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Abstract. Let D, Qn and SD, be the dihedral group, the generalized quaternion
group and the semidihedral group of order 2711, respectively. Let Cj, be the cyclic 2-
group of order 2". As is well-known these four kinds of 2-groups play an important role
in character theory of 2-groups. Let ¢ be a faithful irreducible character of H = D, Qn,
SDy, or Cp. In [3] we determined all the 2-groups G such that H is a normal subgroup
of G and the induced character ¢ is irreducible. There exist other nonabelian 2-groups
M, with a cyclic subgroup of index 2. All the faithful irreducible characters of M, are
algebraically conjugate to each other as in H. The purpose of the paper is to determine
all the 2-groups G with a normal subgroup isomorphic to M,, such that ¢ is irreducible
for a faithful irreducible characters ¢ of the normal subgroup.

Key words: 2-group, induced character, group extension.

1. Introduction

Let D, @, and SD,, be the dihedral group, the generalized quaternion
group and the semidihedral group of order 2"*1, respectively. Let C, be
the cyclic 2-group of order 2. We denote the set of complex irreducible
characters of G by Irr(G) and the set of faithful irreducible characters by
FIrr(G). From now on a character means a complex character.

Let H = Dy, Qn or SD,, and ¢ € FIrr(H). These 2-groups H are known
to have many remarkable properties among all 2-groups (cf. [4, Theorem]).
We showed the following in [4].

Theorem ([4, Theorem 1]) Let H = Q, or D, or SD,. Let G be a
2-group which contains H with |G : H| = 2" (r > 1). Let ¢ be a faithful
irreducible character of H. Suppose that the induced character y = ¢
is trreducible. Then r < n — 2, Q(x) = Q({on-- + CQ_,T{,,), where (on—r
is a primitive 2"""th root of unity, and [Q(®) : Q(x)] = [G : H] = 2.
Moreover, the values of ¢¢ depend only on 7.

The original idea of is due to Yamada [6, Theorem 1]. Accord-
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ing to [Theorem, we may say that the induced character ¢ of ¢ € Flrr(H),
where H = D, Q, or SD,, has remarkable properties. So in we de-
termined all the 2-groups G such that G D H, [G : H] = 2t (t = 1, 2)
and ¢C € Irr(G). It follows that a 2-group G is uniquely determined if G
contains a normal subgroup H of index 2 or 4, and ¢© is irreducible.

There exist other nonabelian 2-groups M, with a cyclic subgroup of
index 2. The 2-group M, has faithful irreducible characters ¢, which are
algebraically conjugate to each other like D,,, @, and SD,. In |2]| in order
to compare the results of H = D,,, @, or SD,, with ones of other 2-groups
we determined all the 2-groups G for H = M, and ¢ € FIrr(H) such that
G D H, [G: H] =2 and ¢° € Irr(G). The results obtained was in contrast
to ones for H = D,,, ), or SD,,.

Furthermore in [3] we determined all the 2-groups G for H = D,,, Qn,
SD,, or C,, and ¢ € FIrr(H) with G H and ¢© € Irr(G). It is easily seen
that normal extension 2-groups of H = D,, @, or SD,, (by which we mean
extension 2-groups G with G H) are relative to normal extension 2-groups
of H=C,. For H = D,, Q, or SD,, have characteristic subgroup C,, and
¢ € FIrr(H) is induced from n € FIrr(C,,). Indeed we showed the following
theorem. The 2-groups in the following theorem are defined in the next
section and we use Go(M,,)~ instead of SD, according to [3].

Theorem 1 ([3, Theorems 4 and 7]) Let H = Dy, Qn, Go(My)~ or Cyp

with n > 3 and ¢ € FIrr(H). Let G be a 2-group which contains H as a

normal subgroup of index 2t (t > 1). Suppose that the induced character ¢C

is irreducible. Then t < n — 2 and the following hold:

(1) when H = Dy, G = G¢(Dy),

(2) when H = Qn, G = Gi(Q),

(3) when H = Go(M,)~, G = G¢(Dy,) or Gi(Qn),

(4) when H = Cyp, G = Dy, Qn, Gt(Dy), Gt(Qn), Gi—1(My,)* or
Gt_l(Mn)_.

In particular, there ezists a unique 2-group G for H = Dy, or Qn (n > 3)

and each t (1 <t <n-—2).

For a given group H = D,, or @, and ¢ € FIrr(H), [Theorem 1 im-
plies that a 2-group G is uniquely determined such that H is normal in G,
[G : H] =2t and ¢€ € Irr(G) for any ¢ (1 < t < n—2). This fact is different
from results of Go(M,,)~ (= SD,) and C,, and may characterize D,, and
Q. in a sense. For example, let H be a 2-group with faithful irreducible
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characters which are algebraically conjugate to each other and ¢ € Flrr(H).
Then the following may hold: If there exists a unique 2-group G for any
possible integer t such that G> H, [G : H] = 2¢ and ¢© € Irr(G), then G is
isomorphic D,, or Q,.

Now we have

Problem Let H be a 2-group with faithful irreducible characters which
are algebraically conjugate to each other. Let ¢ be any faithful irreducible
character of H.
(I) Characterize a 2-group G such that H is a normal subgroup of G and
the induced character ¢© is irreducible.
(I) Determine all the 2-groups G such that H is a normal subgroup of G
and the induced character ¢€ is irreducible.

The purpose of the paper is to determine completely all the 2-groups
G for H = M,, and ¢ € FIrr(H) with G> H and ¢© € Irr(G). In fact M,
satisfies the condition about a 2-group H on Problem. The results are very
complicated and different from ones of D,, and @, (and Go(M,,)~ (= SDy)).
For example in this case G/H is not always cyclic and there exist many such
2-groups G. All the 2-groups G for H = M,, are in Theorems 5, 6 and 8.

Remark 1 From Theorem 6 it follows that [2, Theorem 6] for M3 is in-
correct. G®~1) and G®~2 should be removed from [2, Theorem 6].

Remark 2 Let H be a 2-group with |Z(H)| = 2 and ¢ € Flrr(H). Sup-
pose that ¢(z) = 0 for all z ¢ Z(H). Then from [5, Lemma 2.1] it follows
that ¢ is the unique faithful irreducible character of H. It is easy to see
that this 2-group H satisfies the condition on Problem and there exists no
2-group G with a normal subgroup H and ¢€ € Irr(G). For example, so
are extra special 2-groups.

2. Preliminaries

We define notation of some 2-groups which are dealt with in the paper.

Ch, is the cyclic 2-group of order 2" : C,, = (a).

D,, and @, are the dihedral group and the generalized quaternion group,
respectively, of order 2" (n > 2):

D, = {(a,b|a® =1, 0°=1, bab" ! =a71),

Qn = (a,b|a? =1, 2 =0a""", bab~! =qa™!).
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We define 2-groups Gi(D,,) (1 <t <n-—2), G(Qn) (1 <t <n-2),
Gi(M,)T (0<t<n-23)and G¢(M,)” (0<t<n-—3) as follows:
=1, b=1 22 =1, >

_ _ n—t _
bab™! = a7, zaz !l =at?", zbxl=b

Gt(Dn) - <a7 b> z

an — 1, b2 _ 211—1, 2t _ 1’
Gi(Qn) = <a, b, T ¢ ¢ v :

_ _ n—t _
bab~! =a7!, zaz ! =at?", bzl =b

Gt(Mn)+ = <a’ b l a}2n — 1, b2t+l _ 1, bab—-l _ a1+2n—t—~1 >,
Gt(Mn)— = (a, b | a2" — 1, b2t+1 _ 1, bab_l — a_1+2n—t—1 >

We note that Go(M,,)™ is the semidihedral 2-group SD,, and Go(M,)*
is M,,. Namely if a nonabelian 2-group G of order 2"*1 has a cyclic subgroup
of index 2, then G is isomorphic to Dy, Qn, Go(M,)™ or Go(M,)*. After
we show that 2-groups discussed in the paper are not isomorphic
to each other.

Here we recall Flrr(M,,). The 2-group M,, has 2"~2 faithful irreducible
characters ¢, (1 <v < 2" and 24v):

¢ (@) =2 (1<i<2"), ¢(z)=0 (z¢(a®)),

where ( is a primitive 2"th root of unity. Each faithful irreducible character
¢, is induced from the faithful linear character 7, of the cyclic subgroup
(a):my(a’) = ¢ (1 <i<2™). Thus it follows that the faithful irreducible
characters ¢, are algebraically conjugate to each other.

We have the following criterion for irreducibility of induced characters.

Lemma 2 Let G be a 2-group containing a normal subgroup M, and ¢ €
FlIrr(M,,). Then the following statements are equivalent.

(1) ¢C is irreducible.

(2) #9(a?) # $(a?) for all g ¢ My.

(3) Cg(a?) C M,.

Proof. We have already seen that ¢(x) = 0 for any = ¢ (a?). Because the

subgroup (a?) is the center of M,, it follows that G > (a?). The lemma is
easily shown from Clifford’s Theoreml (cf. [1, p.329]). O

Now we have the following useful lemma.



Normal extensions and induced characters of 2-groups My, 167

Lemma 3 Let G be a 2-group such that G > M, and ¢ € Flrr(M,).
Suppose that ¢ is irreducible. Then there exists an embedding

a: G/M, — Aut{a?).
In particular, G/M,, is abelian. If n =3, then G/M,, is cyclic.

Proof. From it follows that Cg((a?)) = M,. Because M, is a
normal subgroup of G and (a?) is the center of M,,, we have the embedding.
O

We also recall the automorphism groups of (a?) and M,. The cyclic
group of order n is denoted by Z,:

Aut{a®) = (0) x (V) = Zo X Zgn-s,
where 0(a%) = a™% and 1(a?) = a®*> (1 <i <271,
Aut M,, = {fi,j,k | 1<i<2?, 21”&', ] € {0, 1}, ke {0, 1}}

where f; jk(a) = @'V, f; jx(b) = a?" "'k,
In order to determine groups we use the following (cf. 7, III, §7]):

Proposition 4 Let H be a finite group. Let G be a finite group such that
H is a normal subgroup of G and G/H = (zH ) is a cyclic group of order
t>2:2t=r¢c H. Let 0 be a map defined as 8(h) = xhx™! for any h € H.
Then the following statements hold:

(1) 6 € AutH,
(2) 6'(h) =rhr~! for any h € H,
(3) 6(r)=r.

Conversely, if 6 € Aut H and r € H satisfy (2) and (3), then there exists a
unique extension group G of H such that G/H = (vH) is a cyclic group
of order t, (h) = vhv~? for any h € H and v* =r.

3. Determination of cyclic extensions of M,
It is easy to show the following from [Theorem 1I:

Theorem 5 Let G be a 2-group which contains M, = (a, b) (n > 3) as a
normal subgroup of index 2t (t > 1) and ¢ € Flrr(M,,). Suppose that G>(a)
and the induced character ¢© is irreducible. Then G = G¢(Dy) (t < n —2),
Gi(Qn) (t<n—2), Ge(M,)" (t<n—23) or Ge(My,)™ (t<n-3).
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So in the rest of the paper we assume that (a) 4 G.

In this section we consider the case that G/M, is cyclic.
implies that all extensions of M3 are discussed here. We set G = (a, b, x)
and 2% € M, = (a, b) (t > 1). Considering Aut M,,, we have zbz~! = b or
a?""'b. When zbz~! = " 'b, because G = (a, b, az ) and (az)b(az)™! =
aa®" ba~! = @12 g~ (142" Np = b we may assume that zbz~! = b in
G={(a,b, x).

We separate the proof into two cases depending on the action of xz on
a?. We note if n = 3, then we have only Case 1.

Case I za’z™! = a~2. Since z%a’z2 = a? and ¢© € Irr(G), we have
z? € M, and t = 1. This case is treated in [2]. We demonstrate the proof
again for the completeness.

We set zaz~! = a'b. Then za?z™! = (a'b)? = ¢%(+2"%) = g2 and
i =—1+2"2 (mod 2" !). So we have zaz™! = a~1+2""p or ¢~ 1+32" %},
If zaz™! = a 132" 7"b we have (bz)a(bz)™! = o(-1+32" (142" )y —
a 172" *h by n > 3. Since G = (a, b, br), we may assume that zaz™!
a 2" *pin G = (a, b, z). Now because (12" )2 = 42 we have

- _ n—2 - _ n—2_ . __ n—2
:r2aa: 2 — ra 142 br 1:(a 142 b) 1+2 b

_ b_1a1_2n—2a_2n—2

= a

and so z2 = a* for some integer k. From z2bz~2 = a*ba % = b we have 2| k.

Let 22 = a%* for some integer k. Then a?* = za?*z~1 = (za2z~1)F = ¢~ 2%
and 2k = 0 (mod 2"~ !). Hence we have z2 = 1 or 22 = a2" . Consequently

G = (a, b, z) (>M,) in this case has one of the following relations:

_ _149n-2 _
zax ™l =a 12 h, zbrl=0b, 2= 1,
_ _ n—2 _ n—1
rax ! =a 12 b, bzl =0, z?=d?
_ —t—1 .
Case II:  za?z~! = g2(*1+2" ). In this case we have n > 4 and 1

A

t <n-—3. Weset zaz~! = a’b. Then za’z! = (a'h)? = a2(1+2"7%)
Q2EH2Y and i = (14 2"72)(£1 +2"t71) (mod 2" 1). So we have

-1 — a(1+2’n—2)(i1+2n—t—1)b 1+2n—2)(i1+2n-—t—1)+2n—1b

rar or a(

_ —2 —t—1 ~1
If zaz~! = (12" )FEIH2"TTHNH2"0 e have

(bz)a(br) ! = ba(1H2" IEFIH2TTTHH 1
_ a(1+2n~2+2n—1)(:}:1+2n—t—1)+2n—1b
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_ a(1+2n_2)(i1+2n_t—l)b_

Since G = (a, b, bz ), we may assume that zaz™' = (1272 (1427 1)

in G={(a,b,x).
When zaz~! = a(+2"7)1+2" 7" e have

$2a$—2 = (a(1+2n_2)(1+2n—t"1)b)(1+2n—2)(1+2n—t_1)b
— 2O {(+2r ) 2r T ) -1} (2R ) (1427 )
a(1+2n—t_l)(1+2n_t—1+2n—1)

_ a(1+2n—t—1)2+2n—1

because (a(1+2”_2)(1+2""t‘1)b)2 _ g2+l

If t = 1, we have z2az~2 = zaz™! = a. So 22 = a* for some integer k

and z2bz2 = (aF)b(a*)~! = a2 "*b = b. Hence we have 2| k. Let 22 = a?

. . _ n—2
for some integer k. Since a?* = za?*z~! = ¢?*(1+2"7%) and 2| k. So we get

z2 = a*. If 22 = a**, then we have

(a2k(—1+2n—3)x)a(a2k(—1+2"—3)x)—1 — ab,
(a2k(_1+2n_3)w)b(a2k(_1+2n—3)x)_l —b

(a2k(—1+2""3)$)2 _ a4k(—1+2"—3)(1+2"”3)+4k -1

Since G = (a, b, a*142")z) we get 22 = 1 in G = (a, b, z). Conse-
quently G = (a, b, ) (>M,,) has the following relations:

_ n—1 _
zax ' =a"¥" b, zbzl=0b, z?=1.

Remark 3 We may set zaz™! = abin G = (a, b, z) as in [2, Theorem 5].
If t > 2, we have
{14212 42 P2 = (1422 =142"71 (mod 27).

Hence z2°az=2 = a!™2"7". So 22" = a¥b for some integer k and bz =
aFba=F = aka—k1+2" Ny = 2" 'kp = b. Hence we have 2|k. Let 2 =
a?kb for some integer k. Since a%*b = ra?*bzr~! = a2(1+2n_t_l)kb, we have
k= (1+2t1k (mod 2"~!) and 2! | k. So we get 22’ = a2 kb,

Set 7 = 1 4+ 2" ~t~1. There exists a solution v satisfying

t
r —1

7".__

2v + 2" =0  (mod 27),
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t
T2

because 2! || == So we have

(a®z)a(a®z)™! = a(1+2"_2)(1+2n’t”1)b’

(a®z)b(a®z) ! = b

ot
t r? —1 t+1
(a®z)? = a® 71 T Ry =y,

Since G = {a, b, a®z), we have ¥ =1inG = (a, b, z). Consequently
G = (a, b, z) (>M,) has the following relations:

. n—2 n—t—1 _ t
zaz~! = (127742 )b, zbz™l =b, 2% =b.

When zaz~! = a(1+2" ) (142""" N we have
.'15201113"2 _ (a(1+2n—2)(__1+2n—t—1)b)(1+2n—2)(_1+2n—t—1)b
— a(~—1+2n—t-1){(1+2"—2)(_1+2n—t-—1)_l}a(1+2n—-2)(_~1+2n—-t—1)bb
N

_ a(1+2n—t—1)2

because (a(1t2"7)A+2" 7 "Hp)2 = 20142771 We have

2t

ot _ n—t—1y2¢ n—1
% ax™? = o712 )" = glt?

by t > 1. So 2% = a*b for some integer k and
22'b27? = aFbaF = aFa RO+ — 2"k — g,

Hence we have 2|k. Let 22" = a?*b for some integer k. Since a?*b =
za®bz~! = 2142k we have k = k(—1 + 271} (mod 2"~!) and
272 | k. So we get 22’ = 2" *b,

Set r = —1 + 2" t=1 If 22" = a2n—1b, then we have

(aziL‘)a,(a?m)—l - a(1+2n—2)(—1+2”'t_1)b,

(a®z)b(a’x) ! = b,

2t
t re ~1 n—1
(a®z)? =a* 71 2" p=b

2t
because 272 H r- -1

—*. Since G = (a, b, a’z), we get 2 = bin G =

(a, b, ). Consequently G = (a, b, z) (>M,) has the following relations:

_ —2\(_ n—t—1 _ t
zaz~! = 12" 7)(=1+2 )b, zbz™ ! =b, 2 =b.
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Summarizing, we have

Theorem 6 Let M, = (a, b|a®" =1, =1, bab~! = al*2"7") (n > 3)
and ¢ € FIrr(M,,). Let G be a 2-group containing a normal subgroup M, of
index 2 (t > 1). Suppose that G/M,, is cyclic, G % {a) and ¢© € Irr(G).
Then G is isomorphic to one of the following:

(1) GP =(M,, | zaz™! = a 2", bl = b, 2® = 1),

2) G2 = (M, z|zaz! =a 112" b bzl = b, 22 =a®""),
(3) Gf =(M,, z|zaz! = a2, gba i =b, 22 =1) (n > 4),
4) Gf = (M, z | zaz™! = o222 Dy gbp=l = p, ¥ = b
t
(2<t<n-3),
5) G = (M,, z | zaz~! = a(F2" 2Ty ppp—l = b 2 = b
t
(1<t<n-3).

4. Determination of noncyclic extensions of M,, (n > 4)

We consider noncyclic extensions of M, of index 2!*1 (¢ > 1). In this
case it follows from that

G/My = () x (¥ ) 2 (1) x (1427771),
where n > 4and 1 <t <nm—3. So we may set G = (M, z,y) =
(a, b, z, y) with

1 —2

ralz™l = a2(1+2n_t_1), yaly 1 =a and yzy~!e M,z.

Furthermore we suppose that G ¢ (a). Then we have the useful lemma,

which is due to K. Sekiguchi.

Lemma 7 Let M, = (a,b|a?" =1, B2 =1, bab~! = al*2" ") (n > 4)
and ¢ € FlIrr(M,). Let G be a 2-group containing a normal subgroup My,
of index 2¢ (t > 1). Suppose that G ¢ (a) and ¢% € Irr(G). Then the
normalizer Ng({a)) of (a) is a subgroup of G of index 2.

Proof. Let z,y € G\ Ng({a)). Let zaz™! = a’b (21 i) and yay™! = ab
(21 5). Then because zbx™! = a?" " '*p (k=0 or 1) and j is odd,

(zy)a(zy) ™! = zalbz™t = (a'b)a®" kb € (a).

So we have zy € Ng({a)). This lemma is completely proved. O
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First we consider H = (M,, ) = (a, b, ). This group H satisfies
that H > M, ¢f € Irr(H) and H/M,, is cyclic of order 2¢ (t > 1). From
[Theorem 5 and [Theorem @it follows that H & Gy(M,,)™, G{ or G}, because

—t—1
CE(J,ZCL'*I — a2(1—+—2" )

CaseI: H = Gi(Myp)*t = (M, z | zaz™! = a!*2""7" gba~l = b, 3% =
b) (1 <t<n-3).

By Lemma 7 we have Ng((a)) Zy and yay™! = a’b (2 11i). Because
a2 = ya2y~! = (a’b)? = a2(112"*) we have i = —(1+2"2) (mod 2"71).
So yay™! = a2 7°h If yay~! = a~172""h, then (by)a(by)™t =
a(1=2"7HA+2" N = =142, Hence we may assume that yay~! =
a 2" %b in G = (a, b, z, y). We have already yby~! = a2" 'b or b.

If yby~! = a2"7'b, then

(aby)b(aby) ! = aa?" ba~! = b,
(aby)a(aby) ™! = aba 112" g7l = o~ 142"

and G = (M, z, aby). So we may assume that yby~! = b. Because

y2 € M, and ylay? = (o 1F2"7p) 12T = o2V 112"y o
a2+ = 4 we have 32 € (a). We set y2 = a*. Because
a* = yaky! = (a*1+2n_2b)k, we have 2|k and a* = a™*. So k = 0
(mod 27~1). We have y2 =1 or 2"

Next we determine the action of y on z. From yzy~! € M,z we have two
cases, i.e., yry~! = a'z or a*bzr. If yzy~! = a'bz, then because zbz~! = b

we have (a’bx)b(a’bz)™! = a'ba™* = a2" b = b and 2|i. Then because
zaz~! = g1t

(aibx)a—1+2n—2b(aibx)—l - aia(_1+2n-2)(1+2n—t)(1+2n—1)a_i(1+2n—1)b
— g-lm2nTEenty

# (a_1+2n—2b)1+2n—t _ a_1_+_2n—2_2n—tb.

Consequently we have yzy~! = a’z. Because y? € Z(G), which is the center
of G, we have z = y2zy~2 = (a_1+2n_2b)iaix and 2|i. Hence b = yby™! =
. 20y 2ty
yr2'y1 = (aiz)? = o' 71 22 = ¢ 7T b, where r = 1 + 2""t~1. Because
t . -rzt—l
2t || é_;ll, we have 2" | 4. Then (a'z)¥ = o' 1 22 = b. Now from
2"~ | there exists a solution \ satisfying

i—2"""IN=0 (mod2") and 2|\
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Then we have

(a*y)z(a y) ™! = ataiza” x=u,

(a*y)a(a*y)™! = a2 e = a_1+2n_2b,

(a*y)? = 92, (ay)b(a?y) ™ =band G = (M, z, a*y). So in this case we
have the following relation in G = ( M, z, y):

A PiA(2RE )

1 a—1+2"'2 on—1

yay ' = b, yby ' =b, yry ‘==z, y*’=1 or a
CaseII. H = G = (M, z | zaz™! = a2 b, zbrl = b, 22 = 1)
(n > 4).

By we have Ng({a)) > y and yay™! = a* (2 1 i). Be-
cause a2 = ya?y~! = a® we have i = —1 (mod 2"71). So yay~! = a7}
or a 12" If yay! = a7 12" then (by)a(by)~! = a~!. Hence we
may assume that yay™' = 7! in G = (a, b, 7, y). We have already
yby~! = a2 borb. I yby~! = a®" b, then (ay)blay) ! = aa? ba"l = b,
(ay)a(ay)™' =a ' and G = ( My, z, ay ). So we may assume that yby~! =
b. Because y? € M, and y%ay—2 = a, we have 42 € (a). We set y? = a.
Because a* = yaFy~! = a=*, we have 2" | k. We have y2 =1 or a?"" .

Next we determine the action of y on z. From yry~! € M,z we have
yry~! = a'z or a’bx. If yry~! = a’z, then because zbz~! = b we have
(a'z)b(a'z)™! = a'ba~* = a®" b = b and 2|i. Then because raz™?
a1+2n_1b, (aix)a—l(aix)—l — ai(al+2n_1b)—la—i — b~ 12" = 1
a~1+2" 7, Consequently we have yzy~! = a'bz. Because zbr~! =
we have (a‘bz)b(a’bz)~! = a'ba™" = a2" "%b = b and 2|i. Then (a’bx)?
atba’ (12" ")y = g2(1+2"™%) = 1. Consequently we have 2"~! | i. Namely
yry~! = bz or a®" 'bz. When yzy~! = a?" bz,

S

(a*y)z(a®y)~! = a2a®" T bza? = a2t ba 212 g = by,

(a*y)ala®y)™! = a7, (aPy)bla’y)™ = b, (a’y)* = y® and G =
(M, r, a’y). So in this case we have the following relation in G =
(Mp, =, y):

yay t=a"l, ybyl=b, yryl=bz, y*=1 or a

2n—1

Case III: H = G} = (M, z | zaz™! = a2 (A2 Ny gyl
b, 2¥ =b) 2<t<n-3).
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As well as Case II it follows that we may assume that in G =
(My, z, y)

yay t=a"!, ybyl=b and y?* =1 or a?
We determine the action of y on . From y:r;y“l € M,z we have yzy~! = a'z
or a*bz. If ya:y ~1 = a'z, then because zbz ™! = b we have (a‘z)b(a’z)™! =
a’ba = a?"""b = b and 2|4. So because zaz~! = a(1+2" A+
(aix)a—l(azx)—-l _ az(a(1+2"‘2)(1+2"“t“1)b)—la—i
_ (a(1+2n~2)(1+2n~t~1)b)_l
_ a_(1_2n—2)(1+2n—t—-1)b # a_(l+2n—2)(1+2n—t—l)b.
Consequently yry~! = a'br. Because xbx ™! = b, we have (a‘bz)b(a’bz)™! =
atba™" = a2 "% = b and 2|i. Then it follows that
r2t——-1
(aibx)Qt = (@A 227 2i(142n ) N,
From 2! || =4 =L we have 2"~ | 2. Then there exists a solution A such that

i— 2"_t‘1)\ =0 (mod2") and 2|A.

Then we have

(a*y)z(a*y) ™! = ata'bza™ =@

i_on—t—1
= g'? bz = bz.

- n—t-—-1
)\—Ha )\(1+2 )biL'

(@*ylaa*y)™ = a7, (Myblaty)t = b, (ay)? = y® and G =
(a, b, z, a’y). So in this case we have the following relation in G =
<Mn1 z, y>

yay ' =a7l, ybyl=0b, yry l=bz, 3y =1 or a

2n——1

Summarizing, we have

Theorem 8 Let M, = (a,b|a®" =1, =1, bab~! = a’*2" ") (n > 3)

and ¢ € Flrr(M,,). Let G be a 2-group with a normal subgroup M, of index

2t (t > 1). Suppose that G/M, is noncyclic, G % (a) and ¢€ € Irr(G).

Then G is isomorphic to one of the following:

(1) Ge(M)*P = (M, z,y | zaz™! = o277 bz~ ! = b, 22° = b,
yay "t =a T, gy = b, yay Tt =0, 97 = 1) (1St <n-3),
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Gi(M)*Q = (M, z,y | zaz™! = a2 bl = b, 22 = b,

y y L =a T gy = b, yzy =,y =0 ) 1<t <
- 3),

G+D (My, z,y | zaz™t = a2 7 'b, 2bz™! = b, 22 = 1, yay™! =

~oyby™t = b yay T =bo, g’ = 1) (0> 4),
G+Q (M, 7,y | zaz~t = a*2" b, gba~! = b, 22 = 1, yay~' =
a~l, ybyl = b, yry~! = bz, y2 = a2 ) (n > 4),
GfP = <Mm T,y | zaz~! = a2, phg—l = b, 22" = b,
yay 1:(1, ,yby 1:b yxy_1:b$1y2:1>(2§t5n——3),

n—2 —t—1
(6) G+Q (Mn, z,y | zaz™! = a2 ppr=l = b 22 = b,
on—1
yay'l—a wbyl:b,ywy*l:bx,yz:az ) (2<t<n-3).

G Order | Involutions | Z(G) G G/G’
Gi(Dn) 1<t<n—2] 2ntttl | g3 xont 2 2 2"t % 2F x 2
Gt(Qn) 1<t<n—2]| 2ntit! PA 2 2! 277t % 2 x 2
Gt( ) 1 S t S n—23 2n+t+1 0 2n—t—1 2t+1 2n—t—-1 X 2t+1
Gi(M,)~ |1<t<n-3| 2"ttt 0 2 gn-1 211 2

n=3 23+1+1 23 2 2 x 2 4x2
GP

n>4 gntitl 2" 2 2n—! 4x2

n=3 23+1+1 0 2 2 % 2 4 %2
Gy

n>4 gntitl 0 2 PA 4x2
GY n >4 gntitl 4 2l 1 2% 2 2"~ % 2
Gy 2<t<n-3| 2rtttt 0 2nt 2tt1 2"t x 2t
Gy n>4 gnti+l gn-1 2 2n—1 4x2
G, 2<t<n-3| 2rttt! 0 2 2n 1 4 x 2t
Gi(Mp)tP |1 <t <n—3|2ntititl | 3 on-! 2 on—1 4 %28 x2
Gi(M,)*Q |1 <t <n—3|2nHitiHd on—! 2 2n~! 4 %2 %2
GP n>4 gnititl | 44 gntl 2 (2" 1x2| 2x2x2
GTe n>4 gnil+iftl | 44 on 2 |2"ix2| 2x2x2
GfP 2<t<n—3|2ntititl | gy on-t 2 [2"7'x2| 2x2'x2
GHe 2<t<n—3|ontttitl on-1 2 2" lx2) 2x2tx2
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We note that 2-groups G in Theorems 5, 6 and 8 are groups by Propo-
sition 4. In order to show these 2-groups G that contains M, of order 2™
are not isomorphic to each other, we have the above table and a fact. In
the table Order is the order of G and Involutions is the number of involu-
tions outside M,,. Furthermore in center Z(G), commutator subgroups G’
and G/G’ we have the form as the direct product of cyclic 2-groups. For
example, 2"~ x 2! means the direct product of two cyclic 2-groups of order
2"t and 2¢.

Finally we need to show that G (M)~ % G? for n > 4. This is shown
from a fact that G1(M,)~ has a normal subgroup of order 2" and G? has
no such subgroup (cf. [2, p.343]).
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