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On global properties of solutions of the equation
y'(t) = ay(t — by(t))
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Abstract. Global properties of all maximal solutions of the iterative functional dif-
ferential equation z’(t) = a[z(z(t)) — z(t)] + 1 are considered. Using a correspondence
among solutions of the above equation and those of the functional differential equation
y'(t) = ay(t — by(t)), global properties of all maximal solutions of the last equation are
described.
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1. Introduction

Hartung and Turi [3] studied “small” solutions corresponding to small
(in sup norm) initial functions of the initial value problem (IVP for short)

y'(t) = ay(t —dly(t))), t=>0, (1)
y(t) = ®(t), t<0, (2)

where a > 0, b > 0 are constants and ® is Lipschitz-continuous on (—o0, 0].
They proved that any solution y(t) of (1), (2) with ®(0) # 0 is nonvanishing
on [0, 00) and y(t) is identically zero for t > 0 provided ®(0) = 0. Moreover,
if y(t) is a solution of IVP (1), (2) corresponding to the initial function ®(t),
then —y(t) is a solution of IVP (1), (2) corresponding to the initial function
—®(t) and so, without loss of generality, we can consider the equation

y'(t) =ay(t —by(t)), t=0 (3)

instead of (1) for ®(0) > 0. Hartung and Turi [3] also showed that for
®(0) > 0 the following two statements are equivalent:
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(i) There exists K > 0 such that the solution y(t) of IVP (1), (2) satisfies
t—blyt)| > —K  for t>0;

(i) There exist T € R and o € C*([0,00)) such that the solution of IVP
(1), (2) has the form

y(t) = %(t+T+a(t)), t>0,

where lim;_, a(t) = 0 and lim;_, o @/(t) = 0;
and gave necessary and sufficient conditions imposed upon @ for which
statement (i) is satisfied.

In this paper we wish to consider the equation

y'(t) =ay(t —by(t)), a#0,b#0 (4)

without the initial function ®. Equation (4) is a differential equation with
deviating argument depending on state and may change its sign. We show
that (4) is equivalent to the iterated functional differential equation

2'(t) = alz(z(t)) —z(t)] +1, a#0 (5)

and consider properties of all maximal solutions of (5). From these proper-
ties we can derive properties of all maximal solutions of (4). We shall show,
among others, that the asymptotic behavior of maximal solutions of (4) for
a > 0 and t — oo are close to that of maximal solutions of IVP (1), (2)
(with @ > 0, b > 0 and ®(0) > 0) for which statement (i) is satisfied.

We recall that the global properties of maximal solutions for the first-
order iterative differential equations were considered in [1], [4]-[7].

2. Preliminaries

Definition 1 We say that z is a solution of (5) on an interval J if x €
CY(J) and (5) is satisfied for ¢t € J.

Definition 2 Let z be a solution of (5) on an interval J and y be a solution
of (5) on an interval I. We say that y is a continuation of z if J C I, J # I
and z(t) = y(t) for t € J. In addition, if t > s (resp. t < s) forany t € I —J
and s € J, then we say that y is a right (resp. left) continuation of z.

Definition 3 We say that z is a maximal solution of (5) if  has no
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continuation.

Remark 1 Similarly we define a solution of (4) on an interval J and a
maximal solution of (4).

Lemma 1 If y(t) is a solution of (4) on an interval J, then z(t) = t—by(t)
is a solution of (5) on J and conversely, if x(t) is a solution of (5) on an
interval J, then y(t) = $(t — z(t)) is a solution of (4) on J.

Proof. Let y(t) be a solution of (4) on an interval J and set z(t) = t—by(t)
for t € J. Then z € C'(J) and

Z'(t) = 1-by'(t) = 1 — aby(t — by(t)) = 1 — aby(z(t))
= 1+ af[z(z(t)) — z(t)]

for t € J; hence z(t) is a solution of (5) on J.
Let z(t) be a solution of (5) on an interval J and set y(t) = 3 (t — z(t))
for t € J. Then y € C*(J) and

v(t) = 3 (1-20) = =3 [s(e0) - 2(0)]
= ay(z(t)) = ay(t — by(?))
for ¢t € J; hence y is a solution of (4) on J. O
The following lemma is obvious.
Lemma 2 Let z(t) be a solution of (5) on an interval J. Then

z:J— J

Remark 2 If z(t) is a solution of (5) on an interval J, then z € C*(J).

Lemma 3 A function z(t) is a solution of (5) on an interval J if and only
if the function z(t) = —x(—t), t € I = {t : —t € J} is a solution of the
equation

Z(t) = —alz(2(t) — 2(t)] + 1 (6)
on I.

Proof. Let z(t) be a solution of (5) on an interval J and set z(t) = —z(—t)
for t € I. Then

Z(t) =2'(=t) = alz(z(-1)) — z(-1)] + 1 = —a[2(2(t)) — 2(1)] + 1
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and so z(t) is a solution of (6) on I.

Let 2(t) be a solution of (6) on an interval I and set x(t) = —z(—t) for
t e J={t: —t € I}. Then we can verify that x(¢) is a solution of (5) on
the interval J. U

Remark 3 By Lemma 3, it is sufficient to consider only solutions of (5)
with a > 0.

Lemma 4 Let x(t) be a mazimal solution of (5) with a > 0 on an interval
J and z(tg) =ty for atg € J. Then

J=R and z(t)=t.

Proof. We see that the function z(t) = ¢t for t € R is a maximal solution
of (5). To prove our lemma it is sufficient to show that x = z. Set w(t) =
z(t) — 2(t) for t € J. Then w(tg) = 0. Assume w(t) # 0 on J. Then there
exists a t; € J such that w(t;) = 0 and let, for example, (t;,00)NJ # 0
and

p(t) = max{|w(s)|: t1 < s <t} >0

for t € J, t > t; (analogously for (—oo,t;) N J # 0 and max{|w(s)| : t <
s <ti} >0fort e J,t<t). Let|c,d] CJ be a compact interval such
that t; € (c,d) provided t; is an inner point of J, otherwise ¢ = t;, and
set M = max{|z/(t)| : ¢ <t < d}. Since z(t1) = t;, there exists a positive
number €, € < d—t1, such that z(t) € [¢,d] for t € [t1, 1 +¢] (see Lemma 2).
By the Taylor formula,

w'(t) = a[z(z(t)) — 2(t)] = az’(§)(2(t) — t) = az’(E)w(?) (7)

for t € [t1,t1 + €], where & (= £(t)) lies between z(t) and ¢, and so £ € [c, d].
Then (cf. (7)) |w'(t)| < aM|w(t)| and

wi] < [ w/(s)lds < bt [ (o) ds < aMplo)(e - 1),
" " t € [t1,t1 +¢].
Hence p(t) < aMp(t)(t—t1) on [t1,t1+¢] and since p(t) > O for t € (¢1,t1+€],
1<aM(t—t)

for (t1,t1 + €], a contradiction. We have proved that z(t) = 2(t) (= t) for
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t € J and since z(t) is a maximal solution, J = R and z(t) = t. O

Lemma 5 Let z(t) be a mazimal solution of (5) with a > 0 on an interval
J. Then x'(tg)=1 for some ty € J if and only if J =R and z(t) =t.

Proof. We see that x'(tg) = 1 for some to € J if and only if z(T) = T with
T = z(tg). By Lemma 4, z(T) = T for some T € J if and only if J =R
and z(t) = t. O

Denote by A™ the set of all maximal solutions x of (5) with a > 0 such
that 2’ < 1, and by B™ the set of all maximal solutions z of (5) with a > 0
such that =’ > 1.

Lemma 6 Let x(t) be a mazimal solution of (5) with a >0 on J and let
z(t) £ t. Then either x € AT or z € BY.

Proof. By [Lemma 5, 2/(t) # 1 for t € J. Then either z'(t) < 1 or 2/(t) > 1
on J, and consequently either x € A" or x € BT. I

Lemma 7 Let z(t) be a mazimal solution of (5) witha > 0 on J, z(t) #t.
Then x € AT if and only if z(t) < t fort € J and x € B" if and only if
z(t) >t for t € J.

Proof. Since z € A" if and only if z(z(t)) —z(t) < 0 for t € J and x(¢t) # t
on J by Lemma 4, we see that z € A" if and only if z(t) < t for t € J.
Analogously for x € BT. O
3. Set At
Lemma 8 Let x € A" be defined on J. Then x'(t) #0 for t € J.
Proof. Assume z'(to) = 0 for some to € J. Then

alz(z(to)) — z(to)] + 1 = 0. (8)
Consider the IVP

w' = a(z(w) —w) + 1, w(to) = z(to)- (9)

(8)

Then z(t) is a solution of IVP (9) on J. On the other hand, equality
implies that the constant function w(t) = z(¢p) is a solution of IVP (9) on
R. Since z € C*(J), the uniqueness theorem for ODEs gives z(t) = (o
for t € J, and so ' = 0 which is impossible. Hence z'(t) # 0 on J.

N
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Corollary 1 Let © € At be defined on J. Then either 0 < z'(t) < 1 or
Z'(t) <0 for t e J.

Set

A+={x:x€A+,O<m'<1}, A+:{x:x€A+, x'<0}.

Remark 4 By [Corollary 1, AT = A7 U AJ.

Theorem 1 A is an empty set.
Proof. Assume x € A7 is defined on J. Then
z'(t) = a2’ (§)(z(t) —t) + 1 (10)

for t € J, where £ lies between t and z(t). Since z(t) —t < 0 for t € J
by and z'(§) < 0, we have (cf. [10)) #/(t) > 1 for t € J, a

contradiction. O
Lemma 9 Let z € A be defined on J. Then z"(t) <0 for t € J.
Proof. Since (cf. Remark 2)

'(t) = a2’ () (2 (z(t)) — 1) (11)
for t € J and az'(t) > 0, 2/(z(t)) — 1 < 0 on J, it follows from that
z’(t) < 0forteJ. O

Theorem 2 Let z € Af be defined on J. Then J =R.

Proof. We first prove that J = J, where J stands for the closure of J (in
R). Assume J # J. Then there exists ¢ € J — J. Let £ < t for t € J.
Then, by and Lemma 7, £ < z(t) < t for t € J and therefore
lim_¢, z(t) = €. Define z € CO(J U {¢}) by

z(t):{ z(t) for teJ,
13 for t=¢.

We shall show that z(t) is a solution of (5) on the interval J; = J U {£}.
Since z(t) is a solution of (5) on J, it is sufficient to verify that z € C1(J;)
and

2(6) = alz(2(€)) — (©)] + 1 =a(6 — &) + 1= 1.
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From the equality

2(t) — z(§) = /; (a[a:(x(s)) —z(s)] + 1) ds, teJy,

we deduce that

z(t)—z({)_ -2 ta::z:s —x(s)]ds
e 1= i [ e ~a(aa

a

= — : /{ [2(2(s)) — 2(s)] ds (12)

for t > ¢, t € J. The function 2(2(t)) — 2(t) is continuous on Ji, 2(2(§)) —
2(€) = 0, and consequently for any € > 0, there exists § > 0 such that

12(2(2)) — 2(t)| <§ for £<t<{+6.

Hence (cf. [12))
’z(t) —2(8)
t—¢
which yields 2'(§) = 1. We have proved that z(t) is a solution of (5) on Ji,
and so z is a left continuation of x, a contradiction.

Assume ¢ >t for t € J. Since 0 < 2/(t) < 1, 2”'(t) < 0 and z(t) < t for
t € J, there exists the finite limit lim;_,¢ z(t) = C and C < €. Set

- z(t) for te J,
ult) = C for t=¢.

a €
t—ga(t—f):€ for§<t<€+5,

—1‘<

Then one can prove that u(t) is a solution of (5) on J;. Consequently, u is
a right continuation of x, a contradiction.

Hence J = J and therefore either J = [A4,B] or J = [A,00) or J =
(—o0,B] or J = R, where A, B € R. Assume either J = [A,B] or J =
[A,00). Then z(A) > A by Lemma 2. On the other hand z(t) < t for
t € J by Lemma T, and consequently x(A) < A, a contradiction. Let
J = (—00, B]. Then z(B) < B by Lemma 7. Consider the IVP

w' = a(z(w) —w) + 1, w(B) = z(B). (13)

Since z € C!(J) and z(B) < B, IVP has a unique solution in a
neighbourhood U of the point ¢ = &, say w(t). On the other hand z(t) is
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a solution of IVP on J = (—o0, B]. So z(t) = w(t) for t € JNU and
then w(t) < B for t € U. Define

) z(t) for teJ,
y(t) = { w(t) for t=U—-J.

Then y € CH(JUU), /() = 0'(t) = alz(w(t)) — w(t)] + 1 = alz(y(t)) —
y(t)]+1 = aly(y(t))—y(t)]+1 for t € U—J; hence y(t) is a right continuation
of x on the interval J UY, a contradiction. This proves J = R. O

Lemma 10 Let © € Af. Then there exists the finite limit limy_, 0 z(t) =
T and

(T) :T—%.

Moreover, z'(T) < 3,

lim (z(t)—t)® =0, i=0,1,2

t——00

and

lim z'(t) =0, lim z"(¢) = 0.

t—o0 t—o00

Proof. Since 0 < z'(t) < 1 and 2”(t) < 0 for t € R, there exist finite
limits lim;,_ 2'(t) = K and limyeo2'(t) = L, 1 > K > L > 0. As-
sume L > 0. Then limy_ o z(t) = 00, and consequently lim;_,o z”(t) =
limy o0 a2’ (t)(2'(2(t))—1)=aL(L—1) < 0, which contradicts lim;_,o0 z'(t) =
L. Assume K < 1. Using the equality lim;_, o z(t) = —oo which fol-
lows form the inequality z(t) < t for t € R, we have lim;, o z"(t) =
limg, o az’(t)(z'(z(t)) — 1) = aK(K — 1) < 0 and then limy_,_ z'(t) =
—00, a contradiction. Hence K = 1, L = 0 and therefore limy_, 1+, 2" (t) =
limy 400 2/ () (2'(2(t)) — 1) = 0.

We know that z(t) is increasing on R. Hence either lim;_, z(t) = 0o or
limy 00 ¢(t) = T. Assume lim;_o z(t) = 0. Since alz(z(t)) —z(t)]+1>0
on R and lim;—, o z(t) = —oo (see, e.g., Lemma 7)), we have a(z(t)—t)+1 >
0 for t € R and therefore z(t) >t — 1 on R. Let A € R be a number such
that z'(t) < 3 for ¢ € [A,00). The existence of A follows from the equality
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A
and therefore
1 1
t— - < z(t) < z(A) + §(t —A), te[A 00),

which is impossible. Hence lim;_,o, 2(t) = T. From the equality
' (t) = —az(t) + (ax(z(t)) +1), teR

we obtain (for ¢ € R)

t

z(t) = e (x(()) + / e (azx(z(s)) + 1) ds)
0
and using the L’Hospital rule

T = tim o(t) = lim 20T e (ax(z(s)) + 1) ds

t—oo t—o00 eat
= 2 Jim (aw(a(t) + 1) = 2(T) + -
= - lim (az(z = z(T) -

Hence z(T) = T — 1. Then 2/(T) = a[z(T - Dy—zM)+1=-2'(v)+1 for
some v € (T — 1, T). By Lemma 9, =’ is decreasing, and so z'(v) > z/(T).
Consequently, 2'(T) < —z'(T) 4 1 which implies z'(T) < 1.
By the Taylor formula,
(z(t) = 1) = alz(z(t)) — 2(t)] = a2’ (§)(x(t) - 1), (14)

where £ lies between x(t) and ¢, and therefore £ < ¢, which gives z'(£) > 2/(t)
using the fact that 2’ is decreasing on R. Then

(z(t) —t) < az'(t)(z(t) - t), teR.
Applying differential inequalities (see, e.g., [2]) we have
z(t) — t > z(0)e2®t)-=(0)

for t € (—o00,0]. Since lim;, o z(t) = —o0 and z(t) — t < 0 for t € R, we
obtain lim;—,_ o (x(t) — t) = 0. Hence the lemma, is proved. O

Theorem 3 For each (T,€) € R?, 0 < T — ¢ < 1, there ezists v € A
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such that
z(T) =¢&.
The proof of is based on the following two lemmas, where
K(r¢) will be denoted, for each (T,£) € R?, 0 < T — £ < 7, the set
Kre = {o:2 € CY((~o0,T)), 3(T) =€, t—T+E < alt) <t,

0<2'(t) <1 for te( }
The set K(7¢) # 0 since u. € K1) for each ¢ € [0, T‘l__g] where

u(t) =t — (T — &)™) te(—o00,T)

Lemma 11 Let (T,€) € RL, 0< T - € < 1 and z € K(rg). Then there
exists a unique solution y of the IVP

y' = a(z(y) —z(t)) + 1, (15)
y(T) =¢ (16)
n (—oo,T] and, moreover, y € K(1)-

Proof. Since z € C'((—00,T]), there exists the unique maximal solution
y(t) of IVP [15), on an interval I. We shall show that I = (—oo,T].
Assume I # (—oo,T]. Let y(to) = to for a to € I. Consider equation
together with the initial condition

y(to) = to. (17)

Then y(t) is a solution of IVP [15), on I and since the function u(t) =t
is also a solution of this IVP on (—oo,T], we have y(t) =u(t) =t fort €I
by the uniqueness theorem for ODEs, which contradicts y(T') = §. Hence

yt) <t  for tel (18)

Let t; € I. Then (cf. (18)) z(y(¢t1)) — z(t1) = .a:’(é)(y(tl) — %) <0
where y(t1) < £ < t1, and therefore y/(¢1) = az’(§)(y(t1) —t1) +1 < 1 which
proves

y(@#t) <1 for tel. (19)
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Assume y(t2) < to — T + £ for some t2 € I. Then (cf. [16))) there exists
ts € I such that y'(t3) > 1 which contradicts (19). Hence

t—T+ €<yt for tel. (20)

By our assumption y is the maximal solution of IVP [15), defined
onl,I# (—o00,T]. ThusI = (A,T], —00 < A <T andlimsup,_, 4, |y(t)| =
oo which contradicts (18) and (20); hence I = (—o0,T].

Assume y'(t4) < 0 where t4 € (—o00,T]. Since (cf. (20))

alz(y(ts)) — z(ts)] = az’(e) (y(ta) — ta) = —2'(e)
for some € € (y(t4),ts4), we have
0>y/(ts) = alz(y(ts)) — z(ta)] + 1 > —2'(e) + 1.

Then z'(¢) > 1 which contradicts z € K(7¢). Thus

0<y'(t), te(~ooT] (21)
From [16), (18)-{21) and I = (—oc, T] it follows that y € K (7). a

Let (T,€) € R?, 0 < T — ¢ < 1. By Lemma 11, for each z € K7y
there exists a unique maximal solution y, of IVP [15), and y; € K(1¢).
Define the operator P1¢) by Pir¢)(x) = ys for x € K(1¢). Then

Py : Kirg) = Kizg)- (22)

Let X7 be the Fréchet space of C!-functions on (—oo, T] with the topol-

ogy of locally uniform convergence of the functions and their derivatives on
(=00, T].

Lemma 12 Let (T,£§) € R?, 0 < T - £ < % Then the operator Py :
K¢ C Xp — X1 is compact.

Proof. We first prove that P7¢) is a continuous operator. Let {z,} C
K(r¢) be a convergent sequence (in Xr), zp, — 2. Then lim, . 2 (t) =
£ (t) locally uniformly on (—oo,T)] for i =0, 1. Set

yn = Prg)(Tn), Y= Pag(e), n € N.
Then

Un(T) =&, Yn(t) = alzn(yn(t)) — zn(t)] +1 (23)
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for t € (—00,T], n € N and

y(T)=¢ o'(t) =alz(y®t) —=(t)] +1, te (-00,T].
We now show that lim,_, . yy(f)(t) — y((t) locally uniformly on (—oo, 7]
(1 =0, 1). Since (cf. {22)) {yn} C K1), we have 0 < y;,(t) <1, t—T+£ <
yn(t) < t for t € (—o00,T] and n € N. Let {y,} be a subsequence of
{yn}. By the Cauchy diagonal process and the Arzela-Ascoli theorem, there

exists a subsequence {yx; (t)} of {yk,(t)} locally uniformly convergent on
(=00, T]. Set

2() = Jim g, (1), t€ (~o00,T]

Applying the Lebesgue dominated convergence theorem as n — oo in the
equalities

Yk;,, () =f+/

T

t

(alek,, (W, (5)) = 24, (5)] + 1) ds,
t e (—o00,T], n €N,

we get

z2(t) =€+ /t (a[x(z(s)) —z(s)] + 1) ds, te(—o0,T],

T

and so z(t) is a solution of IVP [15), on (—oo,T]. We know that
this IVP has a unique solution and that y(t) is a solution of this prob-
lem, and consequently y(t) = z(t) for t € (—oo0,T]. We have proved that
any subsequence {y, } of {yn} has in turn a subsequence {yx; } such that
limp, 00 Yk, (t) = y(t) locally uniformly on (—oo,T']. Hence limy e Yn(t) =
y(t) locally uniformly on (—o0,T] and then

lim (y, () —y'(t)) = lim_afzn(yn(t) — 2a(t) — 2(y(1)) + 2(8)] = 0
locally uniformly on (—oo0,T]. Thus limy, e yn = y in X7, and so

lim Pirg)(zn) = Im y, =y = Prg(2),

n—oo

which proves that Pr¢) is a continuous operator.

It remains to show that Py ¢)(K(rg)) is a relatively compact subset of
X7. Let {yn} C Prrg)(K(rg))- Then there exists a sequence {zn} C K1)
such that y, = Pr¢(xn), n € N, and therefore equalities are sat-
isfied. Using the Cauchy diagonal process and the Arzela-Ascoli theorem
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we can assume, without loss of generality, that {z,(t)} and {yn(t)} are
locally uniformly convergent on (—oo,T| and let lim, o zn(t) = x(t),
lim, 0o ¥n = ¥y(t). Then implies that {y/ (t)} is locally uniformly
convergent on (—oo,T] and we have lim, . y,,(t) = y'(t). Hence {y,} is
a convergent sequence in X, and consequently Pi7¢)(K(7¢)) is relatively
compact subset of X7. This completes the proof. O

Proof of Theorem 3. Fix (T,€) € R?, 0 < T — £ < %. Since K(7y) is a
bounded convex closed subset of the Fréchet space X1 and Pi7¢) : K(1¢) —
K(rg) is a compact operator by Lemma 12, we can apply Tychonoff-
Schauder fixed point theorem to the operator Pr¢). Hence there exists
a fixed point y € K(7¢) of Pr¢). Of course, 0 < y'(t) <1,

y(t) =aly(y(®)) —y()] +1, te€ (-00,T]

and y(T') = €. Then y is a solution of (5) on (—o0o,T]. By Theorem 2, any
z € A is defined on R, and consequently there exists a right continuation
of y on R, say z. The solution z satisfies the conclusions of [Theorem 3.

O

4. Set Bt
Theorem 4 Bt is an empty set.

Proof. Assume Bt # (). Then there exists ¢ € BT, and let = be defined on
an interval J. Since z'(t) > 1 for t € J, the equality =" (t) = ax'(t)[z'(z(t)) -
1] implies z”(t) > 0 on J, and consequently z'(t) and (0 <)z(t) — t are
increasing on J. By Lemma 2, z(t) € J for each t € J and therefore [t,00) C
J for each t € J. From the Taylor formula we get x'(t) = ax’(¢)[z(t) —t] +1
for t € J where t < e (=¢(t)) < z(t). Then z'(t) < x'(¢) since 7 > 0, and
so z'(t) > ax'(t)[xz(t) — t] + 1 and

2 ()1 - a(z(t) —t)] > 1 (24)

for t € J. We know that lim; . (z(t) — t) = co. Hence lim;_,oo z'(t)[1 —
a(z(t) — t)] = —oo which contradicts [24). O

5. Survey of main results

Set € = signa and v = sign b.
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Theorem 5 For each (T,€) € R?, 0 < ¢(T - ¢) < |—i-|, there exists a
mazimal solution x of (5) on R such that z(T) = &.

If x #t is a mazimal solution of (5) on an interval J, then
i) J=R;
(i) e(z(t)—t)<0,0<2'(t) <1, ex’(t) <O for t € R,
(ili) there exists T € R such that (T) =T — % and lim¢_,c00 2(t) = T;
(

iv) z(t) =t+ a(t), where a € C*°(R), ea(t) <0 for t € R and

lim a(t)= lim &'(t)= lim o"(t) =0;

t——eo0 t——e00 t——e00

(v) z(t) =T+ B(t), where B € C*®(R), eB(t) <0 fort € R and

lim B(t) = lim B'(t) = lim 8"(t) = 0.
t—eo0 t—eo0 t—eo0

Proof. Let € = 1. The first statement is [Theorem 3. Let = be a maximal

solution of (5) on an interval J, z # t. By and Theorem 4,

z € A and J = R by [Theorem 2. Property (ii) follows from the definition

of the set A], and Lemma 9. Remark 2, and (ii) imply

properties (iii)—(v). For € = —1, the assertions of our theorem follow from
(cf. Remark 3) and with e = 1. O

Applying [Lemma 1 to [Theorem 5 we immediately obtain the following
properties of maximal solutions for equation (4).
Theorem 6 For each (T,€) € R?, 0 < (T —¢) < |71L|f there ezists a
mazimal solution y of (4) on R such that y(T) = 3(T — £).

If y is a mazimal solution of (4) on an interval J and y # 0, then
) J=RK
ij) evy(t) >0,0<vy/(t) < ﬁ, evy”(t) > 0 for t € R;
jij) there exists T € R such that y(T') = % and lime_.o0(t — by(t)) = T;

N TN N
. .

J
iv) lime,_coo y(t) = limy— oo ¥/ (¢) = limy—, _c00 ¥ (¢) = 0;
v) y(t) = 3t =T +~(t), where vy € C®(R), e(t) >0 for t € R and

~ I~
.

t—e00

lim ~(t) = lim ~'(t) = lim ~"(t) =0.
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