)<\omega , then there exist b_{p}\in N , h_{pi}\in H and

y_{pi}\in H_{p} for 1\leqq i\leqq n_{p} such that
(1) (H/N)_{p}=\oplus_{i=1}^{n_{p}}\langle h_{pi}+N\rangle ;
(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle y_{pi}\rangle , where o(y_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) setting o(h_{pi}+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p} , t_{p1}<c_{p1}<t_{p2}<c_{p2}<

. . <t_{pn_{p}}<c_{pn_{p}} ;
(4) y_{p1}=b_{p}+p^{c_{p1}-t_{p1}}h_{p1} , p^{t_{p1}-1}b_{p}\in A , y_{pi}=h_{pi-1}+p^{c_{pi}-t_{pi}}h_{pi} ,

p^{t_{pi}-1}h_{pi-1}\in A for 2\leqq i\leqq n_{p} ;
(5) for 1\leqq i<n_{p} , h_{p}(p^{s}h_{pi})=s for 0\leqq s<t_{pi+1} and h_{p}(p^{s}h_{pn_{p}})=

s for all s\geqq 0 .
(2) If p^{t_{pn_{p}-1}}y_{pn_{p}}’+A\in p^{\omega}(G/A)[p] , then there exist b_{p}\in N , h_{pi}\in H_{p} for

i\geqq 1 , y_{pi}\in H[p] for 1\leqq i\leqq n_{p} , and a subgroup D^{(p)} of H such that
(1) (H/N)_{p}=\oplus_{i=1}^{n_{p}-1}\langle h_{pi}+N\rangle\oplus D^{(p)}/N_{j} where o(h_{pi}+N)=p^{c_{pi}}

for 1\leqq i\leqq n_{p}-1 and D^{(p)}/N\cong Z[p^{\infty}] such that

D^{(p)}/N=\langle h_{pi}+N|i\geqq n_{p}, ph_{pi+1}=h_{pi}, ph_{pn_{p}}t_{pn_{p}}+1\in A\rangle ;

(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle y_{pi}\rangle , where o(y_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) t_{p1}<c_{p1}<t_{p2}<c_{p2}<\cdot\cdot<t_{pn_{p}} ;
(4) y_{p1}=b_{p}+p^{c_{p1}-t_{p1}}h_{p1} , p^{t_{p1}-1}b_{p}\in A , y_{pi}=h_{pi-1}+p^{c_{pi}-t_{pi}}h_{pi} ,

p^{t_{pi-1}-1}h_{pi-1}\in A for 1\leqq i\leqq n_{p}-1 and y_{pn_{p}}=h_{pn_{p}-1}+ph_{pn_{p}} ;
(5) for 1 \leqq i\leqq n_{p} –1, h_{p}(p^{s}h_{pi})=s for 0 \leqq s<t_{pi+1} and

h_{p}(h_{pn_{p}})=\infty .
Moreover, for every prime p such that H_{p}\neq 0 and 1\leqq i\leqq n_{p} , let

e_{pi}=\{
t_{p1} if i=1 ,

t_{p1}+ \sum_{j=2}^{i}(t_{pj}-c_{pj-1}) if i>1 .

then

p^{t_{pi}-1}y_{pi}=(-1)^{i-1}p^{e_{pi}-1}b_{p}+p^{c_{pi}-1}h_{pi} .
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Let c_{pn_{p}}=\infty if p^{\omega}(G/A)[p]\neq 0 . Then

h_{p}(p^{i}b_{p})=\{_{i+c_{pn_{p}}-e_{pn_{p}}}^{i}i+c_{pk}-e_{pk} forforfori\geqq 0\leqq e_{pk}\leqq i<.e_{pk+1}e_{pn_{p}}i<e_{p1}

,

and 2\leqq k<n_{p}-1 ,

Proof. (1) Let p be a prime such that h_{p}(p^{t_{pn_{p}-1}}y_{pn_{p}}’+A)<\omega . By
Proposition 2.2, pN\neq N . By hypothesis and Lemma 2.7, there exist inte-
gers c_{pi} , a_{pi}\in A , and k_{pi}’\in H for 1\leqq i\leqq n_{p} such that

p^{t_{pi}-1}y_{pi}’=a_{pi}+p^{c_{pi}-1}k_{pi}’ and (H/N)_{p}=\oplus_{i=1}^{n_{p}}\langle k_{pi}’+N\rangle ,

where o(k_{pi}+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p} and t_{p1}<c_{p1}<t_{p2}<c_{p2}< . . <
t_{pn_{p}}<c_{pn_{p}} . For convenience, we replace k_{pi}’ , y_{pi}’ , c_{pi} , a_{pi} and t_{pi} with k_{i}’, y_{i} ,
c_{i} , a_{i} and t_{i} , respectively. Let b_{p}’\in N such that h_{p}(b_{p}’)=0 .

By the structure of H/N, we also write

y_{1}’= \alpha_{1}k_{1}’+\sum_{i=2}^{n_{p}}\alpha_{i}k_{i}’+\frac{v_{p}}{u_{p}}b_{p}’ ,

where every \alpha_{i} , u_{p} , and v_{p} are integers for 1\leqq i\leqq n_{p} such that (u_{p}, v_{p})=

(u_{p}, p)=1 . Since

p^{t_{1}-1}u_{p}y_{1}’=u_{p}a_{1}+p^{c_{1}-1}u_{p}k_{1}’

=p^{t_{1}-1} \alpha_{1}u_{p}k_{1}’+\sum_{i=2}^{n_{p}}p^{t_{1}-1}\alpha_{i}u_{p}k_{i}’+p^{t_{1}-1}v_{p}b_{p}’ ,

we have p^{t_{1}-1}\alpha_{1}-p^{c_{1}-1}=p^{c_{1}}\beta_{1} and p^{t_{1}-1}\alpha_{i}=p^{c_{i}}\beta_{i} for some integers \beta_{i}

and 1\leqq j\leqq n_{p} . Then

p^{t_{1}-1}u_{p}y_{1}’=p^{c_{1}-1}(1+ \beta_{1}p)u_{p}k_{1}’+\sum_{i=2}^{n_{p}}p^{c_{i}}\beta_{i}u_{p}k_{i}’+p^{t_{1}-1}v_{p}b_{p}’

=p^{t_{1}-1}v_{p}b_{p}’+p^{c_{1}-1}u_{p} \{(1+\beta_{1}p)k_{1}’+\sum_{i=2}^{n_{p}}p^{c_{i}-c_{1}+1}\beta_{i}k_{i}’\} .

Hence (v_{p}, p)=1 . Let h_{1}’=(1+ \beta_{1}p)u_{p}k_{1}’+\sum_{i=2}^{n_{p}}p^{c_{i}-c_{1}+1}\beta_{i}u_{p}k_{i}’ . Then we
have

(H/N)_{p}=\langle h_{1}’+N\rangle\oplus(\oplus_{i=2}^{n_{p}}\langle k_{i}’+N\rangle)
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and

p^{t_{1}-1}u_{p}y_{1}’=u_{p}a_{1}+u_{p}p^{c_{1}-1}k_{1}’=p^{t_{1}-1}v_{p}b_{p}’+p^{c_{1}-1}h_{1}’ .

Since r(N)=1 , there exist integers \gamma_{1} and \delta_{1} such that (\gamma_{1}, \delta_{1})=1 and
\gamma_{1}u_{p}a_{1}=\delta_{1p}^{t_{1}-1}v_{p}b_{p}’ . Then (\gamma_{1}-\delta_{1})p^{t_{1}-1}u_{p}y_{1}’=p^{c_{1}-1}(\gamma_{1}u_{p}k_{1}’-\delta_{1}h_{1}’)=0

and hence (\gamma_{1},p)=(\delta_{1},p)=1 .
Let z_{1}=-\delta_{1}u_{p}y_{1}’+\delta_{1}v_{p}b_{p}’+p^{c_{1}-t_{1}}\delta_{1}h_{1}’ . Then z_{1}\in H[p^{t_{1}-1}] . Let y_{1}=

\delta_{1}u_{p}y_{1}’+z_{1} , b_{p}=\delta_{1}v_{p}b_{p}’ , and h_{1}=\delta_{1}h_{1}’ . Then y_{1}=b_{p}+p^{c_{1}-t_{1}}h_{1} , H_{p}=

\langle y_{1} \rangle\oplus(\oplus_{i=2}^{n_{p}}\langle y_{i}’\rangle) , p^{t_{1}-1}b_{p}\in A , and (H/N)_{p}=\langle h_{1}+N\rangle\oplus(\oplus_{i=2}^{n_{p}}\langle k_{i}’+N\rangle) .
It is immediate that h_{p}(p^{s}h_{1})=s for 0\leqq s<t_{1} . If p^{c_{1}}h_{1}\in p^{c_{1}+1}H ,

then there exist g_{p}\in H and x_{p}\in H[p] such that x_{p}=p^{c_{1}-1}h_{1}-p^{c_{1}}g_{p} .
Since h_{p}(x_{p})=c_{1} –1 and t_{1}<c_{1}<t_{2} , this is a contradiction. Hence
h_{p}(p^{c_{1}}h_{1})=c_{1} . By induction and a similar proof, we have h_{p}(p^{s}h_{1})=s for
0\leqq s<t_{2} .

There exist integers \mu_{2} and \nu_{2} such that \mu_{2}p^{t_{1}-1}b_{p}+\nu_{2}a_{2}=0 and
(\mu_{2}, \nu_{2})=1 . Since \mu_{2}p^{t_{1}-1}y_{1}+\nu_{2}p^{t_{2}-1}y_{2}’=\mu_{2}p^{c_{1}-1}h_{1}+\nu_{2}p^{c_{2}-1}k_{2}’ and t_{1}<

c_{1}<t_{2}<c_{2} , we have \mu_{2}=p\mu_{2}’ for some integer \mu_{2}’ . Then (\nu_{2}, p)=1

and \nu_{2}p^{t_{2}-1}y_{2}’=\mu_{2}’p^{c_{1}}h_{1}+\nu_{2}p^{c_{2}-1}k_{2}’ . Hence h_{p}(\mu_{2}p^{c_{1}}h_{1})=t_{2}-1 . Since
h_{p}(p^{s}h_{1})=s for s<t_{2} , there exists an integer \mu_{2}’ such that \mu_{2}=p^{t_{2}-c_{1}}\mu_{2}’

and (\mu_{2}’,p)=1 . Then we can write

\nu_{2}p^{t_{2}-1}y_{2}’=\mu_{2}’p^{t_{2}-1}h_{1}+\nu_{2}p^{c_{2}-1}k_{2}’ .

Since (\mu_{2}’, p)=1 , there exist integers \gamma_{2} and \delta_{2} such that h_{1}=\gamma_{2}\mu_{2}’h_{1}+

\delta_{2p}^{c_{2}-1}h_{1} . Since (\gamma_{2},p)=1 , we have

0\neq\nu_{2}\gamma_{2}p^{t_{2}-1}y_{2}’=p^{t_{2}-1-1t_{2}-1}h_{1}+p^{c_{2}}(\nu_{2}\gamma_{2}k_{2}’-\delta_{2}ph_{1}) .

Let h_{2}=\nu_{2}\gamma_{2}k_{2}’-\delta_{2p}^{t_{2}-1}h_{1} . Then we have

(H/N)_{p}=\langle h_{1}+N\rangle\oplus\langle h_{2}+N\rangle\oplus(\oplus_{i=3}^{n_{p}}\langle k_{i}’+N\rangle) .

Let z_{2}=-l^{y_{2\gamma_{2}y_{2}’}}+h_{1}+p^{c_{2}-t_{2}}h_{2} . Then z_{2}\in G[p^{t_{2}-1}] . Let y_{2}=\nu_{2}\gamma_{2}y_{2}’+z_{2} .
Then H_{p}=\langle y_{1}\rangle\oplus\langle y_{2}\rangle\oplus(\oplus_{i=3}^{n_{p}}\langle y_{i}’\rangle) . Hence y_{2}=h_{1}+p^{c_{2}-t_{2}}h_{2} . Moreover,
since p^{t_{1}}b_{p}=-p^{c_{1}}h_{1} , we have p^{t_{2}-1}h_{1}\in A . By a similar proof, h_{p}(p^{s}h_{2})=s

for 0\leqq s<t_{3} .
Suppose by induction that there exist y_{i}\in H_{p} and k_{i}\in H for 1\leqq i\leqq

r and b_{p}\in N such that H_{p}=\oplus(\oplus_{i=1}^{r}\langle y_{i}\rangle)\oplus(\oplus_{i=r+1}^{n_{p}}\langle y_{i}’\rangle) , (H/N)_{p}=
(\oplus_{i=1}^{r}\langle k_{i}+N\rangle)\oplus(\oplus_{i=r+1}^{n_{p}}\langle k_{i}’+N\rangle) , y_{1}=b_{p}+p^{c_{1}-t_{1}}h_{1} , p^{t_{1}-1}b_{p}\in A ,
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y_{i}=h_{i-1}+p^{c_{i}-t_{i}}h_{i} , and p^{t_{i}-1}h_{i-1}\in A for 2\leqq i\leqq r . Then, by a similar
proof, there exist y_{r+1}\in H_{p} and h_{r+1}\in H such that H_{p}=(\oplus_{i=1}^{r+1}\langle y_{i}\rangle)\oplus

(\oplus_{i=r+2}^{n_{p}}\langle y_{i}’\rangle) , (H/N)_{p}=(\oplus_{i=1}^{r+1}\langle k_{i}+N\rangle)\oplus(\oplus_{i=r+2}^{n_{p}}\langle k_{i}’+N\rangle) , y_{r+1}=h_{r}+

p^{c_{r+1}-t_{r+1}}h_{r+1} , and p^{t_{r+1}-1}h_{r}\in A .
It is immediate that p^{t_{r}-1}h_{r}\in A . By a same argument, for 1\leqq i\leqq n_{p} ,

we have h_{p}(p^{s}h_{?}.)=s for 0\leqq s<t_{i+1} and h_{p}(p^{s}h_{n_{p}})=s for all s\geqq 0 .
(2) Let p be a prime such that p^{t_{pn_{p}-1}}y_{pn_{p}}’+A\in^{-}p^{\omega}(G/A)[p] . By

Lemma 2.8 and a similar proof, there exist b_{p}\in N . h_{i}\in H . y_{i}\in H_{p} for
1\leqq i\leqq n_{p}-1 , and a subgroup D^{(p)} of H such that

(1) (H/N)_{p}=\oplus_{i=1}^{n_{p}-1}\oplus\langle h_{i}+N\rangle\oplus D^{(p)}/N , where o(h_{i}+N)=p^{c_{i}}

for 1 \leqq i\leqq n_{p} –1, D^{(p)}/N\cong Z[p^{\infty}] and (D^{(p)}/N)[p]=

\langle p^{t_{n_{p}}-1}y_{n_{p}}’+N\rangle ;

(2) H_{p}=\oplus_{i=1}^{n_{p}-1}\langle y_{i}\rangle\oplus\langle y_{n_{p}}’\rangle , where o(y_{i})=p^{t_{i}} for 1\leqq i\leqq n_{p}-1 ;

(3) t_{1}<c_{1}<t_{2}<c_{2}< <t_{n_{p}} ;
(4) y_{1}=b_{p}+p^{c_{pi}-t_{pi}}h_{1} , p^{t_{1}-1}b_{p}\in A , y_{i}=h_{i-1}+p^{c_{i}-t_{i}}h_{i} for 2\leqq i\leqq

n_{p}-1 , p^{t_{i}-1}h_{i-1}\in A for 2\leqq i\leqq n_{p} ;
(5) for 1\leqq i\leqq n_{p}-1 , h_{p}(p^{s}h_{i})=s for all s<t_{i+1} .

By Lemma 2.1 (2), Lemma 2.6 and Lemma 2.8, there exist a_{n_{p}}\in A and d_{p}\in

p^{\omega}H such that p^{t_{n_{p}}-1}y_{n_{p}}’=a_{n_{p}}+d_{p} . Since r(A)=1 and p^{t_{n_{p}-1}-1}h_{n_{p}-2}\in

A, there exist integers \mu_{n_{p}} and \nu_{n_{p}} such that (\mu_{n_{p}}, \nu_{n_{p}})=1 and
\mu_{n_{p}}p^{t_{n_{p}-1}-1}h_{n_{p}-2}+\nu_{n_{p}}a_{n_{p}}=0 . Then

\mu_{n_{p}}p^{t_{n_{p}-1}-1}y_{n_{p}-1}+\nu_{n_{p}}p^{t_{n_{p}}-1}y_{n_{p}}’=\mu_{n_{p}}p^{c_{n_{p}-1}-1}f\iota_{n_{p}-1}+\nu_{n_{p}}d_{p} .

Since f_{n_{p}-1},<c_{n_{p}-1}<t_{n_{p}} , we have \mu_{n_{p}}=p\mu_{n_{p}}’ for some integer \mu_{n_{p}}’ .

Then (\nu_{n_{p}},p)=1 and \nu_{n_{p}}p^{t_{n_{p}}-1}y_{n_{p}}’=\mu_{n_{p}}’p^{c_{n_{p}-1}}h_{n_{p}-1}+\nu_{n_{p}}d_{p} and hence
h_{p}(\mu_{n_{p}}’p^{c_{n_{p}-1}}h_{n_{p}-1})=t_{n_{p}}-1 . Since h_{p}(p^{s}h_{n_{p}-1})=s for 0\leqq s<t_{n_{p}} , there
exists an integer \mu_{n_{p}}’ such that \mu_{n_{p}}=p^{t_{n_{p}}-c_{n_{p}-1}}\mu_{n_{p}}’ and (\mu_{n_{p}}’ , p)=1 . Hence
we can write

\nu_{n_{p}}p^{t_{n_{p}}-1}y_{n_{p}}’=\mu_{n_{p}}’p^{t_{n_{p}}-1}h_{n_{p}-1}+\nu_{n_{p}}d_{p} .

Since d_{p}\in p^{\omega}H , there exists d_{p}’\in H such that d_{p}=p^{2t_{n_{p}}}d_{p}’ . Since (\mu_{n_{p}}’,p)=

1 , there exist integers \gamma_{n_{p}} and \delta_{n_{p}} such that h_{n_{p}-1}=\gamma_{n_{p}}\mu_{n_{p}}’h_{n_{p}-1}+

\delta_{n_{p}}ph_{n_{p}-1}2t_{n_{p}} . Note that p^{t_{n_{p}}-1}h_{n_{p}-1}\in A . Since (\gamma_{n_{p}},p)=1 , we have

0\neq\nu_{n_{p}}\gamma_{n_{p}}p^{t_{n_{p}}-1}y_{n_{p}}’=p^{t_{n_{p}}-1}h_{n_{p}-1}

+p^{2t_{n_{p}}}(\nu_{n_{p}}\gamma_{n_{p}}d_{p}’-\delta_{n_{p}}^{t_{n_{p}}-1}ph_{n_{p}-1}) .
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Let h_{n_{p}}’=\nu_{n_{p}}\gamma_{n_{p}}d_{p}’-\delta_{n_{p}}ph_{n_{p}-1}t_{n_{p}}-1 . By the proof of Lemma 2.1 (2),
h_{p}(p^{2t_{n_{p}}}h_{n_{p}}’)\geqq\omega . For every i\geqq 0 , there exists h_{n_{p}+i}’\in H such that
p^{2t_{n_{p}}}h_{n_{p}}’=p^{t_{n_{p}}}(p^{t_{n_{p}}}h_{n_{p}}’)=p^{t_{n_{p}}}(p^{t_{n_{p}}+i}h_{n_{p}+i}’) . Let h_{n_{p}+i}=p^{t_{n_{p}}}h_{n_{p}+i}’ for
every i\geqq 0 . Then p^{2t_{n_{p}}}h_{n_{p}}’=p^{t_{n_{p}}}h_{n_{p}}=p^{t_{n_{p}}+i}h_{n_{p}+i} for all i\geqq 1 . Since
ph_{n_{p}+i+1}-h_{n_{p}+i}\in p^{t_{n_{p}}}H_{p}=0 , ph_{n_{p}+i+1}=h_{n_{p}+i} for i\geqq 0 . Note that
\nu_{n_{p}}\gamma_{n_{p}}p^{t_{n_{p}}-1}y_{n_{p}}’=p^{t_{n_{p}}-1}h_{n_{p}-1}+p^{t_{n_{p}}}h_{n_{p}} .

Let z_{n_{p}}=-\nu_{n_{p}}\gamma_{n_{p}}y_{n_{p}}’+h_{n_{p}-1}+ph_{t_{n_{p}}} . Then z_{n_{p}}\in G[p^{t_{n_{p}}-1}] . Let
y_{n_{p}}=\nu_{n_{p}}\gamma_{n_{p}}y_{n_{p}}’+z_{n_{p}} . Then y_{n_{p}}=h_{n_{p}-1}+ph_{n_{p}} , H_{p}=\oplus_{i=1}^{n_{p}}\langle y_{i}\rangle , and
p^{t_{n_{p}}-1}h_{n_{p}-1}\in A . Let H^{(p)}=\langle h_{n_{p}+i}|i\geqq 0\rangle . Then it is easy to see that
H^{(p)} is p-divisible. Then h_{p}(h_{n_{p}})=\infty . Let D^{(p)}/N=\langle h_{n_{p}+i}+N|i\geqq 0\rangle .
Hence the assertion holds.

For 1\leqq i\leqq n_{p} , let

e_{pi}=\{
l_{p1} if i=1 ,

t_{p1}+ \sum_{j=2}^{i}(t_{pj}-c_{pj-1}) if i>1 .

By an easy induction, we have

p^{t_{pi}-1}y_{pi}=(-1)^{i-1}p^{e_{pi}-1}b_{p}+p^{c_{pi}-1}h_{pi}

and

h_{p}(p^{i}b_{p})=\{_{i+}^{i}i+c_{pn_{p}}-e_{pn_{p}}c_{pk}-e_{pk} forforfori\geqq e_{pn_{p}}0\leqq i<.e_{p1}e_{pk}\leqq i<e_{pk+1}

’

and 2\leqq k<n_{p}-1 ,

\square

Proposition 2.10 Let G be an abelian group and A a torsion-free rank-
one subgroup of G. Suppose that A is purifiable in G. Let H and K be pure
hulls of A in G. Then, for every prime p, H_{p}\neq 0 if and only if K_{p}\neq 0 .
For every prime p such that H_{p}\neq 0 , let H_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}\rangle , where x_{pi}\in H_{p}

and o(x_{pi})=p^{t_{pi}} , K_{p}=\oplus_{i=1}^{n_{\acute{p}}}\langle y_{pi}\rangle , where y_{pi}\in K_{p} and o(y_{pi})=p^{t_{pi}’} , c_{pi}=

h_{p}^{G/A}(p^{t_{pi}-1}x_{pi}+A)+1 for 1\leqq i\leqq n_{p} , and c_{pi}’=h_{p}^{G/A}(p^{t_{pi}’-1}y_{pi}+A)+1

for 1\leqq i\leqq n_{p}’ . Then n_{p}=n_{p}’ , t_{pi}=t_{pi}’ , and c_{pi}=c_{pi}’ for 1\leqq i\leqq n_{p} .

Proof By Proposition 1.10, for all n\geqq 0 ,

V_{p,n}(H, A)\cong V_{p,n}(G, A)\cong V_{p,n}(K, A) .
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Hence, by Lemma 2.1 (2), n_{p}=n_{p}’ and t_{pi}=t_{pi}’ for 1 \leqq i\leqq n_{p} . By
Theorem 2.9, for 1\leqq i\leqq n_{p} , if c_{pi}<\infty and c_{pi}’<\infty , then there exist
a_{pi}’ , a_{pi}’\in A , h_{pi}\in H , and k_{pi}\in K such that p^{t_{pi}-1}x_{pi}=a_{pi}’+p^{c_{pi}-1}h_{pi} ,
p^{t_{pi}-1}y_{pi}=a_{pi}’+p^{c_{pi}’-1}k_{pi} , h_{p}(pa_{pi}’)=c_{pi} , and h_{p}(pa_{pi}’)=c_{pi}’ . Since r(A)=
1 , there exist integers \alpha_{pi} and \beta_{pi} such that (\alpha_{pi}, \beta_{pi})=1 and \alpha_{pi}a_{pi}’=

\beta_{pi}a_{pi}’ . Since h_{p}(a_{pi}’)=h_{p}(a_{pi}’) , we have (\alpha_{pi},p)=(\beta_{pi},p)=1 . Since
\alpha_{pi}pa_{p}’=\beta_{pi}pa_{pi}’ , we have c_{pi}=c_{pi}’ . If c_{pn_{p}}<\infty and c_{pn_{p}}’=\infty , then, by
Lemma 2.1 (2), there exist b_{p} , b_{p}’\in A , h_{pn_{p}}\in H , and k_{pn_{p}}\in p^{\omega}K such that
p^{t_{pn_{p}}-1}x_{pn_{p}}=b_{p}+p^{c_{pn_{p}}-1}h_{pn_{p}} , p^{t_{pn_{p}}-1}y_{pn_{p}}=b_{p}’+k_{pn_{p}} , h_{p}(pb_{p})=c_{pn_{p}} , and
h_{p}(pb_{p}’)=\infty . By a similar proof, this is a contradiction. Hence

c_{pi}=c\coprod’pi,

for 1\leqq i\leqq n_{p} .

Assume 2.3. By Proposition 2.10, we define the p-coordinate of the
torsion system of A as the following sequence:

T_{p}^{A}(G)=\{
(t_{p1}, t_{p2}, \ldots, t_{pn_{p}}) if A is not p-vertical in G,

(0) if A is p-vertical in G

and the p-coordinate of the quotient system of A as the following sequence:

Q_{p}^{A}(G)=\{
(c_{p1}, c_{p2}, . , c_{pn_{p}}) if A is not p-vertical in G ,

(0) if A is p-vertical in G ,

where c_{pn_{p}}=h_{p}^{G/A}(p^{t_{pn_{p}}-1}y_{pn_{p}}+A) . By the structure of H, c_{pn_{p}}<\omega or
c_{pn_{p}}=\infty .

Since we can make the matrix from the quotient system and the torsion
system, we define the p-coordinate of the QT-matrices of A , denoted by
QT_{p}^{A}(G) , as follows: if A is not p-vertical in G , then let

QT_{p}^{A}(G)=(\begin{array}{lll}c_{p1},c_{p2}, \cdots c_{pn_{p}}t_{p1},t_{p2},. \end{array})

and if A is p-vertical in G , then let

QT_{p}^{A}(G)=(\begin{array}{l}00\end{array})

In view of Theorem 2.9, to have the property that p^{t_{p1}-1}b_{p}\in A and
p^{t_{pi}-1}h_{pi-1}\in A for 2\leqq i\leqq n_{p} , we need to choose a special element b_{p}\in N .
To prove that all pure hulls of A in G are isomorphic, we do not need to do
it. Hence, by similar calculations, we establish the following corollary:
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Corollary 2.11 Assume 2.3. For every prime p such that H_{p}\neq 0 , let
H_{p} be as in Lemma 2.5, b\in N , and for every prime p, let m_{p}=h_{p}^{N}(b) . If
p is a prime such that H_{p}\neq 0 , then there exists b_{p}’\in N such that b=p^{m_{p}}b_{p}’

and H_{p}(b_{p}’)=0 .

(1) If h_{p}(p^{t_{pn_{p}}-1}y_{pn_{p}}’+N)<\omega , then there exist g_{pi}\in H and x_{pi}\in H_{p} for
1\leqq i\leqq n_{p} such that
(1) (H/N)_{p}=\oplus_{i=1}^{n_{p}}\langle g_{pi}+N\rangle ;
(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}\rangle , where o(x_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) setting o(h_{pi}+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p} , t_{p1}<c_{p1}<t_{p2}<c_{p2}<

<t_{pn_{p}}<c_{pn_{p}} ;
(4) x_{p1}=b_{p}’+p^{c_{p1}-t_{p1}}g_{p1} and x_{pi}=h_{pi-1}+p^{c_{pi}-t_{pi}}g_{pi} for 2\leqq i\leqq n_{p} ;
(5) for 1 \leqq i\leqq n_{p} –1, h_{p}(p^{s}g_{pi})=s for 0 \leqq s<t_{pi+1} and

h_{p}(p^{s}g_{pn_{p}})=s for all s\geqq 0 .
(2) If h_{p}(p^{t_{pn_{p}-1}}y_{pn_{p}}’+N)\in p^{\omega}(G/N)[p] , then there exist g_{pi}\in H for

1\leqq i\leqq n_{p}-1 , x_{pi}\in H[p] for 1\leqq i\leqq n_{p} , and a subgroup D^{(p)} of H
such that
(1) (H/N)_{p}=\oplus_{i=1}^{7\iota_{p}-1} \langle g_{pi}+N\rangle\oplus D^{(p)}/N , where o(g_{pi}+N)=p^{c_{pi}}

for 1\leqq i\leqq n_{p}-1 and D^{(p)}/N\cong Z[p^{\infty}] such that

D^{(p)}/N=\langle g_{pi}+N|i\geqq n_{p}, pg_{pi+1}=h_{pi}^{t_{pn_{p}}+1}g_{pn_{p}}\in N\rangle ;

(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}\rangle , where o(x_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) t_{p1}<c_{p1}<t_{p2}<c_{p2}< <t_{pn_{p}} ;
(4) x_{p1}=b_{p}’+p^{c_{p1}-t_{p1}}g_{p1} and x_{pi}=g_{pi-1}+p^{c_{pi}-t_{pi}}g_{pi} for 1\leqq i\leqq

n_{p}-1 and x_{pn_{p}}=g_{pn_{p}-1}+pg_{pn_{p}} ;
(5) for 1\leqq i\leqq n_{p}-1 , h_{p}(p^{s}g_{pi})=s for 0\leqq s<t_{pi+1} and h_{p}(g_{pn_{p}})=

\infty .
Moreover, for every prime p such that H_{p}\neq 0 and 1\leqq i\leqq n_{p} , let

e_{pi}=\{
t_{p1} if i=1 ,

t_{p1}+ \sum_{j=2}^{i}(t_{pj}-c_{pj-1}) if i>1 .

Then

p^{t_{pi}-1}y_{pi}=(-1)^{i-1}p^{e_{pi}-1}b_{p}’+p^{c_{pi}-1}h_{pi} . (2. 11. 1.)

Let c_{pn_{p}}=\infty if p^{\omega}(G/A)[p]\neq 0 . Then
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h_{p}(p^{i}b_{p}’)=\{_{i}^{i}i+c_{pk}-e_{pk}+c_{pn_{p}}-e_{pn_{p}} forforfor0\leqq e_{pk}i\geqq\leqq i<.e_{pk+1}e_{pn_{p}}i<e_{p1}

,

and 2\leqq k<n_{p}-1 ,

3. Torsion-Free Rank-0ne Subgroups

Our major goals of this section are to give a necessary and sufficient
condition for torsion-free rank-0ne subgroups of arbitrary abelian groups to
be purifiable in a given group and to show that if A is a purifiable torsion-
free rank-0ne subgroup of an arbitrary abelian group, then all pure hulls of
A are isomorphic.

Lemma 3.1 Let G be an arbitrary abelian group and A a torsion-free
rank-One subgroup of G. Let p be a prime such that A\neq pA and a_{p}\in A

such that h_{p}^{A}(a_{p})=0 . Then the following hold.
(1) If there exists an integer r such that h_{p}(p^{r}a_{p})=d<\omega , then A\cap p^{d}G

is p-vertical i,np^{d}G if and only if h_{p}(p^{r+n}a_{p})=d+n for n\geqq 0 .
(2) If there exists a nonnegative integer r such that h_{p}(p^{r}a_{p})=d<\omega and

h_{p}(p^{r+n}a_{p})=h_{p}(p^{r}a_{p})+n for n\geqq 0 , then A is p purifiable in G .
(3) If there exists a nonnegative integer r such that h_{p}(p^{r}a_{p})=d<\omega and

h_{p}(p^{r+1}a_{p})=\infty , then A\cap p^{d+1}G is p-vertical in p^{d+1}G .

Proof (1) (\Rightarrow) Suppose by induction that h_{p}(p^{r+i}a_{p})=d+i for all
0\leqq i\leqq k . If h_{p}(p^{r+k+1}a_{p})\geqq d+k+2 , then there exists g\in G such
that p^{r+k+1}a_{p}=p^{d+k+2}g . Since A\cap p^{d}G is p-vertical in p^{d}G , by Pro of
section 1.13 (2), we have p^{r+k}a_{p}-p^{d+k+1}g\in((A\cap p^{d}G)+p^{d+k+1}G)[p]=

p^{d+k+1}G[p] . This is a contradiction. Hence h_{p}(p^{r+i}a_{p})=d+?\cdot, for all i\geqq 0 .
(\Leftarrow) Note that if b_{p}\in A such that h_{p}^{A}(b_{p})=0 , then h_{p}(p^{r+n}b_{p})=d+n

for n\geqq 0 . It suffices to prove that ((A\cap p^{d}G)+p^{d+n}G)[p]=p^{d+n}G[p] for all
n\geqq 1 . Let a+p^{d+n}g\in((A\cap p^{d}G)+p^{d+n}G)[p] such that a\in A\cap p^{d}G and
g\in G . If h_{p}(a)<d+77,, then there exists a_{p}’\in A such that h_{p}^{A}(a_{p}’)=0 and
a=p^{t}a_{p}’ for some integer t . Then t\geqq r and hence h_{p}(pa)<d+n+1 . But
pa=-p^{d+n+1}g . This is a contradiction. Hence h_{p}(a)\geqq d+n and A\cap p^{d}G

is p-vertical in p^{d}G .
(2) We prove that A\cap p^{d}G is p-neat in p^{d}G . Let px\in A\cap p^{d}G with

x\in p^{d}G . Since r(A)=1 , there exist integers \alpha and \beta such that (\alpha, \beta)=1

and \alpha a_{p}=\beta px . Then (\beta,p)=1 . Let \alpha=p^{s}\alpha’ for some integer \alpha’ such
that (\alpha’,p)=1 . Note that h_{p}(p^{s}a_{p})=h_{p}(px)\geqq d+1 . If s<r , then
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d+1\leqq h_{p}(p^{s}a_{p})<h_{p}(p^{r}a_{p})=d . This is a contradiction. Hence r\leqq s .
Since h_{p}(p^{s-r}p^{r}a_{p})=d+s-r\geqq d+1 , we have s\geqq r+1 . Hence p^{s}a_{p}=

p^{s-r-1}pp^{r}a_{p}\in p(A\cap p^{d}G) . Since \alpha’p^{s}a_{p}=\beta px and (\alpha’,p)=(\beta,p)=1 ,
px\in p(A\cap p^{d}G) . Hence A\cap p^{d}G is p-neat in p^{d}G . By Proposition 1.12,
A\cap p^{d}G is p-pure in p^{d}G . By Proposition 1.14, A is p-purifiable in G .

(3) We show that ((A\cap p^{d+1}G)+p^{d+n+1}G)[p]=p^{d+n+1}G[p] for all n\geqq

1 . Let a+p^{d+n+1}g\in((A\cap p^{d+1}G)+p^{d+n+1}G)[p] such that a\in A\cap p^{d+1}G

and g\in G . Since r(A)=1 , there exist integers \gamma and \delta such that (\gamma, \delta)=1

and \gamma a_{p}=\delta a . Then (\delta,p)=1 . Let \gamma=p^{s’}\gamma’ for some integer \gamma’ such that
(\gamma’,p)=1 . By a similar argument, we have s’\geqq r+1 . Hence h_{p}(a)=\infty

and ((A\cap p^{d+1}G)+p^{d+n+1}G)[p]=p^{d+n+1}G[p] for all n\geqq 1 . \square

Now we give a necessary and sufficient condition for a torsion-free rank-
one subgroup of an arbitrary abelian group to be purifiable in a given group.

Theorem 3.2 Let G be an abelian group and A a torsion-free rank-One
subgroup of G. Then the following properties are equivalent:
(1) A is purififiable in G ;
(2) for every prime p such that A\neq pA , there exists a_{p}\in A such that

h_{p}^{A}(a_{p})=0 and one of the following two conditions holds:
(i) there exists a nonnegative integer r_{p} such that h_{p}(p^{r_{p}}a_{p})<\omega and

h_{p}(p^{r_{p}+n}a_{p})=h_{p}(p^{r_{p}}a_{p})+n for n\geqq 0 ;
(ii) there exists a nonnegative integer r_{p} such that h_{p}(p^{r_{p}}a_{p})=\infty

and if r_{p}>0 , then h_{p}(p^{r_{p}-1}a_{p})<\omega .
(3) for every prime p and every a\in A , one of the following two conditions

holds:
(i) there exists a nonnegative integer k_{p}(a) such that h_{p}(p^{k_{p}(a)}a)<\omega

and h_{p}(p^{k_{p}(a)+n}a)=h_{p}(p^{k_{p}(a)}a)+n for n\geqq 0 ;
(ii) there exists a nonnegative integer k_{p}(a) such that h_{p}(p^{k_{p}(a)}a)=

\infty and if k_{p}(a)>0 , then h_{p}(p^{k_{p}(a)-1}a)<\omega .
(4) for every prime p,

(i) A is eventually p-vertical in G and
(ii) for every a\in A , if h_{p}(a)\geqq\omega , then h_{p}(a)=\infty .

Proof (1) (\Rightarrow)(2) Let H be a pure hull of A in G and N a T(H)-high
subgroup of H containing A . Suppose that A\neq pA . Then there exists
a_{p}\in A such that h_{p}^{A}(a_{p})=0 .
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Suppose that H_{p}=0 . By Proposition 1.10, both of A and N are p-
vertical in G . By Proposition 1.12, N is p-pure in G . Since N is torsion-free,
the assertion holds.

Suppose that H_{p}\neq 0 . Let

QT_{p}^{A}(G)=(\begin{array}{llll}c_{p1},c_{p2}, \cdots ’ c_{pn_{p}}t_{pl,t}_{p2},. ,t_{pn_{p}} \end{array})

For convenience, let

e_{p}=\{
t_{p1} if n_{p}=1 ,

t_{p1}+ \sum_{j=2}^{n_{p}}(t_{pj}-c_{pj-1}) if n_{p}>1 .

If c_{pn_{p}}<\omega , then, by Theorem 2.9, there exist b_{p}\in N and h_{pn_{p}}\in H such
that (-1)^{n_{p}}p^{e_{p}}b_{p}=p^{c_{pn_{p}}}h_{pn_{p}} and h_{p}(p^{c_{pn_{p}}+n}h_{pn_{p}})=c_{pn_{p}}+n for all n\geqq 0 .
Since (-1)^{n_{p}}p^{e_{p}-1}b_{p}\in A and A\neq pA , there exist a_{p}’\in A and an integer
r_{p} such that h_{p}^{A}(a_{p}’)=0 and (-1)^{n_{p}}p^{e_{p}-1}b_{p}=p^{r_{p}}a_{p}’ . Since r(A)=1 , there
exist integers \alpha_{p} and \beta_{p} such that (\alpha_{p}, \beta_{p})=(\alpha_{p}, p)=(\beta_{p}, p)=1 and
\alpha_{p}a_{p}’=\beta_{p}a_{p} . Then h_{p}(p^{r_{p}+1}a_{p})=c_{pn_{p}} and h_{p}(p^{r_{p}+n+1}a_{p})=c_{pn}+n for all
n\geqq 0 .

If c_{pn_{p}}=\infty , then, by Theorem 2.9, there exist b_{p}\in N and h_{pn_{p}}\in H

such that h_{p}(p^{e_{p}-1}b_{p})=t_{pn_{p}}-1 , (-1)^{n_{p}}p^{e_{p}}b_{p}=p^{t_{pn_{p}}+1}h_{pn_{p}} , and h_{p}(h_{pn_{p}})=

\infty . By a same argument, the assertion holds.
(2) (\Rightarrow)(3) If A=pA, then, for every a\in A , h_{p}^{A}(a)=\infty . Without

loss of generality, we may assume that A\neq pA . By hypothesis (2), there
exists a_{p}\in A such that h_{p}^{A}(a_{p})=0 and one of (i) and (ii) holds. Let a\in A .
Since r(A)=1 , there exist integers \gamma_{p} and \delta_{p} such that (\gamma_{p}, \delta_{p})=(\gamma_{p}, p)=1

and \gamma_{p}a=\delta_{p}a_{p} . Hence the assertion holds.
(3) (\Rightarrow)(2) Trivial.
(2) (\Rightarrow)(4) It is sufficient to show that, for every prime p, A is even-

tually p-vertical in G . If A=pA, then A is p-vertical in G . Without loss
of generality, we may assume that A\neq pA . By hypothesis (2), there exists
a_{p}\in A such that h_{p}^{A}(a_{p})=0 and one of (i) and (ii) holds. If the condition
(i) holds, then, by Lemma 3.1 (1), A is eventually p-vertical in G . Suppose
that the condition (ii) holds. If r_{p}=0 , then, for all a\in A , h_{p}(a)=\infty .
Hence A is p-vertical in G . If r_{p}>0 , then, by Lemma 3.1 (3), A is eventually
p-vertical in G .

(4) (\Rightarrow)(2) For every prime p such that A\neq pA , let a_{p}\in A such
that h_{p}^{A}(a_{p})=0 . By (ii), without loss of generality, we may assume that
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h_{p}(p^{n}a_{p})<\omega for all n\geqq 0 . Since A is eventually p-vertical in G, then, by
Proposition 1.9, there exists integers r_{p} and d_{p} such that h_{p}(p^{r_{p}}a_{p})=d_{p}<\omega

and A\cap p^{d_{p}}G is p-vertical in p^{d_{p}}G . By Lemma 3.1 (1), the assertion holds.
(2) (\Rightarrow)(1) If A=pA, then A is p-vertical and p-neat in G. By

Proposition 1.12, A is p-pure in G . Hence, without loss of generality, we
may assume that A\neq pA . By hypothesis (2), there exists a_{p}\in A such that
h_{p}^{A}(a_{p})=0 and one of (i) and (ii) holds.

Suppose that (i) is satisfied. Let d_{p}=h_{p}(p^{r_{p}}a_{p}) . By Lemma 3.1 (2), A\cap

p^{d_{p}}G is p-purifiable in p^{d_{p}}G . Hence, by Proposition 1.14, A is p-purifiable
in G .

Suppose that (ii) is satisfied. Let

d_{p}=\{
0 if r_{p}=0 ,
h_{p}(p^{r_{p}-1}a_{p})+1 if r_{p}>0 .

Note that h_{p}(g)=\infty means that g is an element of the maximal p-divisible
subgroup of G . Since h_{p}(p^{r_{p}}a_{p})=\infty , there exist an element g_{pi}\in G for
i\geqq 1 such that p^{r_{p}}a_{p}=p^{i}g_{pi} and pg_{pi+1}=g_{pi} for all i\geqq 1 . Let

L=\langle g_{pi}, A\cap p^{d_{p}}G|i\geqq 1\rangle .

We prove that L is p-pure in p^{d_{p}}G . Let p^{n}g\in L such that g\in p^{d_{p}}G and n
is an integer. Then we can write

p^{n}g=\lambda_{p}g_{pm}+a’

for some integers m , \lambda_{p} and a’\in A\cap p^{d_{p}}G . Since r(A)=1 , there exist
integers \gamma_{p}’ and \delta_{p}’ such that (\gamma_{p}’, \delta_{p}’)=1 and \gamma_{p}’a’=\delta_{p}’a_{p} . Then (\gamma_{p}’,p)=

1 . Let \delta_{p}’=p^{u_{p}}\tau_{p} for some integer \tau_{p} such that (\tau_{p}, p)=1 . Then u_{p}\geqq r_{p}

and

\gamma_{p}’p^{n}g=\gamma_{p}’\lambda_{p}g_{pm}+\gamma_{p}’a’=\gamma_{p}^{\prime\prime n}\lambda_{p}pg_{pm+n}+\tau_{p}p^{u_{p}-r_{p}}p^{r_{p}}a_{p}

=\gamma_{p}^{\prime\prime n}\lambda_{p}pg_{pm+n}+\tau_{p}p^{u_{p}-r_{p}}p^{n}g_{pn}\in p^{n}L .

Hence L is a p–pure subgroup of p^{d_{p}}G containing A\cap p^{d_{p}}G . Since A\cap p^{d_{p}}G

is p-vertical in p^{d_{p}}G by Lemma 3.1 (3) and \frac{L}{A\cap p^{d_{p}}G} is a divisible p-group, we
have L[p]=0 . By Proposition 1.5, L is a p-pure hull of A\cap p^{d_{p}}G in p^{d_{p}}G .
Hence A is p-purifiable in G . Since A is p-purifiable in G for every prime p,
by Proposition 1.7, A is purifiable in G. \square
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We recall the height-matrix introduced in [6, Vol. 2, p.198]. Let G be
an arbitray abelian group, p_{n}(n\geqq 1) a listing of all primes in increasing
order, and g\in G . Then we associate with g the height-matrix \mathbb{H}(g) , an
infinite matrix with ordinal numbers for entries, as follows;

\mathbb{H}(g)= (\begin{array}{llll}h_{p_{1}}(g) h_{p_{1}}(p_{1}g) h_{p_{1}}(p_{1}^{k}g) .\cdot h_{p_{n}}(q) h_{p_{n}}(p_{n}g) h_{p_{n}}(p_{n}^{k}g) |\cdot .|\end{array})

The element in the (n, k)-position of \mathbb{H}(g) is the generalized p_{n} height of
p_{n}^{k}g , for all n\geqq 1 and k\geqq 0 . The element in the (n, k)-position of \mathbb{H}(g)

is denoted by \mathbb{H}_{n,k}(g) . The nth row of \mathbb{H}(g) is called the p_{n} -indicator of
a . \mathbb{H}_{n,k}(g)=\infty means that p^{k}g is an element of the maximal p-divisible
subgroup of G .

We can rephrase Theorem 3.2 in terms of height matrices as follows.
A is purifiable in G if and only if, for every a\in A and all n\geqq 1 , the p_{n} -

indicator of a in the height matrix \mathbb{H}(a) is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}+i}(a)<\omega and

\mathbb{H}_{n,r_{n}+i}(a)=\mathbb{H}_{n,r_{n}}(a)+i for all i\geqq 0 ;
(2) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(a)=\infty and if

r_{n}>0 , then \mathbb{H}_{n,r_{n}-1}(a)<\omega .
In the latter half of this section, we show that all pure hulls of a torsion-

free rank-0ne subgroup of an arbitrary abelian group are isomorphic. To do
this, we need the following lemma.

Lemma 3.3 Let G be an abelian group and A a torsion-free rank-One
subgroup of G. Suppose that A is purififiable in G. Let H and K be pure
hulls of A in G , M a T(H) -high subgroup of H containing A , and Na
T(K) -hiqh subgroup of K containing A. Then M\cong N .

Proof Let u\in M and v\in N . For every prime p, let m_{p}=h_{p}^{M}(u) and
n_{p}=h_{p}^{N}(v) . By hypothesis, there exist integers r , s such that ru=sv\in A .

Suppose that m_{p}=\infty and n_{p}<\infty . Then, by Proposition 2.2 (4) and
Proposition 2.10, H_{p}=K_{p}=0 . Hence A is p-vertical in K and there
exists v_{p}’\in N such that h_{p}(v_{p}’)=0 and v=p^{n_{p}}v_{p}’ . Then h_{p}(ru)=\infty .
On the other hand, by Proposition 1.13 (3), h_{p}(sp^{n_{p}}v_{p}’)<\infty . This is a
contradiction. Hence m_{p}=\infty if and only if n_{p}=\infty .
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Without loss of generality, we may assume that m_{p}<\infty and n_{p}<\infty .
There exists u_{p}\in M and v_{p}\in N such that h_{p}(u_{p})=h_{p}(v_{p})=0 , u=p^{m_{p}}u_{p} ,
and v=p^{n_{p}}v_{p} . Note that ru=rp^{m_{p}}u_{p}=sp^{n_{p}}v_{p}=sv\in A and h_{p}(ru)=
h_{p}(sv) .

If p is a prime such that H_{p}=0 and (r,p)=(s,p)=1 , then K_{p}=0

and hence m_{p}=n_{p} .
Let p be a prime such that H_{p}\neq 0 . By Proposition 2.10, K_{p}\neq 0 . For

every prime p such that H_{p}\neq 0 , let

QT_{p}^{A}(G)=(_{t_{p1},t_{p2},\ldots,t_{pn_{p}}}^{c_{p1},c_{p2},..,c_{pn_{p}}})

and

e_{p}=\{
t_{p1} if n_{p}=1 ,

t_{p1}+ \sum_{j=2}^{n_{p}}(t_{pj}-c_{pj-1}) if n_{p}>1 .

By Theorem 2.9, there exist b_{p}\in M and b_{p}’\in N such that h_{p}(b_{p})=h_{p}(b_{p}’)=

0 , h_{p}(p^{i}b_{p})=h_{p}(p^{i}b_{p}’)<\infty for 0\leqq i<e_{p} and p^{e_{p}-1}b_{p},p^{e_{p}-1}b_{p}’\in A .
Since r(A)=1 , there exist integers \alpha_{p} and \beta_{p} such that (\alpha_{p}, \beta_{p})=1

and \alpha_{p}p^{e_{p}-1}b_{p}=\beta_{p}p^{e_{p}-1}b_{p}’ . Then (\alpha_{p}, p)=(\beta_{p}, p)=1 . Without loss
of generality, we may assume that b_{p}=u_{p} , b_{p}’=v_{p} , and \alpha_{p}p^{e_{p}-1}u_{p}=

\beta_{p}p^{e_{p}-1}v_{p}\in A .
Suppose that p is a prime such that (r,p)=(s.p)=1 and m_{p}<e_{p} .

Since h_{p}(rp^{m_{p}}u_{p})=h_{p}(sp^{n_{p}}v_{p}) and h_{p}(p^{i}u_{p})=h_{p}(p^{i}v_{p})<\infty for 0\leqq i<e_{p} ,
we have m_{p}=n_{p} . Suppose that p is a prime such that (r,p)=(s,p)=1
and m_{p}\geqq e_{p} . Then n_{p}\geqq e_{p} and

\beta_{p}rp^{m_{p}-e_{p}}\alpha_{p}p^{e_{p}}u_{p}=\alpha_{p}sp^{n_{p}-e_{p}}\beta_{p}p^{e_{p}}v_{p,\square },\cdot

Since \alpha_{p}p^{e_{p}}u_{p}=\beta_{p}p^{e_{p}}v_{p}\in A , we have m_{p}=n_{p} . Hence M\cong N .

Theorem 3.4 Let G 6e an abelian group and A a torsion-free rank-One
subgroup of G. If A is pur.fifiable in G , then all pure hulls of A are isomor-
phic.

Proof. Let H and K be pure hulls of A in G , M a T(H)-high subgroup
of H containing A , and N a T(K)-high subgroup of K containing A . By
Lemma 3.3, M\cong N . We have an isomorphism \phi : M - N, choose u\in

M, and let v=\phi(u) . Then, for every prime p, h_{p}^{M}(u)=h_{p}^{N}(v)=m_{p} .
By Proposition 2.2 (4), if p is a prime such that H_{p}\neq 0 , then m_{p}<\infty .
Therefore there exists u_{p}\in M and v_{p}\in N such that h_{p}(u_{p})=h_{p}(v_{p})=0 ,
u=p^{m_{p}}u_{p} , v=p^{m_{p}}v_{p} , and \phi(u_{p})=v_{p} .
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For a prime p such that H_{p}\neq 0 , let

QT_{p}^{A}(G)=(\begin{array}{llll}c_{p1},c_{p2}, \cdots ’ c_{pn_{p}}t_{p1},t_{p2},. ,t_{pn_{p}} \end{array})

By Corollary 2.11, we have the following.
(1) If c_{pn_{p}}<\infty , then, for 1\leqq i\leqq n_{p} , there exist x_{pi}\in H_{p} , x_{pi}’\in K_{p} ,

g_{pi}\in H , and g_{pi}’\in K such that
(1) (H/M)_{p}=\oplus_{i=1}^{n_{p}} \langle g_{pi}+M\rangle , where o(g_{pi}+M)=p^{c_{pi}} for 1\leqq i\leqq

n_{p} ;
(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}\rangle , where o(x_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) x_{p1}=u_{p}+p^{c_{p1}-t_{p1}}g_{p1} , x_{pi}=g_{pi-1}+p^{c_{pi}-t_{pi}}g_{pi} for 2\leqq i\leqq n_{p} ,

and
(1) (K/N)_{p}=\oplus_{i=1}^{n_{p}}\langle g_{pi}’+N\rangle , where o(g_{pi}’+N)=p^{c_{pi}} for 1\leqq i\leqq n_{p} ;

(2) K_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}’\rangle , where o(x_{pi}’)=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) x_{p1}’=v_{p}+p^{c_{p1}-t_{p1}}g_{p1}’ , x_{pi}’=g_{pi-1}’+p^{c_{pi}-t_{pi}}g_{pi}’ for 2\leqq i\leqq n_{p} .

(2) If c_{pn_{p}}=\infty , then there exist x_{pi}\in H_{p} and x_{pi}’\in K_{p} for 1\leqq i\leqq n_{p} ,
and g_{pi}\in H and g_{pi}’\in K for i\geqq 1 such that
(1) (H/M)_{p}=\oplus_{i=1}^{n_{p}-1} \langle g_{pi}+M\rangle\oplus D^{(p)}/N . where o(.g_{pi}+M)=p^{c_{pi}}

for 1\leqq i\leqq n_{p}-1 and D^{(p)}/M\cong Z[p^{\infty}] such that

D^{(p)}/M=\langle g_{pi}+M|i\geqq n_{p}, pg_{pi+1}=g_{pi}, p^{t_{pn_{p}}+1}g_{pn_{p}}\in M\rangle ;

(2) H_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}\rangle , where o(x_{pi})=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) x_{p1}=u_{p}+p^{c_{p1}-t_{p1}}g_{p1} , x_{pi}=g_{pi-1}+p^{c_{pi}-t_{pi}}g_{pi} for 1\leqq i\leqq n_{p}-1

and x_{pn_{p}}=g_{pn_{p}-1}+pg_{pn_{p}} ,

and
(1) (K/N)_{p}=\oplus_{i=1}^{n_{p}-1} \langle g_{pi}’+M\rangle\oplus D^{(p)}/N , where o(g_{pi}’+M)=p^{c_{pi}}

for 1\leqq i\leqq n_{p}-1 and D^{(p)}/M\cong Z[p^{\infty}] such that

D^{(p)}/M=\langle g_{pi}’+M|i\geqq n_{p}, pg_{pi+1}’=g_{pi}’, p^{t_{pn_{p}}+1}g_{pn_{p}}’\in M\rangle ;

(2) K_{p}=\oplus_{i=1}^{n_{p}}\langle x_{pi}’\rangle , where o(x_{pi}’)=p^{t_{pi}} for 1\leqq i\leqq n_{p} ;
(3) x_{p1}’=v_{p}+p^{c_{p1}-t_{p1}}g_{p1}’ , x_{pi}’=g_{pi-1}’+p^{c_{pi}-t_{pi}}g_{pi}’ for 1\leqq i\leqq n_{p}-1

and x_{pn_{p}}’=g_{pn_{p}-1}’+pg_{pn_{p}}’ .
To extend this isomorphism to H , define \phi(g_{pi})=g_{pi}’ for all 1\leqq i\leqq n_{p} if
c_{pn_{p}}<\infty , \phi(g_{pi})=g_{pi}’ for all i\geqq 1 if c_{pn_{p}}=\infty , and
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\phi(\sum(^{n}\sum\alpha_{p_{r}i}g_{p_{r}}i)np_{\Gamma}+\sum\beta_{q_{s}s}g_{q_{s}n_{qs}+l_{s}}+u’)m

r=1i=1 s=1

= \sum_{k=1}^{n}(\sum_{i=1}^{n_{pr}}\alpha_{p_{r}i}g_{p_{k}i}’)+\sum_{s=1}^{m}\beta_{q_{s}s}g_{q_{s}n_{q_{S}}+l_{s}}’+\phi(u’) ,

where every \alpha_{p_{r}i} and every \beta_{q_{s}s} is integer for 1\leqq r\leqq n , 1\leqq i\leqq n_{p_{r}} and
1\leqq s\leqq m and u’\in M .

Let h\in H such that

h= \sum_{r=1}^{n}(\sum_{i=1}^{n_{pr}}\alpha_{p_{r}i}g_{p_{r}i})+\sum_{s=1}^{m}\beta_{q_{s}s}g_{q_{s}n_{qs}+l_{s}}+\delta u ,

where every \alpha_{p_{r}i} and every \beta_{q_{s}s} is integer for 1\leqq r\leqq n , 1\leqq i\leqq n_{p_{r}} and
1\leqq s\leqq m and \delta\in Q . Suppose that h=0. Since \{g_{p_{r}i}’+N , g_{q_{s}n_{qs}+l_{s}}’+

N|1\leqq r\leqq n , 1\leqq i\leqq n_{p_{r}} , 1\leqq s\leqq m\} is independent in K/N, p_{r^{pr^{i}}}^{c}

divides \alpha_{p_{r}i} and q_{s}^{t_{qs^{n}q_{S}}+l_{s}+1} divides \beta_{q_{s}s} . Hence we write \alpha_{p_{r}i}=p_{r^{pr^{i}}}^{c}\alpha_{p_{r}i}’

and \beta_{q_{s}s}=q_{s}^{t_{qs^{n}q_{S}}+l_{s}+1}\beta_{q_{s}s}’ for so me integers \alpha_{p_{r}i}’ and \beta_{q_{s}}’ . Let

e_{p}=\{
t_{p1} if n_{p}=1 ,

t_{p1}+ \sum_{j=2}^{n_{p}}(t_{pj}-c_{pj-1}) if n_{p}>1 .

By (2.11.1),

h=( \sum(^{n}\sum\alpha_{p_{r}i}’(-1)^{n_{p_{\Gamma}}}p_{r}^{e_{pr^{n}pr}-m_{p_{7)}}}np_{\Gamma}

r=1 i=1

+ \sum_{s=1}^{m}\beta_{q_{S}s}’(-1)^{n_{q_{S}}}q_{s}^{e_{q_{S}n_{q_{S}}}-m_{qs}}+\delta)u=0 .

Let
\lambda=\sum_{r=1}^{n}(\sum_{i=1}^{n_{pr}}\alpha_{p_{r}i}’(-1)^{n_{p_{\Gamma}}}p_{r}^{e_{pr^{n}p_{\Gamma}}-m_{\mathcal{P}r}})+\sum_{s=1}^{m}\beta_{q_{S}s}’(-1)^{n_{qs}}q_{s}^{e_{q_{S}n_{q_{S}}}-m_{q_{S}}}+

\delta . Then \lambda=0 . It is immediate that if \lambda=0 , then h=0. Therefore we
proved that

h= \sum_{r=1}^{n}(\sum_{i=1}^{n_{pr}}\alpha_{p_{r}i}g_{p_{r}i})+\sum_{s=1}^{m}\beta_{q_{s}s}g_{q_{s}n_{q_{S}}+l_{s}}+\delta u=0
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if and only if \lambda=0 , where \alpha_{p_{r}i}=p_{r^{p_{\Gamma}i}}^{c}\alpha_{p_{r}i}’ , \beta_{q_{s}s}=q_{s}^{t_{q_{S}n_{q_{S}}}+l_{s}+1}\beta_{q_{b}s}’ for some
integers \alpha_{p_{r}i}’ and \beta_{q_{s}s}’ and

\lambda=\sum_{r=1}^{n}(\sum_{i=1}^{n_{pr}}\alpha_{p_{r}i}’(-1)^{n_{pr}}p_{r}^{e_{pr^{n}pr}-m_{pr}})+\sum_{s=1}^{m}\beta_{q_{s}s}’(-1)^{n_{qs}}q_{s}^{e_{qs^{n}q_{S}}-m_{qs}}+\delta .

Hence \phi is well-defined and a monomorphism. It is immediate that \phi is an
epimorphism and \phi|_{T(H)} is an isomorphism onto T(K) . Therefore \phi is an
isomorphism. \square

4. Puriflability of T-high subgroups

In this section, we consider T-high subgroups of arbitrary abelian groups
that are purifiable in given groups.

Theorem 4.1 Let G be an abelian group and A a T-high subgroup of G .
Suppose that A is purififiable in G. For every pure hull H of A in G, then H
is an ADE group H with A as a moho subgroup and there exists a subgroup
T_{1} of T such that

G=H\oplus T_{1} .

Moreover,
(1) if H and K are pure hulls of A in G, then H\cong K ;
(2) there exists a subgroup T’ of T such that G=H\oplus T’ for every pure

hull H of A in G .

Proof. By Proposition 2.2 (3), H_{p} is bounded pure in G_{p} for every prime
p . Hence H_{p} is a direct summand of G_{p} and there exists a subgroup T_{1}

of T such that T=T(H)\oplus T_{1} . We prove that H\oplus T_{1} is pure in G . Let
ng\in H\oplus T_{1} with g\in G and n\in Z . Then there exist h\in H and t\in T_{1}

such that ng=h+t. Moreover, we have mng\in H for some integer m .
Since H is pure in G , mng\in H\cap mnG=mnH . Hence there exists h’\in H

such that mn.q=mnh’ . Since ng – nh’\in T\cap nG=nT=n(T(H)\oplus T_{1}) ,
there exist h_{1}\in T(H) and t_{1}\in T_{1} such that ng - nh’=n(h_{1}+t_{1}) . Hence
ng=n(h’+h_{1}+t_{1})\in n(H\oplus T_{1}) . Since H\oplus T_{1} is essential in G , G=H\oplus T_{1} .
By Proposition 2.2 (1), it follows that A is almost-dense in H . Hence H is
an ADE-group with A as a moho subgroup.

Fix a prime p and recall notations as follows:

A_{G}^{n}(p)=(A+p^{n+1}G)\cap p^{n}G[p]=((A\cap p^{n}G)+p^{n+1}G)[p]
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and

A_{n}^{G}(p)=(A\cap p^{n}G)[p]+p^{n+1}G[p]=p^{n+1}G[p] .

By Proposition 1.10 and Proposition 1.11, there exists the least integer m
such that A_{G}^{n}(p)=A_{n}^{G}(p) for all n\geqq m . Then p^{m}G[p]=p^{m}T_{1}[p] .

For integer n\geqq 0 , let p^{n}g+A\in p^{n}(G/A)[p] . Since p^{n+1}g\in H\cap

p^{n+1}G=p^{n+1}H. there exists h\in H such that p^{n+1}g=p^{n+1}h . Since p^{n}g-

p^{n}h\in p^{n}G[p] , we have p^{n}(G/A)[p]=p^{n}(H/A)[p]+ \frac{p^{n}Gk)]+A}{A} . Let x\in A_{G}^{n}(p) .
Then we can write x=a+p^{n+1}g’ for some a\in A and g’\in G . Since x+
A \in p^{n+1}(G/A)[p]=p^{n+1}(H/A)[p]+\frac{p^{n+1}G[p]+A}{A} , there exist a’\in A , h’\in H ,
and p_{L}^{n-\vdash 1}q_{0}\in p^{n+1}G[p] such that x=a+p^{n+1}g’=a’+p^{n+1}h’+p^{n+1}g_{0} .
Since h_{p}(a)\geqq n , also h_{p}(a’)\geqq n . Hence A_{G}^{n}(p)=A_{H}^{n}(p)+A_{n}^{G}(p) . By
Proposition 2.2 (1), p^{n}H[p]\subseteq A+p^{n+1}H for all n\geqq 0 . Hence, for all n\geqq 0 ,
there exist subsocles S_{n} and H_{n} of G such that

p^{n}G[p]=A_{G}^{n}(p)\oplus S_{n}=(p^{n}H[p]+p^{n+1}G[p])\oplus S_{n}

=H_{n}\oplus p^{n+1}G[p]\oplus S_{n} .

Similarly, since A_{G}^{n}(p)=A_{K}^{n}(p)+A_{n}^{G}(p) and p^{n}K[p]\subseteq A+p^{n+1}K for all
n\geqq 0 , for all n\geqq 0 , there exist subsocles K_{n} of G such that

p^{n}G[p]=A_{G}^{n}(p)\oplus S_{n}=(p^{n}K[p]+p^{n+1}G[p])\oplus S_{n}

=K_{n}\oplus p^{n+1}G[p]\oplus S_{n} .

Let S=\oplus_{i=1}^{m-1}S_{i} . Then

G[p]=H[p]\oplus p^{m}T_{1}[p]\oplus S=K[p]\oplus p^{m}T_{1}[p]\oplus S .

Hence, for every prime p, there exist a nonnegative integer m_{p} and a subsocle
S_{p} of G such that

G[p]=H[p]\oplus p^{m_{p}}T_{1}[p]\oplus S_{p}=K[p]\oplus p^{m_{p}}T_{1}[p]\oplus S_{p} .

Since (S_{p}\oplus p^{m_{p}}T_{1}[p])\cap p^{m_{p}}G_{p}=(S_{p}\cap p^{m_{p}}G)\oplus p^{m_{p}}T_{1}[p]=p^{m_{p}}T_{1}[p] ,
(p^{m_{p}}T_{1})_{p} is pure in p^{m_{p}}G_{p} and so p^{m_{p}}T_{1}[p] is purifiable in p^{m_{p}}G_{p} . By
Proposition 1.13, (S_{p}\oplus p^{m_{p}}T_{1}[p]) is purifiable in G_{p} . Then there exists a
pure hull L_{p} of (S_{p}\oplus p^{m_{p}}T_{1}[p]) in G_{p} .

Let h\in H[p] and x\in L_{p}[p] . Then we have h_{p}(h+x)= \min\{h_{p}(h), h_{p}(x)\} .
Hence, by [8, Theorem 2], G_{p}=H_{p}\oplus L_{p} . Similarly, G_{p}=K_{p}\oplus L_{p} . Let
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T’=\oplus_{p}L_{p} . By the above proof, we have

G=H\oplus T’=K\oplus T’
\square

Definition 4.2 An abelian group G is said to be a strongly ADE decom-
posable group if there exists a purifiable T-high subgroup of G.

Let G be an abelian group such that, for every prime p, G_{p} is the direct
sum of a bounded and a divisible subgroup. By [13, Theorem 5.2], G is
a strongly ADE decomposable group. Let G , H and A be groups as in
Theorem 4.1. Then H is a minimal direct summand of G containing A .

Corollary 4.3 Let G be an abelian group of torsion-free rank 1 such that,
for every prime p, G_{p} is the direct sum of a bounded and a divisible subgroup.
Let A be a subgroup of G such that A\not\leqq T Then there exists a minimal
direct summand of G containing A .

Proof. By [13, Theorem 5.2], A is purifiable in G . Let H be a pure hull
of A in G . Then every T(H)-high subgroup of H is a T-high subgroup of
G. By the proof of Theorem 4.1, there exists a subgroup T_{1} of G such that
G=H\oplus T_{1} . Since H is a pure hull of A in G , H is a minimal direct
summand of G containing A. \square

5. Strongly ADE Decomposable groups of torsion-free rank 1

In this section, we consider ADE decomposable groups of torsion-free
rank 1. First we exhibit a strongly ADE decomposable group G of torsion-
free rank 1 for which not all T-high subgroups are purifiable in G .

The existence of the following groups H and G_{p} are guaranteed by
[12, Theorem 2.8] and [6, Vol. 1, Example, p.150], respectively.

Example 5.1. Let q be a fixed prime and for every prime p\neq q , let t_{p}

and c_{p} be positive integers such that t_{p}<c_{p} . Let H be an ADE group with
A as a moho subgroup A such that
(1) r(A)=1 and A=qA;
(2) for every prime p\neq q , H_{p}=\langle y_{p}\rangle , where o(y_{p})=p^{t_{p}} and H_{q}=0 ;
(3) H/A=\oplus_{p\neq q}\langle h_{p}+A\rangle , where h_{p}\in H and o(h_{p}+A)=c_{p} .

Let G_{q}=\langle x_{n}|n\geqq 0\rangle be defined by the defining relations

qx_{0}=0 and q^{k}x_{k}=x_{0} for k\geqq 1 .
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Let a\in A , b=a+x_{1} , G=H\oplus G_{q} , and N a T(G)-high subgroup of G

containing b . Then N is not purifiable in G .

Proof. Note that h_{q}(b)=0 and h_{q}(qb)=\omega . Hence the q-indicator of b in
the height-matrix \mathbb{H}(b) is

(0, \omega, \infty, \ldots) .

By Theorem 3.2 (3), N is not purifiable in G. \square

Now we characterize the abelian groups G of torsion-free rank 1 for
which all T-high subgroups are purifiable in G .

Theorem 5.2 Let G be an abelian group of torsion-free rank 1. Then all
T-high subgroups of G are purififiable in G if and only if, for every prime p

and every g\in G\backslash T . one of the following conditions holds:
(1) there exists an integer r_{p} such that h_{p}(p^{r_{p}}g)<\omega and h_{p}(p^{r_{p}+i}g)=

h_{p}(p^{r_{p}}g)+i for all i\geqq 0 ;
(2) there exists an integer r_{p} such that h_{p}(p^{r_{p}}g)=\infty and if r_{p}>0 , then

h_{p}(p^{r_{p}-1}g)<\omega .

Proof. (\Rightarrow) Let g\in G\backslash T and A a T-high subgroup of G containing g . By
hypothesis, A is purifiable in G . Hence, by Theorem 3.2, (1) or (2) holds.

(\Leftarrow) Let A be any T-high subgroup of G . By hypothesis and TheO-
rem 3.2 (3), A is purifiable in G. \square

We can rephrase Theorem 5.2 in terms of height matrices as follows.
All T-high subgroups of an arbitrary abelian group G of torsion-free rank 1
are purifiable in G if and only if, for every g\in G\backslash T and all n\geqq 1 , the
p_{n}-indicator of.q in the height matrix \mathbb{H}(g) is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}+i}(g)<\omega and

\mathbb{H}_{n,r_{n}+i}(g)=\mathbb{H}_{n,r_{n}}(g)+i for all i\geqq 0 ;
(2) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(g)=\infty and if

r_{n}>0 , then \mathbb{H}_{n,r_{n}-1}(g)<\omega .
From Theorem 3.2 and Theorem 5.2, the following is immediate:

Corollary 5.3 Let G be an abelian group of torsion-free rank 1. Then
all T-high subgroups of G are purififiable in G if and only if all torsion-free
subgroups are purififiable in G .

Now we give a characterization of an arbitrary abelian group of torsion-
free rank 1 that is a strongly ADE decomposable group. Before doing it,
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we give a useful lemma.

Lemma 5.4 Let G be an abelian group of torsion-free rank 1 and Aa
torsion-free subgroup of G. If A is purififiable in G and K is a pure hull of
A in G, then there exists a subgroup T’ of T such that G=K\oplus T’ . Hence
G is a strongly ADE decomposable group. Moreover, if A is p-vertical in G

for every prime p, then G is splitting.

Proof. Let N be a T(K)-high subgroup of K containing A . Then N is a
T-high subgroup of G and K is a pure h_{11}11 of N in G . By Theorem 4.1,
there exists a subgroup T’ of T such that G=K\oplus T’- Hence G is a strongly
ADE decomposable group. If A is p-vertical in G for every prime p, then, by
Proposition 1.10 and The comment after Definition 1.8, K is torsion-free.
Hence G is splitting. \square

Theorem 5.5 Let G be an abelian group of torsion-free rank 1. Then G
is a strongly ADE decomposable group if and only if there exists an element
g\in G\backslash T such that, for all n\geqq 1 , the p_{n} -indicator of g in the height matrix
\mathbb{H}(g) is one of the following two types:
(1) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}+i}(g)<\omega and

\mathbb{H}_{n,r_{n}+i}(g)=\mathbb{H}_{n,r_{n}}(g)+i for all i\geqq 0 ;
(2) there exists a nonnegative integer r_{n} such that \mathbb{H}_{n,r_{n}}(g)=\infty and if

r_{n}>0 , then \mathbb{H}_{n,r_{n}-1}(g)<\omega .

Proof. (\Rightarrow) There exists a purifiable T-high subgroup of G . By TheO-
rem 3.2 (3), the assertion holds.

(\Leftarrow) Let g\in G\backslash T satisfying one of the above two conditions. Let
B=\langle g\rangle . Consider an element ng\in B for some integer n and the height
matrices \mathbb{H}(g) and \mathbb{H}(ng) . By hypothesis, \mathbb{H}(g) and \mathbb{H}(ng) are equivalent.
By Theorem 3.2 and Lemma 5.4, G is a strongly ADE decomposable group.

\square

Lemma 5.4 and Theorem 5.5 combined lead to the splitting theorem
of arbitrary abelian groups of torsion-free rank 1 established in [14] by
Stratton.

Corollary 5.6 [14, Theorem] Let G be an abelian group of torsion-free
rank 1. Then the following properties are equivalent:
(1) G is splitling;
(2) there exists g\in G\backslash T such that \langle g\rangle is p-vertical in G for every prime
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p and if h_{p}(g)\geqq\omega , then h_{p}(g)=\infty ;
(3) G is a strongly ADE decomposable group satisfying the following con-

dition and let A be a purififiable T-high subgroup of G and for every
prime p , let t_{pn_{p}} be the least integer such that V_{p,n}(G, A)=0 for n\geqq

t_{pn_{p}} . Then, for almost all prime p and every a\in A ,

h_{p}(a)\geqq t_{pn_{p}} .

Proof (1)\Rightarrow(2) By hypothesis, we can write G=F\oplus T for some torsion-
free subgroup F of G . Let g\in F . Since F is torsion-free, the assertion
immediately holds.

(2)\Rightarrow(1) Let B=\langle g\rangle . By Theorem 3.2 (3), it is immediate that B is
purifiable in G . By Lemma 5.4, G is splitting.

(1)\Rightarrow(3) By hypothesis, G=F\oplus T , where F be a torsion-free sub-
group of G . Clearly, G is a strongly ADE decomposable group of torsion-free
rank 1. Let A be a purifiable T-high subgroup of G and for every prime
p, let t_{pn_{p}} be the least integer such that V_{p,n}(G, A)=0 for n\geqq t_{pn_{p}} . Let
a\in A and r the least integer such that ra\in F . Suppose that there exists a
prime q such that (r, q)=1 and h_{q}(a)<t_{qn_{q}} . Then t_{qn_{q}}\geqq 1 and hence A

is not q-vertical in G . For every prime p. let m_{p}=h_{p}^{A}(a) . Let H be a pure
hull of A in G . Then H_{q}\neq 0 and let

QT_{q}^{A}(G)=(\begin{array}{lll}c_{q1},c_{q2} \cdots c_{qn_{q}}t_{q1},t_{q2} \cdots t_{qn_{q}}\end{array})

and

e_{q}=\{
t_{q1} if n_{q}=1 ,

t_{q1},+ \sum_{j=2}^{n_{q}}(t_{qj}-c_{qj-1}) if n_{q}>1 .

Then there exists a_{q}\in A such that h_{q}(a_{q})=0 , a=q^{m_{q}}a_{q} , h_{q}(q^{e_{q}-1}a_{q})=

t_{qn_{q}} – 1 and m_{q}<e_{q} . By Corollary 2.11, there exist x_{q}\in A_{G}^{t_{qn_{q}-1}}(q)\backslash

A_{t_{qn_{q}-1}}^{G}(q) and g_{q}\in G such that x_{q}=q^{e_{q}-m_{q}-1}a+p^{t_{qn_{q}}}g_{q} . Since (r, q)=1
and F is q-vertical in G , we have

0\neq rx_{q}=q^{e_{q}-m_{q}-1}ra+q^{t_{qn_{q}}}rg_{q}\in F_{G}^{t_{qn_{q}-1}}(q)=F_{t_{qn_{q}-1}}^{G}(q)=q^{t_{qx_{q}}}G7[q] .

This is a contradiction. Hence (3) holds.
(3)\Rightarrow(1) Let H be a pure hull of A in G . By Theorem 4.1, there

exists a subgroup T’ of T such that G=H\oplus T’ . It suffices to prove that
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H is splitting. By hypothesis, there exists a\in A such that, for all prime
p, h_{p}(a)\geqq t_{pn_{p}} . Let B=\langle a\rangle . We show that, for every prime p, B is p-
vertical in H . If H_{p}=0 , then, by Proposition 1.13 (2), B is p-vertical in H .
Without loss of generality, we may assume that H_{p}\neq 0 . Let

QT_{p}^{A}(G)=(\begin{array}{lll}c_{p1},c_{p2},. ,c_{pn_{p}}t_{p1},t_{p2} \cdots t_{pn_{p}}\end{array})

and

e_{p}=\{
t_{p1} if n_{p}=1 ,

t_{p1}+ \sum_{j=2}^{n_{p}}(t_{pj}-c_{pj-1}) if n_{p}>1 .

By Corollary 2.11, there exists a_{p}\in A such that h_{p}(a_{p})=0 , a=p^{m_{p}}a_{p} ,
and h_{p}(p^{e_{p}-1}a_{p})=t_{pn_{p}}-1 . Then m_{p}\geqq e_{p} .

If c_{pn_{p}}<\infty , then, by Corollary 2.11, there exists h_{pn_{p}}\in H such that
p^{c_{pn_{p}}}h_{pn_{p}}=p^{e_{p}}a_{p} and h_{p}(p^{c_{pn_{p}}+i}h_{pn_{p}})=c_{pn_{p}}+i for all i\geqq 0 . Since
p^{c_{pn_{p}}+m_{p}-e_{p}}h_{pn_{p}}=p^{m_{p}}a_{p}=0 , we have h_{p}(p^{i}a)=c_{pn_{p}}+m_{p}-e_{p}+i for all
i\geqq 0 . By Proposition 1.13 (3), B is p-vertical in H .

If c_{pn_{p}}=\infty , then, by Corollary 2.11, there exists h_{pn_{p}}\in H such that
h_{p}(h_{pn_{p}})=\infty and p^{t_{pn_{p}}+1}h_{pn_{p}}=p^{e_{p}}a_{p} . Since m_{p}\geqq e_{p} , h_{p}(a)=\infty . Hence,
by Proposition 1.13 (2), B is p-vertical in G for every prime p.

By [13, Theorem 5.2], B is purifiable in H . Let K be a pure hull of B
in H . By Lemma 5.4, H=K\oplus T(H) . \square

We can rephrase Theorem 5.6 in terms of height matrices as follows.

Corollary 5.7 An abelian group G of torsion-free rank 1 is splitting if
and only if there exists an element g\in G\backslash T such that, for all n\geqq 1 , the

p_{n} -indicator of g in the height matrix \mathbb{H}(g) is one of the following two types:
(1) \mathbb{H}_{n,0}(g)<\omega and \mathbb{H}_{n,i}(g)=\mathbb{H}_{n,0}(g)+i for all i\geqq 0 ;
(2) \mathbb{H}_{n,0}(g)=\infty .
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