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On symplectic and contact regular r-cubic configurations
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Abstract. We investigate a necessary and sufficient condition for a family of 2" La-
grangian and 2" Legendrian submanifolds to be a symplectic and contact regular r-cubic
configuration respectively.
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1. Introduction

Lagrangian and Legendrian singularities can be found in many problems
of differential geometry, calculus of variations and mathematical physics.
One of the most successful their applications is the study of singularity of
caustics and wavefronts. For example, the light rays incident along geodesics
from a smooth hypersurface in a Riemannian manifold M to conormal di-
rections define a Lagrangian submanifold at a point in 7*M and the pairs
of light rays and lengths of geodesics define a Legendrian submanifold at a
point in T*M x R.

In [8] and [9], we investigate the case when the initial hypersurface has
an r-corner. In this case the light rays incident along geodesics from each
edges of the hypersurface define a symplectic reqular r-cubic configuration
at a point in T*M and the pairs of light rays and lengths of geodesics define
a contact reqular r-cubic configuration at a point in T*M x R. Symplec-
tic and contact regular r-cubic configurations are consist of 2" Lagrangian
and 2" Legendrian submanifolds respectively. In these papers, we study
the stabilities and classifications of symplectic and contact regular r-cubic
configuration.

In this paper we consider the following problem: when does a family of
2" Lagrangian (2" Legendrian) submanifolds become symplectic (contact)
regular r-cubic configurations? We give the answer of the problem by using
data of intersections between each Lagrangian (Legendrian) submanifolds.
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The main results are [[heorem 4.1 and [[’heorem 5.7] which will be given in
§4 and §5. To prove these theorem, the notion of generating family which
is defined in §2 plays very important parts. In §6, we give some examples
illustrating the main results.

As corollaries of [Theorem 4.1 and [Theorem 5.7, we have the following
theorems:

Let 7 be a non negative integer and I, = {1,2,...,r}. We remark that

Iy = 0.

Reticular Darboux theorem 1 Let E?" be a symplectic manifold and
{Lo}ocr, be 27 Lagrangian submanifold germ at x € E such that L, has
an (r — |o|)-corner for o C I.. Then there exist symplectic coordinates
(q1y--,Gn,D1,---,Pn) of E at x such that

Ly = {(q’p) € (E>$) I Qo =Pli—c =@+1="""=q=0,q1,— 2> 0}

for each o C I, if and only if the following conditions hold:

(1) LoNL; is a submanifold of (E,x) with the codimension n+|ocUT|—
loNTl,

(2) T(LyNL;)=TL,NTL; for any o,7 C I,

(3) OL,NL,=L,NL; foroCtClI (|t—0c|=1).

Reticular Darboux theorem 2 Let E*"™*! be a contact manifold and
{Lo}oct, be 27 Legendrian submanifold germ at y € E such that L, has
an (r — |o|)-corner for o C I.. Then there exist coordinates (qi, ..., qn, 2,
Dl,---,0n) of E at y such that the contact structure of E around y is given
by the canonical 1-form dz — pdq and

LU = {(Q?Z7p) € (an) l 9o = PI,—~0 = Qr4+1 = " =(Qnp = 2 = 0,
qdl,.—0o ZO}

for each o C I, if and only if the following conditions hold:

(1) L, N L, is a submanifold of (E,y) with the codimension n +
1+ |oUT|—|onT| forall o,7 C I,

(2) T(LeNL,)=TLyNTL, for o,7 C I,

(3) 0LyNL,=L,NL, foroccrcCl (r—o|=1).

In complex analytic category, the theory of symplectic regular r-cubic
configurations has been developed by Nguyen Huu Duc, Nguyen Tien Dai
and F. Pham and they give the answer of the problem in complex analytic
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category (cf. [3]). But their proof does not work well for C°°-category.
Hence we prove [Theorem 3.3 by another method. There seem to be no
literatures mentioning complex analytic counterparts of [I’heorem 4.1 and
Theorem 5.7

All manifold and maps considered here are of class C'** unless otherwise
stated.

2. Preliminaries

Here we shall define basic notations and give an important result which
is proved in [8].

Let (g, p) be canonical coordinates of (1T*R"™,0) equipped with the sym-
plectic structure dp A dq and 7 : (T*R"™,0) — (R",0) be the cotangent
bundle. We define

Lg = {(Q7p) € (T*Rn70) | Qo = PI,—0c = 4r4+1 = ' =(4n = 0,
qu——G' Z 0}7
Ly ={(¢,p) € (T*R",0) | 45 = P1,— = trt1 =+ = ¢ = 0}

foreacho C I, = {1,...,7}.

Let {Ls}ocr, and {L)}sc1,.be families of 2" Lagrangian submanifold
germs of (T*R",0). Then {Ly}scr, is called a symplectic regular r-cubic
configuration if there exists a symplectomorphism S on (T*R"™,0) such that
Ly = S(LY) for all ¢ C I. and {L.},cy, is called a symplectic regular 7-
cubic configuration without boundary if there exists a symplectomorphism
T on (T*R™,0) such that L, = T(L?) for all o C I,..

Equivalence relations: Let {Ll},c;. and {L2},c1, be two symplectic
regular r-cubic configurations. We say that {Ll},cr. and {LZ},c;, are
Lagrangian equivalent if there exists a Lagrangian equivalence © on 7 such
that L2 = ©(L}) for all o C I,.

The equivalence relation among symplectic regular r-cubic configura-
tion without boundary is defined analogously.

Generating families: Let H" = {(z1,...,2;) € R" | z; > 0,...,z, > 0}
be an r-corner. Let £(r;1) be the set of smooth function germs on (H" xR!, 0)
and M(r;l) = {f € E(r;1) | f(0) = 0} be its maximal ideal. We denote
simply £(1) for £(0;1) and M(l) for M(0;!) and denote B(r;l) the set of
diffeomorphism germs on (H" x R!,0) which preserve (H" N {z, = 0}) x R
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for all 0 C I,. We denote B(r;l) the set of diffeomorphism germs on
(R™*!,0) which preserve (R” N {z, = 0}) x R for all ¢ C I,. We remark
that a diffeomorphism germ ¢ on (H” x R, 0) is an element of B(r;!) if and
only if ¢ is written in the form:

¢($7y) = (xlal(x)y),"')x’r‘ar(w7y)ab1(x’y)v'")bl(x7y))
for (z,y) € (H" x R!,0),

where ai,...,a,,b1,...,br € E(r;l) and a1(0) > 0,...,a,(0) > 0 and a
diffeomorphism germ ¢’ on (R"*!,0) is an element of B(r;!) if and only if
¢’ is written in the form:

(b/(l', y) = (.'131(11(33, y)a o ,SCT-GJT(ZU, y)7 bl(fE, y)) ey bl(l', y))
for (z,y) € (R™,0),

where ay,...,ar,b1,...,b, € E(r +1).

We say that function germs F'(z,y,u), G(z,y,u) € M(r; k + n), where
r € H", y € RF and u € R™, are reticular R -equivalent (as n-dimensional
unfoldings) if there exist ® € B(r;k + n) and a € M(n) satisfying the
following:

(1) ®=(¢,v), where ¢ : (H" x R¥*" 0) — (H" x R¥,0) and ¢ : (R",0) —
(R™,0).

(2) G(z,y,u) = F(8(x,y,u),%(u)) + a(u) for (z,y,u) € (H" x R*™,0).

If o = 0 we say that F' and G are reticular R-equivalent.

We say that function germs F(z,y,u), G(z,y,u) € M(r + k+n), where
r € R", y € R* and u € R, are reticular R™ -equivalent (as n-dimensional
unfoldings) if there exist ® € B(r;k + n) and o € 9M(n) satisfying the
following:

(1) @ = (¢,9), where ¢ : (R"**" 0) — (R™*,0) and ¢ : (R*,0) —
(R™,0).

(2) Glz,y,u) = F(é(z,y,u),¥(u)) + a(v) for (z,y,u) € (R™TF*7,0).

If o = 0 we say that F' and G are reticular R-equivalent.

We say that function germs F(z,y1,...,yk,,u) € M(r;k; + n) and
F(z,y1,...,Yky, u) € M(r; ko+n) are stably reticular Rt -equivalent if F and
G are reticular R*-equivalent after additions of nondegenerate quadratic
forms in the variables y.

We define the stably reticular R*-equivalence for the functions in 90t(r+
! + n) analogously.
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A function germ F(z,y,u) € M2(r; k + n) is called nondegenerate if

i _E_?E OF OF OF
PRI r’@:cl""’axr’5y1"”’8yk

are independent on (IHI"’ x Rkt 0), that is

L1

0*F  O°’F
Ox0y OxOu
rank 52 52 =r+k.

Oyoy Oyou /

We remark that F(z,y,u) € M3(r; k + n) is nondegenerate only if r < n.
We define nondegenerateness for the functions in 9 (r + k + n) analo-
gously.
Let A be a family consisting of certain subsets of I, and {Ls}scp be
a family of Lagrangian submanifolds of (T*R",0). Then we say that F €
IM2(r + k +n) is a generating family of {L,},ca if F' is nondegenerate and
F|;, =0 is a generating family of L, for all o € A.

Theorem 2.1 ([8], P.577, Theorem 3.2) (1) For any symplectic reqular
r-cubic configuration {Ls}sc1,., there exists a function germ F € M(r; k +
n)? which is a generating family of {Lo}ecr, .

(2) For any nondegenerate function germ F € M(r;k + n)?, there
exists a symplectic reqular r-cubic configuration of which F' is a generating
family.

(3) Two symplectic regular r-cubic configurations are Lagrangian
equivalent if and only if their generating families are stably reticular RT-
equivalent.

By the almost same proof of this theorem, we have the following lemma.

Lemma 2.2 (1) For any symplectic reqular r-cubic configuration with-
out boundary {L) },c1,, there exists a function germ F' € M(r + k + n)?
which is a generating family of {L. }scr, .

(2) For any nondegenerate function germ F' € 9M(r + k + n)?, there
exists a symplectic regular r-cubic configuration without boundary of which
F' is a generating family.

(3) Two symplectic reqular r-cubic configurations without boundaries

are Lagrangian equivalent if and only if their generating families are stably
reticular RT -equivalent.
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3. Symplectic regular r-cubic configurations without boundaries

In this section we prove Theorem 3.3 which will be used in the next
section.

Lemma 3.1 Let {Ly}oc1. be a symplectic reqular r-cubic configurations
without boundaries. If G(x,y,q) € M%(r + k +n) is a generating family of
Ly and G(0,y,q) is a generating family of Ly then G is nondegenerate.

Proof. We denote %(0) by Gy and denote other notations analogously.
For every vector v in ToLy N ToLy, there exists (b, c¢) € RE™™ such that

0
(Gm Gay qu> o

Gyo Gy Gy c
and
0 0
v = C(_’?E + (Ggz0 + Ggyb + quC)Z’?—p'

Since dim Ty Ly, NTopLy = n — r we have that

Gy Gi
rank( v 1 ):r—{—k.

vy qu

Hence G is nondegenerate. O

Lemma 3.2 Let L', L? be Lagrangian submanifolds of (T*R"™,0) without
boundaries. Suppose the following conditions hold:

(1) L'N L2 is a submanifolds of (T*R",0) with the codimension n 4+ r.
(2) T(L'NI?) =TL'NTL?.

Then there exists an nondegenerate function germ F(z,y,q) € M2(r+k+n)

for some k such that F(z,y,q) is a generating family of L' and F(0,y, q)
is a generating family of L2.

Proof. By considering some Lagrangian equivalence of L' and L?, we may
assume that there exist function germs S, S € 9M?(n) such that

L'= {(—%ii (p),p>} (i=1,2).

Define ¢ € M?(n) by ¢(p) = Sa(p) — S1(p). By the splitting lemma there
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exist coordinates (z1,...,2z,) of (R™,0) in which ¢ is written in the form:
:I:Z% j: e :t 272./ + ¢0(ZT’+17 MR ZTL) (¢0 6 m3(n - 7',)).

Then it follows from (2) that ' = r and from (1) that ¢9 = 0. Define
FeM*(r+n+n)by

F(x’y,Q) = :l:(ml +zl(y))2:t"'i(mr+zr( +Sl +Zqu”

then F satisfies the all conditions we need. ]

Theorem 3.3 A family {L,}oc1. of 2" Lagrangian submanifolds without

boundaries is a symplectic regular r-cubic configuration without boundary if

and only if the following conditions hold:

(1) Ly N Ly is a submanifold of (T*R™ 0) with the codimension n +
loUT|—lonT|,

(2) Tp(LeNL;)=T,LoNT.L; for any x € Ly N L.

Proof. 1t is enough to prove ‘if . We use induction on r. For the case r = 0
is reduced to [1, p.300 Theorem] and the case r = 1 is reduced to the case
r =1 of Lemma 3.2 and Lemma 2.2(2). Therefore for r > 2 we suppose that
there exist generating families f;(z1,...,%,...,2ry,q) € M2(r—1+k+n)
of the regular (r — 1)-cubic configuration without boundary {L, }icocy, for
each ¢ = 1,...,r and prove the existence of a generating family of {L,},c1,.
Indeed by the fact that f;(0,y,q) (i = 1,...,7) are generating families of
Lj_ and the splitting lemma, we may assume that the number of arguments
y are all equal.

A. Foreach i=1,...,r there erists a generating family

Fi(z1,.. ., %r,y,q) € MP(r + k +n) of {Lo}icoct, o=0-

It is enough to prove this for ¢ = 1. Since the case r = 1, there exists a
generating family fi(x1,21,-..,2k1r-1,9) € M2(1+ (k+7 —1) +n) of L;
and Ly (that is f] is non-degenerate as a generating family of a symplectic
regular 1-cubic configuration without boundary and f] is a generating family
of Ly and f1|z,=0 is a generating family of L). Since f1(z2,...,Zr,y,q) and
f1(0, z, q) are generating families of L, there exists a right equivalence from
f1 to f{|zy=0 of the form:

fl(a:?a v ’xrayaq) = f{(oa ¢($27 v 7$T7y)aq)'
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Define F; € M%(r + k +n) by Fi(z,y,q) = f1(z1,d(x2,...,Zr,y),q). Then
Fy is a generating family of L, for 1 € ¢ C I, 0 = (Z) and hence Fj is
non-degenerate by Lemma 3.1.

B. Foreachi,j=1,...,7 (i # j), there exits a generating family F; ; €
9]{2(7~ +k+n) of {Ls}ieoct,, j€oCly,o=0"

It is enough to prove this for i = 1, 7 = 2. Since F}|y;=z,=0 and Fb |z =z,=0
are generating families of {Ly}1 2e¢0c1,, we may assume that Fi|g—g,—0 =
F|z,=z,=0 by Lemma 2.2(3). By using analogous methods of the proof
(D).(a)~(d) of [1, p.304 Theorem] we may assume that Fy, Fy € MM2(r+k+
n) and

& F; 02 F;
a2 =% Byag;

On the other hand, since F; and F) are generating families of Ly, there
exists ¢ : (R™*+7 0) — (R"+*,0) such that Fi(z,y,q) = Fg( (z,9,9),q).
By using analogous methods of the proof of Theorem 2.1(3) in [8], there
exists a right equivalence of F) and F5 of the following form

=E, (JCI,|J|=k i=1,2).

Fl(l',y, Q) = F2(a11$81 + a12x2,a2171 + a22Z2,. ..,

CsTs + as171 + As2T2y ..., ha Q)a

where 3—(0) = E, 6q h(0) = 0.

Let {Lf,}ac 1, be the symplectic regular r-cubic configuration without
boundary defined by F; for each ¢ = 1,2. Then the following hold:

1 a22(0) =0= ToLyNToL, =ToLy NTpLo,

2 CL11(0) =0=TpLyN T()L% =ToLg N T()L%.
It is enough to prove the assertion 1. Set

ar a2
0
a1 a2 (=0)
A= a3y as2 c3 0

ar1  Gr2 0 Cn

A 0 0
oh Oh Oh
oz By dq
0 0 E,
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Then
(Fa}x Fgy Fiq) (At 0 )(Fﬁz FZ, F3q>B
1 1 R 2 2 2
Fye Fyy Fyq 0 Eg Fya Fyy Fyg
(Fl Fy Bl = (Fi iy B,
For every vector v in TyLg N ToL; there exists (a,b,c) € R"*+" such that

a
F:%x F:gy F:gq)

b =0 a)p = 0
1 1 1 ’
( Fym Fyy Fyq C

and

0 1 1 1y 9
v=cg + (Fypa+ Fpb+ Fpc) o

On the other hand, Set

!/

a a
b =Bl b
c c

Then we have

!/

2 2 2 a
(Fm Fay qu) ¥ | =0,ay=0

2 2 2
wa Fyy Fyq c

and

0 0
_ | 2 1 2/ 2/
v=¢C aq (qua qub +quc) Bp.

But this implies v € ToLy N Ty Lo. Therefore the assertion 1 is proved.

Since {Ly}oc1, satisfies the condition (2), ToLy N ToL1 # ToLy N ToLo,
so that agg(0) # 0. Define F3 € M2(r + k + n) by F3(z,y,q) = Fa(z1 +
axa, T3, . .., Zr,Y,q) (a #0). Then we have TyLyNTyL? # ToLyNTpL3 by an
analogous method of the proof of 1, where L} is the Lagrangian submanifold
defined by F3|y,—9. Therefore by replacing Fy by F3 if necessary, we have
ToLgNToLs # ToLyNToL?, so that a;1(0) # 0. Define Fy o € M2(r+k+n)
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by
Fl,?(l'a Y, Q) = FQ(allxl + a2122,022%2,...,CsTg + As2T2, ..., h’) q)

Since Fi2|g;=0 = Filg;=0 generates {L¢}icocr, and Fi2|z,=0 ~ Fblz,=0
generates {L,}ococr, and Fi o is a generating family of Ly and Ly, we
have that F} 5 is nondegenerate (where ~ means reticular R-equivalent).

C. For each p C I, there exists a generating family F), of {La}pm#@,azq}.
Induction on |p|. Since Fj, is a generating family of {L, },c1,, this assertion
completes the proof by Lemma 2.2(2). For |p| = 2, the assertion is reduced
to B. Therefore it is enough to prove the assertion for p = {1,...,s} (s > 3).
Set F1 = Fy13.. and Fy = Fpy 3. We may assume that Fi,F> €
M2(r + k +n) and

O°F; O°F;
A0 =0 5t (0) =

By using analogous methods of B, there exists a right equivalence of F; and
F; of the following form:

Fl(oay,Q) = F2(07y’ Q)’

Ey (i=1,2).

Fl(x,y,Q) = FQ(al.’Bl + (b%xl + b§x2)$3 C o Tgy e ey

arxy + (blzy + b2xo)x3 -+ 2sy B, q),
where a;(0) #0, ..., a,(0) # 0. Define F, € M%(r + k + n) by
Fy(z,y,q9) = Fa(a171 + b33933 - - Ts, . . ., @y Ty + D220T3 -+ - 25, , ).

Then F), is a generating family of Ly and Lj,. Hence F), is non-degenerate.
Other hand since Fy|z,—0 = Fi|z,=0, Fplzo=0 ~ F2|ey=0, Fplz;=0 = F1lz;=0
(1=3,...,s), Fp is a generating family of {L;} ns0 0=p- O

4. Symplectic regular r-cubic configurations

In this section we state the first main theorem in this paper.

Let M be a manifold and N be a submanifold germ of M around
p € M. Then we say that N has an [-corner if there exist coordinates
(Z1,..., 21, Y1, -+ Yiy 21, .., 2;) of M around p such that N is defined by
I 20,...,.’131 20, n ———O,...,yi———O.

Theorem 4.1 Let {L,},c1, be 2" Lagrangian submanifolds such that L,
has an (r — |o|)-corner for o C I,. Then {Ly}sc1, is a symplectic reqular
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r-cubic configuration if and only if the following conditions hold:

(1) L, N L; is a submanifold of (T*R",0) with the codimension n +
loUr|—lonT|,

(2) To(LyNL;)=TyLoNTyL, for any x € Ly N L.

(3) dL,NL; =L,NL; for o C 1 C I (|T — 0| =1), where 0L, is the
boundary in L.

Proof. Tt is enough to prove ‘if’. Let F'(z,y,q) € 9MM%(r + k + n) be
a generating family of a regular r-cubic configuration without boundary
{Ls}scr, which is an extension of {Ls}scy,. Since

~ OF' OF'  OF'
Li,1NLj = {(%5&‘(%%‘1)) |21 ==z, = o "@ = 0},
we have
OF' OF'  OF
8[4[1,_1 - {(q)a—q(may7Q)) | Ty =" =Ty = 5;1' = —5,—1]_ - 0}
Therefore we have
OF' OF'"  OF'
_ — e T e e e = == ——— T e— T >
Li. 1 {(q, Ba (x,y,q)) | z2 Ty oz; ~ By 0,e177 > 0}
(e1=1or —1).
Take similarly es, ..., e, satisfying
OF' 5 OF'  OF'
Lp—i= {(q,—gq—(x,y,q)) = =gi= == dx; Oy =0,

We now prove that F(z,y,q) := F'(e1x1,...,e-2r,y,q) € M23(r;k +n)
is generating family of {L,}scs.. We use induction on r — |o|. The case
r — |o| =1 is proved as above. We suppose that the following holds in the
case r — |o| < i

oF OF

Lo ={ (0. 5 @0.0) 12 = 5o = 5 =0 (a0 2 0)}

and prove the case r — |o| = 4. Set j = r — i and let r — |o| = i. We
may suppose that o = {1,...,j}. Take s € N such that j < s < r and let
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os = o0 U {s}. Then we have

Lo, = { (2. 5o 0ma)) L ow =2, = 50— = 50 =0

(:EIT_O'S > O)}

Since 0L, NL,, C L, NL,, and 0L, is consist of (r—j)’s (r —j — 1)-corner,
we have

0L, = LnJ {(q,—a—E(a:,y,q))|x0=:L‘s: OF zaF:O

s=j+1 0q oz, Oy
(21,0, 2 0)}.
Therefore
oF oF oF
LO’ — {(q) -gq—(maya q)) | LTy = 61']7,_0- — 82./ - O}

Hence the case r — |o| = i is proved. As a result, F' is a generating family of
{Los}scr,. Therefore {L,},cy, is a symplectic regular r-cubic configuration

by [Theorem 2.1/(2). O

5. Contact regular r-cubic configurations

In this section we shall prove the second main theorem in this paper. In
order to realize this, we require some lemma’s which have been developed
in [9].

Let (g1,---,9n,2,P1,---,Pn) be canonical coordinates of J!(R",R)
equipped with the contact structure defined by the canonical 1-form o =
dz — pdq. Let 7 : Jl(R",~R) — R"*1((q,2;p) — (q,2)) be the canonical
Legendrian bundle. Set L9 = {(q,2,p) € (J}(R", R),0) | ¢v = p1.—0 =
Gr+1=--=¢qn=2=0, q1,—, > 0} for each o C I,.

Definition 5.1 Let {L,},c; be a family of 2" Legendrian submanifold
germs of (J'(R™, R),0). Then {L,}ocy, is called a contact regular r-cubic
configuration if there exists a contact diffeomorphism C on (J*(R™,R),0)
such that L, = C(L2) for all o C I,.

Let {I:},}JC 1, and i[:?,}gc I, be two contact regular r-cubic configura-
tions. We say that {Ll},cs. and {L2},c;. are Legendrian equivalent if
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there exist Legendrian equivalence © on 7 such that L2 = @( 1Y} for all
o CI,.

Lemma 5.2 ([1], P.313, Proposition) Let 5 : (J}(R",R),0) — (T*R",0)
((g, z,p) — (g,p)) be a projection. Let C™ be the set of Legendrian subman-
ifolds of (JY(R™,R),0) and S™ be the set of Lagrangian submanifolds of
(T*R™,0). Then p gives a bijection from C™ to S™ and p|; : L —p(L) is a
diffeomorphism for each L € C™.

Lemma 5.3 Let L and Ly be Legendrian submanifolds of (J1(R™,R),0)

and L1 = p(L1), Ly = p(Lg) be corresponding Lagrangian submanifolds of
(T*]Rn ) Then p(L1 N L2) LiN Ly

Proof. 1Tt is enough to prove that Ly N Ly C p(L1 N Lg) By considering
some Legendrian equivalence of L1 and Lo, we may assume that there exist
function germs S1, Sz € M?(n) such that

F={(-50.50)+ (G ehr)p)} (=12

Let (¢,p) € L1 N La. Let c: [0,1] — L1 N Ly be smooth pass connects 0 and
(g,p). Then we have

1 d 851 dc
Sip) = [ Gsiletnae= [ Fhiete) Gy
1
= [ Pty = [ Esacvya
= 52(p).
Therefore (g,p) € p(L1 N L) O

In order to consider contact diffeomorphism germs on (J!(R™,R),0),
we define the following notations:
o : (JYR™,R)N{Z = 0},0) — (JL(R",R),0) be the inclusion map,
C(J'(R™,R),0) = {C : (J*(R",R),0) — (J*(R",R),0) |
C : contact diffeomorphism},
C*(J'(R",R),0) = {C € C(J'(R",R),0) |
C preserves the canonical 1-form},

Cz(JY(R™,R),0) = {Co1|C € C(J'(R",R),0)},
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C%(JH(R™ R),0) = {Cou|C € C*(J}(R™,R),0)}.

Lemma 5.4 ([9], P.9, Lemma 5.3) Let {L,}ocy, be a contact regular -
cubic configuration in (J'(R™,R),0) defined by C € C’(J~1 (R™,R),0). Then
there exists C' € C*(JY(R™, R),0) which also defines {Ls}ocr. .

By this lemma, we may assume that all contact regular r-cubic config-
uration in (J!(R™, R),0) is defined by an element in C*(J!(R™,R),0) or
C%(J1(R™,R),0).

Lemma 5.5 ([9], P.10, Lemma 5.4) Let S(T*R™,0) be the set of symplec-
tic diffeomorphism germs on (T*R",0). We define the following maps:
Cg(JY(R™,R),0) — S(T*R",0)
Cz(QszCapC) = (SC: (QvP)H(qC,pC)(QaP))

S(T*R™,0) — C4(J(R™,R),0)
S:(anpS) = (CS: (QaP)H(QS7fsapS)(Q7P))7
where f5(Q, P) is uniquely defined by the relation that S*(pdq) — PdQ =

df®, f5(0,0) = 0. Then these maps are well defined and inverse to each
other.

Proposition 5.6 ([9], P.10, Proposition 5.5(1)) Let C* be the set of con-
tact regular r-cubic configurations in (JL(R", R),0) and S" be the set of
symplectic regular r-cubic configurations in (T*R™,0). We define ‘

Ts: C} — ST ({C(IY}oct, = {SC(LY)}ocr,),
where C € C¢(J'(R™,R),0),
To : & — CF ({S(L}oct, — {C°(LY)}ocr,),
where S € S(T*R",0).
Then Ts and T are well defined and inverse to each other.

Theorem 5.7 Let {L,},cy, be 2" Legendrian submanifolds of
(JY(R™,R),0) such that L, has an (r — |o|)-corner for o C I.. Then
{f;a}ac I. 18 a contact regular r-cubic configuration if and only if the fol-
lowing conditions hold:



On symplectic and contact regular r-cubic configurations 219

(1) L, N L, is a submanifold of (J*(R™,R),0) with the codimension n +
l+joUr|—|oNnT| for all o,7 C I,

(2) T(L ﬂL) TyLy NTyLy forz € LeyN Ly 0, 7 C I,

(3) 0LoNL, =LsNL, for o C7CI (7 —0o|=1), where 0L, is the
boundary in L.

Proof. 1t is enough to prove ‘if’. Set L, = p(Le) for all o C I.. We prove
{Los}ocr, is a symplectic regular r-cubic configuration. Then {Lo}oct, =
Tc({Ls}ocr,.) is a contact regular r-cubic configuration by [Proposition 5.6|

(1) Let 0,7 C I. Since p|;_ is a diffeomorphism by Lemma 5.2,
we have that p(L, N L,) = ﬁlig(ia N L;) = L, N L, where = means
‘diffecomorphic’. By the hypothesis (1), L, N L; has codimension n +
loUr|—lonT|.

(2) Let 0,7 C I, and = € L, N L. Set y = p(z). Then we have

T,(Lo N L;) = pu(Tu(Lo N Ly)) = pu(TuLo N T:L;)
= pu(TeLo) N py(TeLr) = TyLy N T, L.

(3) Let o C 7 C I, (|r — 0| =1). Then we have that

OL,NL; = ﬁ(aza) ﬂﬁ(iT) = f’(aid N iT)
= p(LyNL,)=L,NL,.

6. Examples

Here we give some examples which are families of 2"-Lagrangian (2"-
Legendrian) submanifolds but not Symplectic (Contact) regular r-cubic con-
figurations.

I. r=k=1: Let Ly = L3 = {(0,p) € (T*R,0)} and L; = {(p%,p) |
p > 0}. Then {L,},-¢, satisfies the condition (1), (3) in [CTheorem 4.1 but,
does not satisfy the condition (2). Therefore {Ls},—p; is not symplectic
regular 1-cubic configuration.

Set Ly = {(0,0,p) € (J'(R,R),0)} and L1 = {(p* 50 p) | p 2 O}.
Then {L,},—p satisfies the condition (1 ), (3) but does not satisfy the
condition (2) in Theorem 5.7. Therefore {Ly},— 9, is not contact regular
1-cubic configuration.

IL r=k=2 Let L, = L) for 0 = 0,1,2 and set Lgq =
{(q1,42,0,0) € (T*R%,0) | 1 > —q2,q2 > —5@1}- Then {L,},cq1,2) satis-
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fies the condition (1), (2) in [Theorem 4.1 but does not satisfy the condition
(3). Hence {Lo},cq1,2) is not symplectic regular 2-cubic configuration.

Let L, = LY for 0 = 0,1,2 and set Lyoy = {(q1,42,0,0,0) €
(JY(R%LR),0) | @1 > —5a2, @2 >

—2q1}. Then {EG}UC{LQ} satisfies the

conditions (1), (2) in [Theorem 5.7 but does not satisfy the condition (3).
Hence {La}ac{l’g} is not contact regular 2-cubic configuration.
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