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A note on non-classical eigenvalue asymptotics
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Abstract. The purpose of this paper is an extension of the results of Simon [13] on
the asymptotic behavior of the trace of the heat kernel for the Schrodinger operator. We
discuss the case where the operator has compact resolvents in spite of the fact that the
electric potential is degenerate on some submanifold. According to the degree of the
degeneracy, we obtain non-classical asymptotics.
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1. Introduction

In this note, we shall extend a part of Simon’s paper [13]. To be more
precise, we consider the Schrédinger operator on R? with the electric scalar
potential V' (z):

Ho = -%Az +V(2). (1.1)

Assume that Hy be essentially self-adjoint in L?(R?) starting from C$°(R¢)
and denote the unique self-adjoint extension by H. It is well known that if
lim V(z) = 400, (1.2)

|z|—o00
H has compact resolvents (cf. for example, Reed and Simon ) However,
(1.2) is not a necessary condition in order that H has compact resolvents.

In spite of the lack of (1.2), there are some cases where H has compact
resolvents. For every t > 0, we define

Za(t) = (2m)~ / / IR /24V () g, g

Then it follows from the Golden-Thompson theorem that if V € L2 (R9)

loc

and bounded from below, we have Tr[exp(—tH)] < Zy(t) for t > 0 (cf.
Golden [5], Thompson [15] and Simon [12]). We concentrate on the case
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where V(z) is of the form

V(z) =V(z,y) = |z[*Ply|** (p,q > 0),
z=(z,y) € R =R" x R™. (1.3)

Then it holds that Hy is essentially self-adjoint in L?(R?) (cf. Schechter [11]),
H has compact resolvents and the trace of the heat kernel Trlexp(—tH)] is
finite for every t > 0, but Z(t) = oo.

When n = m = 1, Simon succeeded in showing the asymptotics
of Trlexp(—tH)] as t | 0. Moreover, by the Karamata Tauberian theorem,
he obtained the asymptotics of the counting function N()\) of eigenvalues
of H as A — oo. In this paper, we shall give an extension of the results
for general dimension n, m. Robert and Aramaki [2], [3] considered
a slightly different potential V(z,y) = (1 + |z|?)P|y?9. In this case, the
classical and non-classical results can occur. That is to say, Z(t) is finite
in the case pm > gn and infinite in the case pm < gn. In our case, however,
we have only the non-classical results.

In order get the upper bound of Tr[exp(—tH)|, we shall apply the sliced
Golden-Thompson inequality and the sliced bread inequality developped in
. On the other hand, for the lower bound, we shall use the probabilistic
approach which is slightly more convenient than that of [13].

The plan of this paper is as follows. In §2, we give the main theorem
and a corollary. Section 3 is devoted to preliminary remarks for the proof
of the main theorem. In §4, we give the proof of the main theorem in the
case where pm # qn and in §5, we prove the case where pm = ¢n.

2. Main results

Let R? = R” x R™ and we write a variable z in R% by z = (z,y) € R? x
Ry". We consider the operator:

1

where A(;,) denotes the Laplacian operator on R™ X R™, the potential
V(z,y) is of the form:

V(-’l%y) - |$|2p|y|2q, (pa q> 0) T e Rn, Y € R™ (2.2)

and write the unique self-adjoint extension of Hy in L?(R%) by H.
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Then we state the main theorem on the asymptotics for the trace of the
heat kernel of H.

Theorem 2.1 For the above operator H with the potential of the form
(2.2), there are the following three cases.

(i) If pm > qn, we have
Trle ] = gt ~™1+P+0)/(20)(1 4 o(1)) as t | 0.

where

nr 1 2 1)m/(2q
ay = (p+ Q)mfz(gr_{m)/n;)/( q)) Tr[A—(p+ ym/(2 )]

and A is the self-adjoint extension in L?(R™) starting from C°(R™) of Ap =
—38 + |2,
(ii) If pm < gqn, we have

Trle ] = apt ™ +PT/(P)(1 4 0(1)) as t] 0

where

nr n
4y — (g + ;n/(2(zr+(nl/)2)/ (2p)) Te[B-(@+n/20)]

and B is the self-adjoint extension in L?(R™) starting from C$*(R™) of
By = —%Ay + ly|2q.

(iii) If pm = qn, we have
rI\r[e-—tH] — a3t—n(1+p+Q)/(2p) log t_l(]_ + 0(1)) as t l 0

where

o _ pra+ )I(/(2p))
° 7 2472pqT(n/2) T(m/2)’

Remark 2.2 Thanks to Aramaki , we see that A~(P+t)m/(29) apd

B~(at1)n/(2p) are of trace class in the case pm > gn and pm < g¢n, re-
spectively.

Using the Karamata Tauberian theorem, we can easily prove that the
asymptotics of distribution function N () of eigenvalues of H.

Corollary 2.3 We have the following.
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(i) If pm > qn, we have
N(A) = b xm+P+H0/C9(1 4 6(1)) as A — o

where by = a1 /T(1+m(1 +p+ q)/(2q)).
(ii) If pm < qn, we have
N(X) = bpAm P/ CP)(1 4 0(1)) as A — oo

where by = a2/T'(1 +n(1+p+q)/(2p)).
(iii) If pm = qn, we have

N(A) = bgAr(1+a+2)/(2P) 15 A\(1 + 0(1)) as A — oo
where b3 = a3/T'(1 + n(1 +p+ q)/(2p)).

3. Preliminaries

In this section, we summarize some basic facts required to get the upper
bounds of Tr[exp(—tH)] in the main theorem. All the facts in this section
can be found in Simon [13]. We consider the Schrodinger operator with a,
general potential V(x,y) which is bounded from below:

1 1
Hy = _‘Q'Az + V(Z) = _iA(x,y) + V(l‘,y),
z=(z,y) € R =R" x R™ (3.1)

and assume that Hy is essentially self-adjoint in L?(R?) starting from
C$(R%) and the unique self-adjoint extension H of Hp has compact re-
solvents. Define

Zy(t) = (2m) ¢ / / et /2+V (@) g, . (3.2)

Then the Golden-Thompson inequality says that if V & LIQOC(Rd) and
bounded from below, then it holds that

Trle ] < Zy(t) for ¢ > 0. (3.3)

This inequality was proved in [5] and by using abstract operator
inequality or in by using the probalilistic representation of the heat
kernel of H.

Note that in our case where V(z,y) = |z|?|y|%, Tr[e~*H] is finite but
Z)(t) = 00, so this inequality is not so useful.
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Now, for fixed z € R", assume that Hy , = —%Ay+V(x, y) is essentially
self-adjoint in L?(R™) starting from C$°(R™) and the unique self-adjoint
extension H, has compact resolvents. Define

Zsgr(t) = (2m)™" // e UEF2 Ty o gmy [e 7172V @) g de,
(3.4)
Then the sliced Golden-Thompson inequality says that
Trle 7] < Zsgr(t) (< Za(t)) for t> 0. (3.5)

The type of this inequality is sufficient for the proof of (i) and (ii) in
Theorem 2.1 but not for (iii).

Next, let €1(x) < ea(x) < --- be the eigenvalues of H, according to
multiplicities. Define

Zgp(t) = ZTrLz(Rn) [e‘t(_%Am+6k(x))] for t > 0.
k=1

Then Simon succeeded in showing the sliced bread inequality:
Tr[e ] < Zsp(t) for t> 0. (3.6)

We will see that (3.6) is sufficient for the proof of (iii) in [Theorem 2.1I.
If we apply (3.3) to ’I‘rLz(Rn)[e—t(—%Aﬁfk(x))] and use 20 etk =
Tr Lz(Rm)[e_tHz], we obtain

Zsp(t) < Zgar(t).

Therefore we reach the string of inequalities:

Trle ] < Zsp(t) < Zsar(t) < Za(t) for ¢ > 0.

4. Proof of the main theorem in the case where pm # gn

In this section, we shall prove [Theorem 2.1 in the case where pm # gn.
However, by symmetry if pm > gn, we need only interchange p and ¢, n and
m, sO we may assume pm < gn i.e., it suffices to prove (ii) of Theorem 2.1I.

From now, we denote various positive constants independent of ¢t > 0
and (z,y) € R™ x R™ by the same notations C, C; (j = 1,2,...) etc.

Let H); be the self-adjoint extension in L?(R™) of Hy o = —3Ay, +
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|z|?P|y|*? and define
F(t ) = Trgaqam 7], (41)

At first, we estimate Tr[e~*] from below. By the celebrated Feynman-
Kac formula, we can write

Trle ~tH] = (27t) —d/2 // Bt (00 —tfo lz+ VX 2P ly+V1Ys I2st] dz dy

(4.2)

where

{Zs}o<s<t = {(Xs, Ye) Yocs<1 = {(X, .., X YD L Y bocsa

are d = n + m dimensional pinned Brownian motion such that Zp =
(X0,Yo) = 0 = (0,0), Z1 = (X1,¥3) = 0 = (0,0) and Eyjo)[] denotes

the expectation with respect to {Zs}o<s<1 = {(Xs,Ys)}o<s<1. From now,
we simply write E ((0 0))[ ] by Ez[-] and the expectation Eé:g [-] with respect
to {Xsto<s<1 and {Ys}o<s<i by Ex|[| and Ey|[], respectively. For such
probabilistic theory, see It6 and Mckean [6].

The following lemma is essentially due to the result of P. Lévy on the

joint distribution of the position and the maximum of Brownian motion
(cf. [6; p.27]).

Lemma 4.1 For every R > 0, we have

PX({ sup |Xs| > R}) < 2ne2R/n

0<s<1
where Px denotes the probability law of {Xs}o<s<i-

For the precise proof, see Simon or Matsumoto [7; Lemma 1].

Let x be the characteristic function of the set {supp<,<; | Xs| < 1/V/t}.
This lemma implies that Ex[x] > 1 — p(t) where p(t) = 2ne~2/(") — 0 as
t | 0. Since |z + v/tX,| < 1+ |z| on supp x, we have

TI‘[C_tH] > (2ﬂ,t)_d/2 // E; e—tf01(1+|:n|)21’|y+\/st|2quX] dx dy

> (2nt)~4?(1 // _tf()1(1+|$|)2p|y+\/zYs|2qu]dy dr.
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Thus we get
Tr[e_tH] > (27rt)_n/2(1 — p(t)) /F(t; 1+ |x|)dzx. (4.3)

The second lemma is concerned in the estimate of F(¢;|x|).

Lemma 4.2 (i) For every A > 0,
FO72, (NHD/Pg)) = F(t; |z]) for t>0, zeR™
(i) For any R > 0, there exist Cr,Cy > 0 such that

Crlz|~P™/4, for |z| < R

Cre~Crlzl/@  for |z| > R.

F(1;]z]) < {
(iii) There exists C > 0 such that F(t;1) < Ct~(1F9™/(29) for any t €
(0,1].
Proof. (i) We can write F(t;|z|) = [ J(t;|z|, y)dy where

J(t; |z],y) = (2nt) ™2 Ey [e—tfol =127 -+ VY [4ds).
Then, for A > 0,

J(t; |z, Ay)
= AT (2rA2) 2By [e N My WO Pl VALY, P1ds )

= NI (A2 | AAFD/Pg) 4,
Thus we get

Ft;|z) = A / T2 ]NHD Pz A1) dy

= [ IO N )y
= F(A72; AU+ /Py,

(ii) Since J(t;1,y) is the restriction to the diagonal of the heat kernel
of B on L?(R™) which is introduced in the statement of Theorem 2.1 (ii),
there exist C; > 0 (j = 1,2, 3) such that

J(t;1,y) < Cyt~™/2 (e~ Cotlol® 4 o=Calul*/ty,
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(cf. Matsumoto [8; Lemma 3.1] and Aramaki [4]). By using (i) with A =
|z|~P/(1+9) and then changing of variable, we have

F(1;|z]) = F(|lz>/0+9; 1)
=/J(|x|2p/(l+");1,y)dy

< Cy|a|~Pm/(1+9) /(e—Czle%/“*‘”lyI?q 4 e ColyP /a0y g

< Cy|z| 7™/ / e O gy + ¢ / e~ Cslvl gy
< C4|x|—mn/q

for |z| < R.

On the contrary, for |x| > R, since B is positive definite, there exists
Cs > 0 such that

J(|w|2p/(1+q); 1, y) < Cle—cs|x|2p/(1+q) (e_cé|y]2q n e_CélyP),

From this, it is easily seen that F(1;|z|) < Cge=Cslel*/+9)
(iii) It suffices to note that

F(t;1) = /J(t; 1,y)dy
< Ot—m/? /(e—CltlyIQ" + e‘C3|y|2/t)dy

< Cct™I+9/(2a0) for ¢ e (0, 1).

If we apply (i) and (ii), we see that
F(t;]a) = F(1; 149/ 2P)g))

{ C|z| P/t~ (+a)m/(29) it |t(1+q)/(2p)$| <1,
< <

Ce~Cutle?P/(Ha), if |t1+0)/@P)g| > 1,

Next, we examine the integral of F(¢;1 + |z|) in (4.3).
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Lemma 4.3 For k=0,1,...,n, we have

o0

/ F(t;r)rktdr
1
O(t~(1+a)k/(2p)) if pm +# gk
= Lt Ve /(2 . (4.4)
O(t~1+Dk/(2P) Jog t=1)  if pm = gk

as t | 0.
Proof. By the above estimate and the elementary calculation,

00 t—(1+a)/(2p)

/ F(t;r)r*tdr = / F(t;r)rktdr
1 1 _
-I—/ F(t;r)yr*tdr
t—(14+4q)/(2p)
t—(1+4q)/(2p)
< Clt—(l-HJ)m/(?‘I)/ poPm/etk=1 .
1
e —Coytr2r/(1+a) |
+ C’g/ e 2T " dr
t—(1+4q)/(2p)

t—(1+q9)/(2p)
_ Oy~ (+am/(20) / —Pm/a+h=1 .
1

o0
+ Cyt—(1+an/(2p) / o~Cor??/ 0+ k1
1

When pm # gk, we have
t—(1+9)/(2p)
¢~ (1+a)m/(20) / pm/ath—1 g,
1

< CSt—(1+q)m/(2q)(t—((1+q)/(2p))-(k—pm/q) —1)
< Cat—(+0k/Cp),

When pm = ¢k, we have
t—(1+q)/(2p)
4~ (1+a)m/(20) / —pm/atk—1 g,
1

= Oyt~ (1HOm/20) [og t=1 = C,¢~ 1+ DR/ @P) 15g 41,

Thus (4.4) holds. O
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Now we return to (4.3). By Lemma 4.3, we see that
o0
[F1 ez =157 [T R et
OOO
=15 [ R - 0 ar
1

= |S"_1|/1 F(t;r)r" ldr

n—1 00
+ 8™ Z (n ; 1>(—1)k/1 F(t;r)r 1 kdr
k=1
_ / F(t;]a])dz + o(t~(0m/(p))
j2|>1

as t | 0 where |S™ 71| denotes the surface area of the unit sphere in R™ i.e.,
|S"~1| = 27™/2/T'(n/2). Since gn — pm > 0, it follows that

/ F(t; |z))de < Ct~(1+0m/(20) / | P
lel<1

|lz|<1

= o(t~(1+9)n/(2p)) (4.5)

as t | 0. Moreover, since

[ Fitiladz = [ P04/ @)z
_ ~(1+an/2p) / F(1; |z))dz, (4.6)
if we show that

(2#)*"/2/F(1; |z|)dz = aq, (4.7)
it follows from (4.2) and (4.3) that

lirﬁ inf t(1+p+aIn/(2p) Ty[e=tH] > g, (4.8)

For the estimate of Trle~*f] from above, we use the sliced Golden-
Thompson inequality (3.5). Taking the definition of F(t;|z|) into
consideration, the inequality shows that

Tr[e tH] < (27rt)_"/2/F(t; |z|)dz.
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Thus if (4.7) holds, we have

lim sup ¢t +P+o)n/(2p) Tr[e ] < ay, (4.9)
t10

using the relation (4.6) again.
Therefore, it only remains to show that (4.7) holds. In order to do so,
we use the polar coordinate system and apply (i). Then we have

(2m)~™/? / F(1;|z|)dz = (2r)"™/2| 87| / F(r?/0+9); 1)pn=1gp,
0
Putting s = r2?/(1+9) the last integral is equal to

(271‘) n/2ISn 1|1+Q/ F(8;1)8—1+(1+Q)”/(2p)d8
2p Jo

(27,‘,) n/2|Sn 1| l1+4¢ Tr [/Oo 8—1+(1+q)n/(2p)e——sBd8:|
2p 0

= (2m)~ n/2|Sn lll _;q ((1 —;pq)n)Tr[B~(1+Q)"/(2P)]'

Thus (4.7) holds. By and (4.9), we complete the proof of
2.1 (ii).

5. Proof of the main theorem in the case where pm = gn

In this section, we shall prove [Theorem 2.1 (iii) whose proof is more
delicate than the case pm # gn.

At first, we estimate Tr[e~*#] from below. Let x and 1 be the charac-
teristic functions of the sets {supg<,<; |Xs| < |logt|} and {supgcg<; |Ys| <
|logt|}, respectively. Then by Lemma 4.1, we have Ex[x] > 1 — p(t) and
Ey[n] > 1 — p(t) where

p(t) = max{2ne 2108t /n gme=2lloetl/my _, o a5 ¢ | 0.
Using the representation (4.2) of Tr[e™*H], we see
T\I.[e—tH]

Z (27Tt)_d/2 —t fol |$+\/iXS|2p|y+\/ZY3l2quX’r]] dx dy.

el>vitogey B2 1€
ly|>Vt(logt)?
(5.1)

In the integral domain and supp(xn), there exists a small constant ¢ > 0



318 J. Aramaki and A. Nurmuhammad

such that
@+ VEX| > |2 ~ Vit|logt| > V(| logt* — |logt]) > 0,
ly + VY| > Vt(|logt|?> — |logt]) >0 for ¢t € (0,c).
From this and the mean value theorem, it is easily seen that
|log [ + VEX|*Ply + VY[ — log |z|*|y|**| < C/|logt]
for t € (0,c). So if we put k(t) = eC/1lo8tl we get,
o+ VEX[Ply + VEYS 2 < k(t)]e]Ply[*.
Thus it follows from (5.1) that

Trle ™) > (2mt) /(1 - p(t))* e HORTIV 4z dy

|z|>v/t(log t)?
ly|>V(logt)?

= (2mt)=Y2(1 = p(1))?|S™ IS |1 (t)

where

I(t) = /OO s 1lds /oo e~ th(D)s*Ir® m—1 4,
Vi(logt)? Vi(logt)?

Change of variable: s/Pr — r and the assumption pm = gn lead to

I(t) — / S—ldS/ e—tk(t)r2prn—ldr
2 S

Vi(logt) 1/P\/t(log t)2
00 (\/Z(]ogt)2)—p/q,~p/q

:/ e_tk(t)r2prn_1dr/ s lds
t(p+q)/(2p)(1ogt)2(p+q)/p \/Z(logt)Q

- /Oo log ree e~ RO n—1 4,
t(p+4)/(2) (log t)2(P+a) /P (\/Z(logt)Q)(Pﬂ)/q

If we again use a change of variable: (tk(t))/(?P)r — r, we have

I(t) = (tk(t)) /P

oo1 T'P/q o n_ld
" r(t) o t(”+q+1>/<24>(logt)2<p+q)/q)k(t)1/<2q)6 T dr

where r(t) = (tk(t))/(2P)t(p+9)/(2P) (1og t)2(P+9)/P_ Thus we obtain

Trfe™H] > ¢~ a0/ 0 (2r)~d/2| g1 |51 (1 — (1)) k(1) /P
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o0
1
r(t) L4 29

1
— log(log t)2P+a)/a _ % log k(t)}e—TQ”r"‘ldr.

Since p(t) — 0, k(t) — 1, r(t) > 0 ast | 0, we get
lim inf t(Pra+n/(2p) (1og t=1) =1 Tr[e~tH]
Zp+q+1

AT 2m) 2 sjsm / e e = g5, (5.2)
0

For the estimate of Tr[e~*H] from above, we use the sliced bread in-
equality (3.6). In order to do so, let A4 be the unique self-adjoint extension
in L?(R") starting from C§°(R™) of Ago = —3A; + g|z|% (g > 0, p > 0)
and define Fy(t) = Tr[e™*9] for t > 0 and N,()) is the dimension of the
spectral projection of A, on [0, \]. For brevity of the notations, we write
A1, F1, Ny by A, F, N. Then we need the following lemma.

Lemma 5.1 Under the above situation, we have
(i) Fy(t) = F(gl/(p+1)t) for g,t>0.

(i) Ny(A) = N(g~V®*DX) for g, A> 0.

(i) lim ((+2)/C0) (g = 9—n/2 L/ (2P))

tlo pL'(n/2) -
iv) lim A~"(+p)/(2p) _ 9-n/2 I'(n/(2p))
I e =2 pl'(n/2)I'(1 +n(1 +p)/(2p))
(v) 1361 $14n(49)/CP) (1) — _9—n/2 n(p ;;;i;?é?pn

where F' denotes the derivative of F.
Proof. 1f we define an operator U:
(Uf)(x) = g 4D f(g" 0 g),  f e LX(R),

it is clear that U is a unitary operator on L2(R") and U*A,U = g'/(P+1 A
Thus (i) and (ii) are clear.
If we define

zW(t) = (2m)™ / / e~ HER/2411) g g,
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it follows from the elementary calculation that

Z0(t) = Qn/(%/r(f:;;)t~n<1+p>/<2p)

Therefore, (iii) follows from the fact limy o F'(t)/Z 511 )(t) = 1.
(iv) follows from the Karamata Tauberian theorem.

(v) Since

F(t) = /O TN,

using the integration by parts and a change of variable, we see

—F'(t) = / h Ae AN ()

0
= / oo(/\t —1)e PN (N\)dX
0

=¢! /000 e Hpu— 1)N(%)du

_ 41 /OOO eH(j1 — 1)<%>n(l+p)/(2p)(%)—H(HP)/(%)N(%)dﬂ.

Therefore, (iv) implies that
lim 251+n(1+p)/(2p)F'( t)

t10
B I'(n/(2p)) / ur (/@) gy,
2n/2p'(n/2) T (1 + n(1 +p)/(2p))

Since the last integral is equal to

(2 (1 +9)/(20)) ~ (1 +n(1+ )/ (25)
= 2D n 4y +5)/(2p),

(v) holds. O

Let €;(|z|) be the j-th eigenvalue of Hj, on L?(R™) which is obtained
from Hy 5 = —2Ay + |z|?P|y|*. Define a unitary operator on L?(R™) by

(Uf)(y) = |22 @D f(jalP @ Dy), - f e LHR™).

Since U*H, U = |z|*/(1T9 H,, we see that €;(|z|) = |z|*P/(4+e; where
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€; = €;(1). Therefore, by Lemma 5.1 (i),

Zsp(t) = Y Tr[e tzb=te ()]

o0

<
—

[e_t€§Q+1)/(P+q+l)(__%Aw+l$|2p/(q+l))]

I
=

<
I
—

ﬁzp/(qﬂ)(t€§q+1)/(p+q+1))

M

.
i
—

—_—/ﬁQP/(qH)(t)\(q+1)/(p+q+1))dN()\)

where ﬁy(t) = ’I‘r[e‘t("%A“‘Hxlw)] and N(A\) = #{j;¢; < A}. By the inte-
gration by parts, we have

(g+ 1)t

7l =

/Oo )\—p/(p+q+1)ﬁ2'p/(q+l)(t,\(q+1)/(p+q+1))N()\)d)\,
0
(5.3)

Since N(A) = 0 for small A > 0, we may assume that the integral domain
is equal to [Ag,00) for some Ag > 0. Choose numbers Aj, A2 so that Ag <
A1 < A2 < oo and )\gqﬂ)/(pﬂ“)t = |logt|™!, )\gqﬂ)/(pﬂ“)t = 1 and
then decompose the integral of the right hand side of (5.3) as Zsp(t) =

S Zég(t) where

(g+ 1)t

s _
— / /\—P/(P+q+1)Fép/(q+1) (¢Aa+D/(PHa+ 1)y N () dA

Ai—1
for i = 1,2,3 with A3 = 0.

Firstly, we consider Zgg(t). By (iv), there exists C > 0 such
that

z(t) = -

N(X) < CA™1+9/29) o Xy, 00). (5.4)

Moreover, we claim that for A > 1, there exist Cj, ¢ > 0 such that

~Fpqan(N) < Cre™

In fact, if we write the j-th eigenvalue of —%Az + |z|?P/(a+) by €, it
follows from Aramaki [1] that ’g;,V > j2and €;/2 > ¢ (j =1,2,...) for some
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large N and small ¢ > 0. Therefore,

o0

~Fypqeny(N) = ) &e
j=1

oo
— A-I Z Agje—/\g‘j/2e—-/\€j/2
j=1

< /\—1 Z()\gj)_Ne—CA
j=1

o0
< A-(N+D) Zj—ze—c,\.
j=1

By the above facts, we see that
Zé'?é) (t) < Clt/oo )\—p/(p'*'q'H)6_Ct’\(q+l)/(p+q+l)/\m(q+1)/(2q)d)\
A2

< Cyt—(Pratl)m/(2q) / 0o M(p+q+1)m/(2q) e~ dy
1
< Oyt~ (Pra+l)m/(2q)

Thus Zgg(t) is negligible.

Secondly, we consider Zé%) (t). We claim that there exists C > 0 such
that

—Fyjgsny(A) S OXTITnIHPHD/20) - on (3 ). (5.5)

In fact, if we put N(u) = #{;; €; < p} and apply Lemma 5.1 (iv), (5.5)

follows from that

~

m ~
~Fapsarn (M) :/0 pe” MdN ()
= / (uA = 1)e™ N (p)dp
0

< C/oo /\e"\“/1,1+"(p+‘1+1)/(2p)du
0

< Oy A~ Inlpta+1)/(2p)
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From (5.5) and (5.4), we get

A
Z§:123) (t) < Cgt—(p+q+1)"/(2p)/ 2 =y
A1

By the choice of A\; and Ag,

A2 )\2
/ A7 dA =log == = log | log t|.
A A1

1

Therefore,
Z3)(t) < Oyt~ et in/2p) 1og | log t],

SO ZéQB) (t) is also negligible.
Finally, we compute Zég(t). Note that tA(a+1D)/(Pta+1) < |logt|~! for
X € [Xo, A1). When A > 0 is small, (v) implies that
~Fppyqiny(N) = AT EHEDVED(1 4 0(1)) as A L0
where

_nlp+q+1)(g+1)T(n(g+1)/(2p))
7= 91+n/2p2 T(n/2)

Therefore,

+1 M
20 4y — g4 / AP/ (p+a+1) = 1=(p+a+1)n/(2p)
sp(t) =" p+a+1/y

x A~ (@ D/ (e+a+1)-(A+pra+Dn/(2) (1 4 (1)) N(N)dA

_ 8t e nn/n)
pt+tqg+1

A1
X / A~ Dn/2P) N (X)dA(1 + 0(1))
Ao

as t | 0. Here it follows from (iv) that
N(A) = sA"™1+0/CD (1 4 o(1)) as A — oo

where

§ = 9~™m/2 F(m/(2Q)) .
ql'(m/2)I'(1 +m(1 + q)/(29))
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Since A\ T oo as t | 0, we have

A1
14 _ a+1 (prqm/2p) -1 N
Zgp(t) =70 7t N A viEmy o LA

q + 1 —(1 2 )\1
= 70—t~ (HP+On/2P) (1og 2} (1 4 0(1)) as t | 0.
1 (log ) (1 +0(1) as ¢
Note that
Al p + q '+' 1 -1 —1

log— = ——logt logt t]0.

og/\O P ogt ™ +o(logt™) as t|
A simple calculation leads to ¥4 = a3. Therefore, we have

lim sup t P+t (2P) (Jog t 1)~ Tr[e 7] < q3. (5.6)

tl0

The combination of (5.2) and (5.6) completes the proof of [Theorem 2.1 (iii).
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