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Global convergence of a trust-region algorithm for
inequality constrained optimization
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Abstract. This paper presents a trust-region algorithm for n-dimensional nonlinear
optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions
are derived, being the basis for constructing the new algorithm. Global convergence of
the algorithm to a first-order KKT point is established under mild conditions on the trial
steps. Condition m < n is required.
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1. Introduction

In this paper, we study the following nonlinear inequality constrained
optimization problem:

minimize f(x)
subject to H(z) <0, (1.1)

where H(z) = (hi(z), ho(2),...,hn(x))T, f(z) and hi(z) i € I =
{1,2,...,m} are R® — R twice continuously differentiable. We assume
m < n in this paper, which is important for our argument.

Trust-region algorithms are very efficient for solving nonlinear optimiza-
tion problems. Many authors have studied the trust-region algorithm for
solving equality constrained problems. (see [1], [2], [4], [5], [10], for exam-
ple). However, for nonlinear inequality constrained optimization problems,
the results about trust region methods are very few. (see [3], [6], [9], [7], for
example). The paper [7] considers problems with equality constraints and
bound constraints. Therefore, adding slack variables, any problem of the
form (1.1) falls under the framework of [7], independently of the number of
inequality constraints. Under regularity assummptions, some subsequence
of the algorithm defined in converges to a KKT point of the original
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problem. The paper [9] presents a trust region method for an arbitrary
closed set and prove a global convergence theorem. But it is very difficult
to solve the subproblems arisen in the algorithm of . Very general prob-
lems have been discussed in [12]. The basic idea of is to reduce the
smooth constrained optimization problem into a nonsmooth unconstrained
problem by using [, exact penalty function and then to solve the nons-
mooth problem by the trust region method. The global convergence of the
method has been proved under the assumption that the penalty parameter
is bounded. When the penalty parameter tends to infinity, the method of
is still convergent, but the limit is not the KKT point of the original
problem. The work discusses a interior trust region approach for non-
linear optimization only for a special case, that is the optimization problem
with bounded constraints. extends the method of to the problem
with bound constraints for partial variables and equality constraints.

This paper presents a new trust region method for nonlinear optimiza-
tion with inequality constraints. We change the problem into an equivalent
problem with equality constraints and non-negative constraints by using
slack variables. Then we derive new equivalent KKT conditions, which are
the basis for constructing our algorithm. The subproblems in the algorithm
can be solved by the method proposed in [4] and [6]. We have proved that
at least one accumulation point of the new algorithm is KKT point.

The problem proposed by this paper is different from [4] and [6]. As-
sume p is the number of bound constraints, the paper [6] requires that m < n
and p = n—m. Hence, the problem of [6] can be reduced to an optimization
problem with simply bound constraints. In our paper, by introducing slack
variables problem (1.1) is changed into problem (2.1), where the number p
of bound constraints is m. So our problem can not be reduced as in @
The paper [4]| only considers equality constrained problems.

The paper is organized as follows. In Section 2, we derive equivalent
first-order conditions; In Section 3, we present a method to compute trial
step; In Section 4, the new trust-region algorithm is formulated; Section 5
gives a global convergence theorem of the algorithm; The numerical example
is given at last section.

In this paper, the vector and matrix norms used are [l norm, subscripted
indices k represents the evaluation of a function at a particular point. For
example, fi represents f(xy), Iy represents l(xy, Sk, Ak)-
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2. Optimality conditions

By introducing slack variables s € R™, we obtain the following problem
for the variables x € R™ and s € R™, which is equivalent to (1.1).

minimize f(x)
subject to H(zx)+s=0, s>0. (2.1)

Denote u = (z1,s7)T € R™™", C(u) = H(z) 4+ s € R™,

l(CE, Sy ’\) = f(x) + Z )\i(hi(m) + Si)a
=1

A(z) = (Vhi(z), Vha(z),...,Vhny(z)) € R¥*™,

J(u) = (AT (z), I,,) € R™*(™+™)  (the Jacobian of C(u).)
A point u* = ((z*)7, (s*)T)7 satisfies the first-order KK'T conditions of
problems (2.1) if there exists A* € R™, u* € R™ such that:

V") + AN =0, X —up* =0,
H(z*)+s" =0, (2.2)
pis; =0, (iel), p*>0; s*>0.

We assume in this paper that rank A(z) = m. So the constraint quali-

fication is satisfied.
can be rewritten as follows

H(z*)+s* =0, s*>0,
Vix*)+ A(z")\* =0, (2.3)

$;>0 =X =0 i€l
si=0 = X>0iel

Since rank A(x) = m, we can make QR factorization of A(z) as follows

Alz) = (Y (@), Z()) ( Riz) ) |

where Y(z) € R®*™, the columns of Y (z) form a orthonormal basis of the
space of A(z); Z(z) € R™*("~™), the columns of Z(z) form an orthonormal
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bases for the null space of A(z); R(x) € R™*™ is an m X m nonsingular
upper triangular matrix. It is easy to see that

Y (2)TY (z) = I, Z(2)TZ(2) = Ln—m,
Y (z)Y(2)T + Z(2)Z(z)" = L.

Since rank A(z*) = m, the equation Vf(z*) + A(z*)A* = 0 can be
written as:

Y (z*)TVf(z*) + R(z*)\* =0,
Z(x) IV f(z*) =0,

that is:
2 = —R(z*)7Y (z*)TVf(z*),
Z(z IV f(z*) =0. (2.4)
Conversely, if holds then

V§(z*) + A(z*) A"
= (Y ()Y (@) + Z(«*)Z(z*)")Vf(z*) + Y (") R(z*)\"
— Y (@)Y (e)Vf(*) + R(z*)\] + Z(z*) Z(z*) TV f(2*) = 0.

Hence is equivalent to

H(z*)+s* =0, s*>0,
Z(z*)TVf(z*) =0, (2.5)

st>0 = [-R(z*)7Y(«*)TVF(*)): =0,
st=0 = [-R(*)"'Y(z*)TVf(z*); > 0.

We denote VF(u) = (Vf(x)T,05)T € R"™™ and introduce a matrix
D(u) € R™™ as follows:

(%02
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where D(u) € R™*™ is the following diagonal matrix:

1, if [-R(z)"'Y(z)TVf(z)); <0,
si, if [~R(z)7Y(z)TVf(x)]; > 0.

(D(u))ii = {

Then last two equations of can be written as:
D(u*)[-R(z*) 'Y (2*) 'V f(z*)] = 0.
We introduce another matrix W(u) € Rmtm)xn;
~Y(2)R(z)" T VA
i [ Y@RDT 2@ )
Im Omx(n—m)

It is obvious that rank W (u) = n, J(u)W (u) = 0, and the columns of
W (u) form a basis for the null space of J(u). Then we have the following
proposition:

Proposition 2.1 The point v* = ((z*)T, (s*)T)T is a first order KKT
point of (1.1) if and only if u* satisfies:

H(z*)+s* =0,
s* >0, (2.7)
D)W (u*)TVF(u*) = 0.
Remark 2.1 At point [-R(z) 'Y (z)TVf(x)]; = 0, matrix D(u) is usu-
ally discontinuous, but D(u)W (u)T VF(u) is still continuous.
3. Trial steps

Constrained optimization problem is often solved by SQP trust region
algorithms. For problem (2.1), at kth iteration, we have u; and need to
compute trial step di. The trial step is computed by solving the following
trust region subproblem:

1
minimize Iy + VylFd + §dTBkd
subject to Cy+Jid=0, sp+(d)s>0, |d| <Ay,

where B € R(vtm)Xx(n+m) ig 5 symmetric matrix and the Hessian of the
Lagrangian at (ug,Ag) or an approximation to it, Ak is the trust region
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radius at kth iteration,

. Tk i (dk)a:
”‘(%)’“‘<wm)'

However, this approach may lead to inconsistent constraints if Cy # 0. To
overcome this difficulty, similarly to [4], the trial step dj is determined as
dr, = di + Wkdi, where d} is the quasi-normal component, dfc e R", Wkdfc
is the tangential component with respect to the null space of the J,. We
require s > 0, sg + (di)s > 0. If di is accepted, we set ugy1 = ug + di.

We give now the method to compute dff and df.

3.1. The quasi-normal component

The quasi-normal component dJ is related to the trust-region subprob-
lem as follows:

1
minimize §||Ck + Jxd™|)?
subject to ||d"|| < TAg, (3.1)

where 7 € (0,1) is a constant independent of k, Jy = (A%, I,,,)
In order to keep sx > 0 for all k, we require that d"® has the form:

o ( (d’%)_
0

Then (3.1) can be rewritten as:

1
minimize §||C'1c + AT (d))?
subject to ||(d")z] < TAk. (3.2)
As in most trust region algorithms, we do not have to solve (3.2) exactly

and only have to compute d}, satisfying the following conditions: there exist
constants kK and 3; such that

ldkll = [1(di)zll < Kl Cll, (3-3)
ICkII* = ICk + Ak (dR)all* = BilllCKI> — [ICk + ARvEI) (3.4)
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where vi; € R" is the solution of the following problem

1
min §||C’1c + Afym||2
subject to |[v"|| < TAg, v"™ € span{—A;Ck}.

Condition (3.4) is called a fraction of Cauchy decrease condition (see [4],
for example), which is easily satisfied. In [4] algorithms has been provided
algorithms to compute d7 satisfying [3.3).

3.2. The tangential component

Denote gx(d) = lx + V,IEd + %dTBkd, which is a quadratic approxima-
tion of I(x, s, \) at point (zk, Sk, Ak)-
Denote

dt
i-(5)

where Jz € R™, ch € R ™. Then

. (dk)x _ om t
drp = ( (dk)s ) = di + Widj,

(@, [ uET a (&
0 I, Omx(n—m) k ,

which implies di. = (di)s. Hence

N (dk)s

Now we can write subproblem for dfc as follows:

>

1
minimize gx(d} + Wid') = q(d?) + gf d* + §(dt)TW,;F BiWd'
subject to ||Dg'dt|| < A, (d)s > —oksk, (3.5)
where oy € [0,1), 0 € (0,1) is a constant and

G = WEVulk + Brd?] = WE(VEFy + JL A\ + Brd})
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= Wi (VFy + Bpdy) = < ?k’l > : (3.6)
9k,2

In—m (Sk')ia if (gk,l)i > 07

_ D 0 A 1, if (gr1); <O,
Dy = ( Ok ) , (Dr)ii = { it (gk1) (3.7)

where gy, € R™, g2 € R*™™, Dy € R™™ is a diagonal matrix. Again
we do not need to compute exactly d, and only required dt to satisfy the
following fraction of Cauchy decrease condition:

e (dk) — qr(di + Widy) > Bolar(dy) — qe(di + Wivd)], (3.8)
where B2 > 0 is a constant, v,‘j € R" is a solution of the following problem:
minimize gqx(dy + Wiv)
subject to ||Di'v|| < A, v € span{—D2g}, ©> —opsk,
(3.9)
where o € R™, 6 € R*™™, vT = (97, ¢7T).
Remark 3.1 It is obvious that ’D,Ccl + s > 0.

Remark 3.2 Inexact solution of (3.5) satisfying exists, for example,
we can choice df, = v,‘f. In Section 6 we will introduce an algorithm to solve
subproblem (3.5).

3.3. Calculation of Lagrange multiplier Ay

From we have the following formula for calculating Lagrange mul-
tiplier:

Aes1 = —R(zp + (di)e) 'Y (2 + (di)z) T Vf (2 + (di)z).  (3.10)

3.4. Choice of merit function

We use the augmented Lagrangian as a merit function:

m

0(z,5,%0) = F(@) + Y Nilhi(@) +si) +pllC@I?,  (3.10)

1=1

where p > 0 is a penalty parameter.
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At kth iteration, the actual reduction is defined by
ared(di; pr) = ®(zk, Sk, Ak; Pk)
— ©(zx + (dk)z, Sk + (dk)s, Me+1; Pk), (3.12)
and the predicted reduction is defined by
pred(di; px) = @(zk, Sk, Ak; Pk)
— gk (di) + AN, (Jedk + Ck) + pill Jrdi + Cr||’]

= gr(0) — gi(dk) — AN, (Jidy, + Ck)
+ pil||Ckll® — || Tkdx + Cil1%], (3.13)

where AAgy = Ag+1 — Ak

4. Statement of algorithm
Algorithm 4.1

Step 0. Choose ug = (z2,s3)T, 2o € R™, so € R™, 5o > 0, Ag > 0 and
X € R™, p_1 > 1, symmetric By € Rtm)x(n+m) g, 7 € (0,1), 5 > 0,
Amax > Amin > 0, 7 € (0,1). k := 0.

Step 1. If ||Cy|| + || DkWE V Fi|| < € then stop.

Step 2. Compute dj, satisfying and (3.4); Compute d¢ satisfying [3.8);
di == d} + Widt.

Step 3. Compute A\gy1 by (3.10), AXg := Agt1 — Ag-
Step 4. Compute pred(di; px—1)-

If pred(d; pr—1) > 25 [[|Ckll* — [|Jkdk + Cx|?] then set p = pr—1;
Otherwise set

Pk = 2(gr(di) — q(0) + AN] (Jidk + Ci)]
ICkI12 — || Jxd + Ck|1?

+p. (4.1)

Step 5. Compute ared(dg; px), pred(di; px). If

ared(d; pk)
pred(dy; pk)
then Ay := ayl||dk|| and goto Step 2;

?
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Otherwise AF := Ay, choose Apy; such that Apax > Agyy >
max{Amin, Ak}.

Step 6. xpy1 = xk + (di)z; Sk+1 := Sk + (di)s, compute Byy1, k:=k +1
goto Step 1.

Remark 4.1 From Step 4 we have:
Pk = Pr-1 2 1, (4.2)

pred(d; pi) > FEICHI® — Jkdk + Ci . (4.3)

In fact, if pr, = px_; then and are obvious. If p; is updated
by then is obvious and we have

Pk _ e(di) — gx(0) + AN (Jxd + Cy) L P
2 ICkl12 — || Jed + Cr||? 2
> 9k(dk) — ¢1(0) + AN, (Jidk + Ck)
- 1CklI? = | Jedk, + Cil|? ’

ax(0) — gi(di) — AXT (Jidi + C) > =EE[ICRII? — || Jrcdy + Cl?,
which combining with yields (4.3).

5. Global convergence

5.1. Assumptions of global convergence

In order to establish the global convergence of Algorithm 4.1, we need
some assumptions (compare with [4-6]).

AS.1 For all k,ug,u +d; € Q C R*™,

Q
QZ( )anERnaﬂs: Ta

where (2, is an open convex set of R™.
AS.2  f(z), hi(z) (i € I) are twice continuously differentiable on €.
AS.3 For any z € g, rank A(z) = m.
AS4  f(z), Vf(z), V*f(2), hi(z), Y(2), Z(z), R(z), V?hi(z),
R(z)~! are uniformly bounded on €.
AS.5 {Bg},{sk} are bounded.
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Hence there are constants v; > 0, (i = 1,2,...,9) independent of k£ and
u, such that:

IV @)l < v, 1Yl < ve, [IREM < vs,
| Bell < va, [|Rll < ws, [[Will < vs, (5.1)
1Dl < vz, | Bill < vs, [[Aell < ve.
From now on we assume that above assumptions hold.
5.2. Intermedium results

Lemma 5.1 Assume di is computed by algorithm 4.1. Then for each k
we have

ICkI? = || Jedk + CklI? > ra||Cyl| min{r Ay, x5 Ck|l}, (5.2)
where kg, k3 are positive constants independent of k.

Proof. We have dy = d! + Wkdfc and

d})z

Af(dﬁ)x = (Agafm) ( ( 8 > + Jkadi = Jpdy.

Then ||Ckl|? — || Jedk + Ckl|? = ||Ckl|? — ||AZ (d})s + Ck||?. From reference
[9] and global assumptions we have

n 1 . AiCh,
ICHI? = IAE(R)e + Gl = 1Akl min{ra, 12T
Iacel > Ly aaty <oz
Hence
ICHIE — i+ Crll? > ral| Gl min{r A, s3]l Cel
where ko = _21/;:/3’ K3 = gao7- VIBV The proof is completed. O

Lemma 5.2 Assume di, is an approzimate solution of (3.5) and satifies
(3.8). Then we have

ak(dR) — ar(di + Wid}) > kal| Digrll min{ks|| Degkll, k6 Ak}, (5.3)

where Ky4, K5, kg are positive constants independent of k.
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Proof. Denote

. _ Ok
9k = Digr = ( . )
9k,2

Define ¥ : Rt — R as follows:

W(t zqk(d — tW;, D? )—qkd"
( ) k ||Dk9k|| ( k)
) 1
= —tllgll + 5t°r,

where Tk = g;‘:Bkgk/”_@k”z, Bk = DkWEBkaDk.
It is obvious that

A

—tDk— € span{—D3g},
||Dk9k|| |9k |
we denote

t f?kﬁm
V= = —— R ,
|G| Ok 2

where 5 € R™, o € R*™. Then % = —tDygr.1/|dx-
We require v to satisfy feasible conditions of (3.9), i.e

= —tD?

<

(o)

@) 1D ol < Ak, (i) T > —owss.

It is easy to show that the two conditions above are satisfied for ¢ €

[0, Ty], where Ty = min{ Ay, o min{|{|gk|l/(Gk)s, (gr)i > 0}}.
Let ¢} be the minimum point of ¥ in [0, Tk].

If t; € (0,Tk) then it is obvious 0 < 73 < || By||, and

* “gknz “gk||2
Y(t) = — < ——F. 5.4
( k) 2rg 2”BkH ( )

Assume tf = Ti. Then for case ry > 0, we have ||gk||/rx > Tk, i.e.
Tk < ||gx||; For case rx < 0, we have also 7Ty < ||gx||. Hence, for t; = T},
we have

" | —
$(81) = $(T) = ~Tellgull + ETE < —Tilanl,
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which combining with yields

1 A
_y(th) > —ngknmin{“q—’““,n}.
|| B ||

Because of

Ty, > min{Ag, 0x} > Ag min{l, ZU—} = KAk,

| Bill < v@vivs,
we conclude that

~p(t5) > 5 |Degell min{s | Dagel, mo A}

where k5 = 1/ ng/?ug, ke = min{l,0/Apax} are constants independent of
k.
From the definition of vg we have

ar(dR) — qr(di + Wiol)) > —9(t;)
> %HDkng min{xs|| Dy, k6 Ak},
which combining with implies (5.3) with k4 = (32/2. O
Lemma 5.3 Assume dj is computed by algorithm. Then
pred(dy; p) > Kal| Digx | min{ks|| Degxll, k6 Ak} — £7[|Crll
+ pllICklI* = || Jkdr + Ci*). (5.5)
Proof. From and dy = d} + Wd, we have

pred(dg, p) = [gr(0) — qr(d}) — AN} (Jkdk + Ck)]
+ [ge(d}) — qi(dy + Widy},))]
+ plICkl1? = [|Jkdk + Cil|*]-

By using global assumptions, condition and we obtain
gx(0) — g (d}) — AN (Jrdx + Ck)
1
= -V, IId} - 5(d;;)TBkd;; — AN (Jidy + C)

1 mn n
> = [IVulfll+ 51 Bellldg ] 14 — IANIICHN = ~wrl|Cil,
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where k7 = [V + (vavg+ 1)1y + %ygrAmax]m + 2uy is a constant independent

of k. Then follows from Lemma 5.2. O

Lemma 5.4 ([1]) There is a positive constant kg independent of k such
that

| ared(d; pk) — pred(di; px)| < kspk|ldi|/*. (5.6)

5.3. Global convergence

Lemma 5.5 If |Ck|l < alg, ||Dedkll + ||Crll > € and

. € R4q€ 2/4)56
< —_— . .
Oz_mm{?)Am&x,31{7 m1n{3Amax,ﬁ:6}} (5.7)

Then
pred(d; pk) > %HDkng min{rs|| Dy ||, ke Ar}
+ il Cell® = 1| xdk + Cil|?], (5.8)
pred(dg; pr) > KoAg, (5.9)
Pk = Pk-1,
where kg is a constant independent of k.

Proof. From || Dygi||+]|Ck|| > € and we have ||Ci|| < &, || Digxl| > 2e.
Then it follows from and that

pred(dy; p)
K4, = _ . _ 1 (2
> 3—||Dkgk|[ min{«s || Dxgkl|, k6 Ax} + gem mln{gemg,, r;GAk}
— £7/|Ck || + ol Crll* = || Tedi; + Ci)?]

K4, = _ . _— 1 . 2K5€
P | Dgr|| min{ ks || Degrll, k6 Ak} + =erg Ay mln{ > ,h:s}

— 70 + p[|Cel® ~ [|dk + Cill’]
K4 | = . .
> =1 Degel| min{rs|| Degill, soAe} + pllICell* — Tk + Cill?].

is proved.
From Lemma 5.1 and k5.8} we have

Kq = , =
pred(dy; p) > ?4||Dk§ki| min{rxs|| Dxgk ||, k6 Ax }
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S K4€ {2&56
- 3 Amax

where kg = =8¢ min{%’faix, Ke} is a constant. is proved.

implies that

pred(dk; pr—1) > pr—1[||Ckll® — | Jedk + Cil?].

,Hﬁ}Ak = Koy,

Then from Step 4 of the algorithm we know pr = pr_1. O

Theorem 5.6 The algorithm is valid,that is, interior loop (Step 2-Step
5) can be ended in finite times at each iteration.

Proof. Let the index of interion loop be ¢ and the correspondent values be
Ak Ak, Pk,i, Pred(dy i; pk.i), ared(d i pri)-

The values Cy, Ji, W} are not changed in interior loop.

The proof is by contradiction. If ¢ — 400 then from algorithm we have
Ag; — 0 and

ared(d.i; Pk,i)
Pl‘ed(dk,z‘; pk,i)

—1>1-n. (5.10)

We consider two cases:
Case (1): Assume ||Ck|| # 0. Then from and we know
Pk,i
pred(dki; Pk,i) = —f[HCkH2 ~||Ck + Jrd 1 ||*]

> B%K:QHCk“min{TAk,ia’iBHCkH}

Pg,i ka||Cr | min{’r, Kifai” }A;W;,

which combining with yields

v

ared(dk,; prsi) 1‘ < K8 Pk,il|dk il
pred(dy; pk,i) 0 g’in2|ICkllmin{T,%%“}Ak,i
S 2&8 R 0.

N

: SIIC k
2| G| min{r, %L1y

It contradicts with (5.10).
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Case (ii): Assume ||Cg|| = 0. Then it follows from [3.3), (2.6) and (3.7)
that d}c‘,i =0, and

; Tk,1 RV
k — _ = y
Ok,2 ZEV fr

Dy = Dy, Dy = Dy, | DxWIVFy| = || Digll-

Therefore, it follows from Lemma 5.4 and Lemma 5.9 that pg; = px—1
and

K8Pk—1||dk.:||2
YAV

ared(dk ;; pk—1)
pred(di i; pr—1)

which contradicts with again. The proof is completed. O

— 0,

<

Lemma 5.7 If || Digk|l + ||Ckll > € for all k then the sequence {px} and
®(xk, Sk, Ak; Pk) are bounded.

Proof. See Lemma 7.11 and Lemma 7.12 of paper [4]. O

Lemma 5.8 If ||Digil|l + ||Ck|l > € for all k then there exists a constant
A* independent of k such that

Ak > A (5.11)
where A* is the accepted radius of trust region method at the kth iteration.

Proof. 'We consider the kth iteration. Denote by A = Ay the starting
radius. Let j be the number of interior loop, d ; = dj is the accepted trial
step.

(1) If j =0 then

AF = Apo = Ak > Apin. (5.12)

(2) If j > 1 then discuss three cases:

(i) ||Ckll > alAg; forall i =0,1,2,...,7.

(ii) There exists a largest index | < j such that ||Ck|| > aly; for
t=10+1,...,7 holds.

(iii)  [|Ckll = 0.

Case (i): In this case ¢ = 0,1,...,57 — 1 correspond reject steps. From
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(4.3), Lemma 5.1 and Lemma 5.4 we have

l_n< ared(dei; prs) 4 < 2f~€8||.dk,i||
pred(dy ;; px.;) k2||Ck || min{7, aks}

k2||Ck|| min{r, aks}(1 — n)

di;ll >
sl > =
S K90 Amin min{7, akz}(1 — n)
- 2Kg .
Hence
A* = Mgy = ar|ldr |l > K, (5.13)
where
a1 K20 Amin min{7, aksz}(1 —n)
Ky = :

2K8

Case (ii): For i = 0,1,...,1 holds ||Cx|| < aAg;. From we
know pred(dy;; pki) > Kkolg;. Since di; is rejected step, it follows from
and that

1 p< ared(dk,i;pk,i) _1l< "ESP*Hdk,i“,
pred(dk ;; Pk,i) K9
Ko(l —
”dk,z'H Z M’ (5'14)

Kgp*

where p* is an upper bound of {p}.

For i =1+ 1,...,7 holds ||Cg|| > aAg,;. If j =1+ 1, then from the
way of updating the trust-region radius, we have A* = Ay ; = a;|/dy,||. If
J >1+1, then same as in Case (i) we have for rejected step di;

r2||Crl| min{7, arz}(1 — )

di ;|| >
|| k,z“ = 2Kg
keamin{T, akg}(1 — n)A
2 Sk k,+1
_ ma min{7, ak3z}(1 — n)alndk Al

2/%3
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and

T P P e S TP
Denote

Kia = minfy, Sraemin{rona)l = n)y

Then for i =1+ 1,...,7 we have
A = Ay > Kiz||dill-
Since dy,; is rejected step, which satisfies [5.14), we have for Case (ii)

AR > K 2—9—1"—). (5.15)
Kgp*

Case (iii): Similar to the Proof of [Theorem 5.6 we have || Dxgx|| > €. Then
from we have py; = px—1 and

K
pred(di ;; pr,i) > ﬁemin{ o ,"EG}Aki-
’ ’ 2 Ama_x )
For rejected step dj ;, we have
d(dg ;; pr—
ared (d,qi; Pr—1) 1 >1-n.
pred(dk;, pk—1)

Hence combination of Lemma 5.4 and Lemma 5.7 implies that

(1 — n)raemin{ 325, k}

diill >
Idesll > s
Therefore, we have
Ak = allldk7j_1|| Z K13, (5.16)

where
a1(1 — n)kse min{ 34, kg }

Kqa =
13 orap”

Finally, it follows from (5.12), (5.13), (5.15) and (5.16) that (5.11) holds
with A* = min{Apin, K11, K122 ”9( _’7) , K13}. The proof is completed. [
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Theorem 5.9 The sequences of {ux} generated by Algorithm 4.1 satisfies
lim inf[| DeWI VE| + ||Ck]]] = 0. (5.17)
k—+o00

Proof. First we proof
lim inf[|| Dygill + ICk(]] = 0. (5.18)
k—4o0
The proof of is by contradiction. Suppose for all k&
I Dxgicll + I Crll > e.

We discuss two cases: (i) ||Ci|| < aAF; (i) |Ck|| > aA*, where « is defined

by (5.7).
Case (i): From and we have

pred(dg; px) > kgAF > ko A*.

Case (ii): From [4.2), [4.3), and we have

pred(di; pr) > ZHIICKI® = Il Jidy + Cil)

Y,

52l Cell min{r ¥, s |y )
> %a min{7, kza}(A*)2
Denote K14 = min{rgA*, 2o min{7, k3a}(A*)?}. Then for two cases
pred(dg; px) > Kia.
Hence, for all £ we have
©x — 1 > npred(di; px) > nK14,
which contradicts with boundedness of ®(z, sk, Ak; px). Then holds.

Next we prove (5.17).
Let limkeKl[HDkng + |]Ck||] = (0. We have limgeg, ||Ck|| = limgek,

ldZ|l = 0 by [3-3). Because of the global assumptions and the expression of
Jr we have

lim ||Dpgill = lim ||D.WIVEL] = 0. 1
iy | Dk || Jim |DeWy VE| (5.19)
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Next we only show that Dj can be rgplaced by Dj. From expressions
(2.6) and (3.7) we need only to consider Dy and Dj. Denote

B B
B, = ke Br )
Bz Bygs

where By; € R™™", Biy € R™™, Bgs € R™ ", By € R™*™.

Given i € {1,2,...,m}. Assume there exists €; > 0 such that for all
k € K7 holds
|((Dk = Di) (=R YV )il > e (5.20)

It is obvious that (—R,:IYkTka)i +# 0. Then exists e > 0 and Ko C K;
such that |(=R; 'Y, TV fi)i| > €2 for k € K. There are two cases for k:

() (~R;WYIVSi)i > e2>0; (i) (—R'VTVfi)i < —e2 < 0.

For Case (i) we have (Dy)i; = (st);- From limgek, ||d?|| = 0 and the
global assumptions we know for sufficiently large k € K> holds

_ _ _ n €
(Gr1)i = [—Rg 'Yi Vi + (=R 'Yy Bra + Bis)(dR)a)i > _22' > 0.

Hence (Dg)ii = (sk); = (Dg)is. Similarly for Case (ii) we have (D)i; =
(Dyg)i; = 1 for sufficiently large k € K.

Therefore limgeg, |(Dx — D )il = 0. It contradicts with [5.20). So we
obtain

lim inf |[(Dg — Di) (— R Y V fie)li| = 0.
Hence we have
lim inf [|(Dy — D) (— Ry, " Y{ V£l
= limint (D ~ Dy)W VE| =0,
which combining with yields
lim inf |DyWIVFy| =0,
and

lizninf[HDkW,?VFkH + [|Cll] = 0.
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| The theorem has been proved. O

Remark 5.1 [Theorem 5.9 and [Proposition 2.1] show that there exists at
least one accumulation point of {x;} generated by the Algorithm 4.1, which
is a KKT point of (1.1).

6. Numerical example

First we give a method to solve subproblems of (3.2) and (3.5) respec-

tively to satisfy 3.3), (3.4) and [3.8).

The quasi-normal component d, is computed by the following formulas:

n —akYkR_TCk
n— ( k ) , (6.1)
0
where
; if || - iRyl < A,
Qg = TAk . (6'2)
—————, otherwise.

| = YR, Cil

We apply the basic conjugate-gradient algorithm proposed by Steihang
and Toint to solve the problem (3.5) and modify it to incorporate the con-
straint (d)s > —ogsk.

Algorithm 6.1
Step 1. Set (d')° =0¢€ R", ro = —gk, go = Dyro, do = qo, 1 >> €1 > 0.

Step 2. Fori=1,2,...do
(1) set

= (W), a= (%)
@' = () 4= (%)
where (dt)i € R™, d! € R™.

T,
i A
d’f(Wl;erWk)di )

(2) Compute 7; = max{r > 0: | Dy ((d*)+7d;)|| < Ag; (db)} +7d} >
—aksk}.

(3) Ify; <0ory; > 7;, thenset di. = (d*)*+7;d; goto Step 3; Otherwise
set (dt)H'l = (dt)z + vid;.

Compute v; =
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(4) Update the residuals: 741 = r; — ¥(W]I BxWi)ds, git1 = Dérit1.
T . .
(5) Check truncation criteria: If \/Ti’;%%%i < €, set di. = (d')"*! goto
Step 3.
T R
(6) Compute a; = T—ﬁi:—“ and set d;11 = gi+1 + a;d;.
Step 3. Compute dy = dff + Wyde.

A Matlab subroutine is programming to test Algorithm 4.1. We choose
parameters of Algorithm 4.1 as 7 = 0.8, a; = 0.5, n = 0.01, Anpax = 10,
Anin = 0.01, p =0.01, p_; = 3.

The chosen test example is problem 43 of [7],

minimize f(z) = % + z3 + 222 + 22 — 521 — 5z — 21a3 + T2y

subject to x%+x%+x§—|—xi+w1—x2+x3~x4—8§0,
2420+ 224+ 222 — 2y — 24— 10<0,
2w%+x%+:p§+2m1—x2—m4—5§0.

The optimal point of the example is z* = (0,1,2,—1),and optimal value
f(z*) = —44. We choose o} = 0.995 for all k. There are two choices for B,

V3L 0
1 zlk 2
B’E’):( 0 0)’ B = Intmyx(nm)-

The result is reported in Table 6.1.

Table 6.1.
(zo, s0) (1,1,1,1,1,1,1) (1.5,1.5,1.5,1.5,1,1,1) (2,2,2,2,2,2,2)
By BV B® BV BY® BV B®
k 64 85 104 85 118 154
Tk x* z* xz* x* z* z*
flzk) -44.0000 -44.0000 -44.0000 -44.0000 -44.0000 -44.0000
resl | 4.3844E-12 | 1.6429E-12 | 2.1909E-13 | 1.0529E-15 | 2.0241E-13 | 1.7198E-13
res2 | 8.2805E-06 | 8.9343E-05 | 9.7256E-05 | 8.9088E-05 | 9.6992E-05 | 9.4903E-05

where res 1 = ||Cy|, res2 = | DgWE V Fy||.
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From Table 6.1 we can see that the calculated result is coincident with

the theoretical analysis.
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