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An extremal class of 3-dimensional elliptic affine spheres
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Abstract. In analogy to an inequality of Chen [Che93], Scharlach, Simon, Verstraelen
and Vrancken [SSVV97] have found a new inequality for (equi-) affine spheres. This in-
equality is optimal and in this paper we classify those 3-dimensional elliptic affine spheres
for which the corresponding equality is assumed. This is achieved through reducing the
problem to the problem of classifying those 2-dimensional minimal surfaces in s_{3}^{5} whose
ellipses of curvature are circles. We end with the investigation of 2-dimensional minimal
surfaces in s_{3}^{5} with positive definite induced metric whose ellipses of curvature are circles.

Key words: affine differential geometry, Chen’s equality, 1-dimensional nullity distribu-
tion, affine spheres.

1. Introduction

Consider an immersed hypersurface with relative normalization, i.e., an
immersion f:Marrow \mathbb{R}^{n+1} together with a transverse vector field \xi such that
D\xi has its image in f_{*}T_{x}M . The relative hypersurface (f, \xi) is a sphere if its
normal lines \mathbb{R}\xi(x) have a common intersection. From this definition one
immediately has the existence of a function \epsilon:Marrow \mathbb{R} with 0=D(f(x)+
\epsilon(x)\xi(x))=Df(x)+\epsilon(x)D\xi+d\epsilon(x)\otimes\xi which in turn implies that \epsilon\neq 0

is constant. Moreover, the Weingarten map is a multiple of the identity.
Since \epsilon is constant we can always rescale f to obtain \epsilon=\pm 1 . In the
following we will only be concerned with such unit spheres. Whether an
immersed hypersurface constitutes a sphere depends crucially on the chosen
normalization \xi . For instance, in Euclidean hypersurface theory ( \xi is the
outer normal to f(M) with respect to a fixed scalar product in \mathbb{R}^{n+1} ), a
sphere f(M) is necessarily isometric to the round sphere S^{n}(r) of radius
r . The other extreme occurs if we choose the centr0-affine normalization
where we take for \xi simply -f . Clearly, in this theory any hypersurface
is a unit sphere. The classification of unit spheres is a highly non-trivial
problem for the equi-affine theory of immersed hypersurfaces introduced by
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Blaschke (see, for instance, [Bla23]). Spheres with respect to this theory
are often called affiffiffine spheres.

While in Euclidean hypersurface theory an immersion f:M -arrow \mathbb{R}^{n+1}

inherits a scalar product from Euclidean space, in equi-affine hypersurface
theory one only has a constant determinant function det of \mathbb{R}^{n+1} . De-
note by det* the dual volume form in (\mathbb{R}^{n+1})^{*} and by Y:M -arrow(\mathbb{R}^{n+1})^{*}

the conormal defined by Y(\xi)=1 and Y_{1f*}TM=0 . For each choice of
transverse vector field \xi , the volume forms det and det* define n-forms
\omega := (-1)^{n}f^{*}(\det(\xi, \cdot, \ldots, \cdot)) and \omega^{*}= (-1)^{n}Y^{*}(\det^{*}(Y, \cdot, . . , \cdot)) . The
equi-affiffiffine normalization \xi is the (up to orientation) unique relative normal-
ization which is invariant under the unimodular group and satisfies \omega=\pm\omega^{*}

(see, for instance, [LSZ93]). The induced equi-affine connection \nabla is given
by D_{U}V=\nabla_{U}V+h(U, V)\xi , where h is called the equi-affiffiffine metric or
Blaschke metric. (See [Bla23, \S \S 39-40] for a somewhat different introduc-
tion.)

In the case that h is definite we can fix the orientation of the equi-affine
normal \xi(=\pm f) such that h is positive definite. Then the sign of \epsilon in the
definition of spheres is an invariant, and M is called an elliptic affine unit
sphere if \epsilon=1 and a hyperbolic affine unit sphere if \epsilon=-1.1

The abundance of affine unit spheres dwarfs any attempts at a com-
plete classification. In order to obtain detailed information one has there-
fore to revert to sub-classes such as the class of complete affine unit spheres
[LSZ93]. Various authors have also imposed curvature conditions but even
in the case of constant curvature (with respect to h) only a partial classifi-
cation has been achieved yet [VLS91, MR92, KV97]. In analogy to work by
Chen [Che93], Scharlach, Simon, Verstraelen and Vrancken [SSVV97] have
found a new curvature invariant for (equi-) affine spheres. They also gave
a lower bound, depending only on \epsilon and the dimension of the sphere. In
this paper we will classify those 3-dimensional, elliptic affine unit spheres
which extremize the new curvature invariant. In Section 2 we will show
that they admit a preferred ruling. Thus the geometry is determined by
2-dimensional submanifolds transverse to this ruling. This will be used in
Section 3 to find a reduction to the problem of investigating 2-dimensi0nal
minimal submanifolds (i.e. the mean curvature vector field vanishes) of S_{3}^{5}

1In this terminology an ellipsoid is an elliptic and a hyperboloid a hyperbolic affine
sphere.
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whose ellipses of curvature are non-degenerate circles. Here S_{3}^{5}\subset \mathbb{R}^{6} is the
5-dimensional (pseudo)sphere of index 3. Finally, 2-dimensional minimal
submanifolds of S_{3}^{5} with positive definite induced metric whose ellipses of
curvature are circles are studied in Section 4.

2. Affine unit 3-spheres which satisfy Chen’s equality

Let f:M –
\mathbb{R}^{n+1} be an affine unit sphere. Denote the Levi-Civita

connection with respect to h by \hat{\nabla} and the normalized scalar curvature
and sectional curvature by \hat{\kappa} and \hat{K}.

, respectively. Furthermore, G_{2}(T_{x}M)

denotes the Grassmannian of 2-dimensional subspaces of T_{x}M . Following
[Che93], Scharlach, Simon et al. [SSVV97] have shown that the inequality

\frac{n(n-1)}{2}\hat{\kappa}(p)-\sup_{\Pi\in c_{2(T_{x}M)}}\hat{K}_{p}(\Pi)\geq\epsilon\frac{1}{2}(n+1)(n-2)

holds.2 We call this inequality Chen’s inequality and the corresponding
equality Chen’s equality. In this paper, we will classify those elliptic 3-
dimensional affine unit spheres which realize Chen’s equality. We will start
by chosing a frame adapted to the problem.

Lemma 1 ([SSVV97]) Let M be an n-dimensional affiffiffine unit sphere
which realizes Chen’s equality, x\in M and K(U, V)=\nabla_{U}V-\hat{\nabla}_{U}V If
K_{x}\neq 0 then there exists an h -Orthonormal frame \{E_{1}, . , E_{n}\} and a func-
tion \lambda in a neighbourhood of x such that

K(E_{1}, E_{1})=\lambda E_{1} , K(E_{1}, E_{i})=0 , K(E_{1}, E_{2})=-\lambda E_{2} ,
K(E_{2}, E_{i})=0 , K(E_{2}, E_{2})=-\lambda E_{1} , K(E_{i}, E_{j})=0 , (i,j>2) .

The Christoffel symbols of the Levi-Civita connection \hat{\nabla} defifined by \hat{\nabla}_{E_{b}}E_{c}=

\sum_{a=1}^{n}\hat{\Gamma}_{bc}^{a}E_{a} satisfy

\hat{\Gamma}_{11}^{i}=\hat{\Gamma}_{22}^{i} , \hat{\Gamma}_{12}^{i}=-\hat{\Gamma}_{21}^{i} , \hat{\Gamma}_{ij}^{1}=\hat{\Gamma}_{ij}^{2}=0 , \hat{\Gamma}_{i1}^{2}=-\frac{1}{3}\hat{\Gamma}_{12}^{i} , (i, j>2) .

Remark 1 Here span\{E_{3}, \ldots, E_{n}\} is an (n-2)-dimensional integrable
distribution which spans at each point x with K_{x}\neq 0 the nullity space

2Scharlach, Simon et al. have actually studied the much more general case of arbi-
trary centr0-affine hypersurfaces but proved that equality can only hold for centr0-affine
hypersurfaces which at the same time are affine unit spheres.
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of K_{x} .

Let us now specialize to 3-dimensional, definite affine unit spheres which
satisfy Chen’s equality.

Lemma 2 Let f=E_{0} : M -arrow \mathbb{R}^{4} be a 3-dimensional, defifinite affiffiffine unit
sphere with positive defifinite equi-affiffiffine metric and x\in M with K_{x}\neq

0 . Then in a neighbourhood of x there are functions \alpha , \beta , \gamma , \delta and h-
orthonormal 1-forms \omega^{1} , \omega^{2} , \omega^{3} such that

D (\begin{array}{l}E_{0}E_{1}E_{2}E_{3}\end{array})=(

0 \omega^{1}

-\epsilon\omega^{1}-\epsilon\omega^{2}-\epsilon\omega^{3}
\gamma\omega^{1}-(\delta+\lambda)\omega^{2}+\frac{\beta}{3}\omega^{3}-\alpha\omega^{1}+\beta\omega^{2}\lambda\omega^{1}

- \gamma\omega^{1}+(\delta-\lambda)\omega^{2}-\frac{\beta}{3}\omega^{3}-\beta\omega^{1}-\alpha\omega^{2}-\lambda\omega^{1}\omega^{2} \beta\omega^{1}+\alpha\omega^{2}\alpha\omega^{1}-\beta\omega^{2}\omega_{0}^{3})
(\begin{array}{l}E_{0}E_{1}E_{2}E_{3}\end{array})

(1)

holds, where E_{1} , E_{2} , E3 are chosen as in Lemma 1.

Proof. Since { E_{1} , E_{2} , E3} is an orthonormal frame we have \hat{\Gamma}_{bc}^{a}=-\hat{\Gamma}_{ba}^{c} .
Hence in view of Lemma 1 we have \alpha:=\hat{\Gamma}_{11}^{3}=\hat{\Gamma}_{22}^{3} , \beta:=\hat{\Gamma}_{12}^{3}=-\hat{\Gamma}_{21}^{3}=

-3\hat{\Gamma}_{31}^{2} , \gamma:=\hat{\Gamma}_{12}^{1} , \delta:=\hat{\Gamma}_{21}^{2},\hat{\Gamma}_{33}^{1}=\hat{\Gamma}_{33}^{2}=0 . Now the assertion follows from
the equation D_{E_{b}}E_{c}=(K_{bc}^{a}+\hat{\Gamma}_{bc}^{a})E_{a}-\epsilon\delta_{bc}E_{0} and the form of K_{bc}^{a} . \square

In [SSVV97] all affine unit spheres (of arbitrary dimension n) which
satisfy Chen’s equality and for which the distribution span\{E_{1}, E_{2}\} is inte-
grable, have been classified. For n=3, we have h([E_{1}, E_{2}], E3)=2\beta which
implies that the classification for the case \beta=0 is known. We will give an
existence and uniqueness result for elliptic 3-dimensional affine unit spheres
satisfying Chen’s equality which rests on the following observation.

Corollary 1 Let M be an affiffiffine unit sphere which satisfies Chen’s equality
and x\in Mt If K_{x}\neq 0 then there is a neighbourhood \mathcal{U} of x such that
f(\mathcal{U}) is ruled by arcs of ellipses if it is elliptic and by arcs of hyperbolas if
it is hyperbolic. These ellipses (respectively hyperbolas) are centered at 0.

Proof. We show that the integral curves of E3 are centered ellipses if \epsilon=1

and centered hyperbolas if \epsilon=-1 . Since D_{E_{3}}D_{E_{3}}E_{0}=D_{E_{3}}E_{3}=-\epsilon E_{0} the
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integral curves of E3 satisfy \dot{\gamma}=-\epsilon\gamma . It follows that there exist vectors
A, B\in \mathbb{R}^{4} such that \gamma(t)=A\cos(t)+B\sin(t) in the elliptic case (\epsilon=1)

and \gamma(t)=A\cosh(t)+B\sinh(t) in the hyperbolic case (\epsilon=-1) . \square

In view of Corollary 1 the geometry of M is determined by 2-dimensi0nal
submanifolds transverse to this elliptic/hyperbolic ruling. In the next sec-
tion we will give an explicit reduction in the elliptic case.

3. The correspondence of affine unit 3-spheres which satisfy
Chen’s equality and minimal immersions whose ellipses of cur-
vature are circles

The following lemma is a consequence of the fact that SL(4, \mathbb{R}) and
SL(4, 3) are locally isomorphic [He178].

Lemma 3 There is a natural local diffeomeorphism \iota:SL(4, \mathbb{R}) - SO (3, 3)
such that each \iota(E) has exactly two pre-images.

Proof. Let E= { E_{0} , E_{1} , E_{2} , E3} be a basis with \det(E_{0}, E_{1}, E_{2}, E3)=1

and define

( \iota(E))_{0}=\frac{1}{2}(E_{0}\wedge E_{3}+E_{1}\wedge E_{2}) , ( \iota(E))_{5}=\frac{1}{2}(E_{0}\wedge E_{3}-E_{1}\wedge E_{2}) ,

( \iota(E))_{1}=\frac{1}{2}(E_{0}\wedge E_{1}+E_{2}\wedge E_{3}) , ( \iota(E))_{3}=\frac{1}{2}(E_{0}\wedge E_{1}-E_{2}\wedge E_{3}) ,

( \iota(E))_{2}=\frac{1}{2}(E_{0}\wedge E_{2}+E_{3}\wedge E_{1}) , ( \iota(E))_{4}=\frac{1}{2}(E_{0}\wedge E_{2}-E_{3}\wedge E_{1})1

In the 6-dimensional linear space span\{(\iota(E))_{0}, \ldots, (\iota(E))_{5}\} we define a
scalar product via

\langle X, Y\rangle E_{0}\wedge E_{1}\wedge E_{2}\wedge E_{3}=2X\wedge Y.

It is easy to see that this scalar product has signature (+, +, +, -, -, -)
and that \{(\iota(E))_{0}, \ldots, (\iota(E))_{5}\} is an orthonormal basis with respect to this
scalar product. The map \iota is clearly smooth. Assume that there exist
E,\tilde{E}\in SL(4, \mathbb{R}) with \iota(E)=\iota(\tilde{E}) . It then follows that for all i , j we have
E_{i}\wedge E_{j}=\tilde{E}_{i}\wedge\tilde{E}_{j} and therefore \tilde{E}_{i}=+E_{i} for all i or \tilde{E}_{i}=-E_{i} for all i .
Hence \iota^{-1}(A) is empty or has exactly two elements for any A\in SO(3,3)

and our claim follows from the fact that SO(3, 3) and SL(4, \mathbb{R}) have the
same dimension. \square
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Let E= { E_{0} , E_{1} , E_{2} , E3}: M -arrow SL(4, \mathbb{R}) be the adapted frame in-
troduced in Lemma 1. We will now use this diffeomorphism to lift E to
SO(3, 3) .

Lemma 4 Let E be chosen as in Lemma 2 and let F=\iota(E) . Then F
satisfifies the structure equations dF=T_{\epsilon}F_{j} where

T_{-}=\{

0 -\alpha\omega^{1}+\beta\omega^{2} -\beta\omega^{1}-\alpha\omega^{2}

\alpha\omega^{1}-\beta\omega^{2} 0 -\gamma\omega^{1}+\delta\omega^{2}-\beta/3\omega^{3}

\beta\omega^{1}+\alpha\omega^{2} \gamma\omega^{1}-\delta\omega^{2}+\beta/3\omega^{3} 0
-\omega^{2}\omega^{1} -\lambda\omega^{2}-\omega^{3}\lambda\omega^{1} -\lambda\omega^{2}+\omega^{3}-\lambda\omega^{1}

0 \omega^{2} -\omega^{1}

\gamma\omega^{1}-\delta\omega^{2}+\beta/3\omega^{3}-\alpha\omega^{1}+\beta\omega^{2}-\lambda\omega_{0}^{2}+\omega^{3} -\gamma\omega^{1}+\delta\omega_{0}^{2}-\beta/3\omega^{3}-\beta\omega^{1}-\alpha\omega^{2}-\lambda\omega^{1}

\beta\omega^{1}+\alpha\omega^{2}\alpha\omega^{1}-\beta\omega^{2}-\omega^{1}0)

-\omega^{2} \omega^{1} 0
\lambda\omega^{1} -\lambda\omega^{2}-\omega^{3} \omega^{2}

and

T_{+}=

\{

0 -\alpha\omega^{1}+(1+\beta)\omega^{2} -(1+\beta)\omega^{1}-\alpha\omega^{2}

\alpha\omega^{1}-(1+\beta)\omega^{2} 0 -\gamma\omega^{1}+\delta\omega^{2}+(1-\beta/3)\omega^{3}

(1+\beta)\omega^{1}+\alpha\omega^{2} \gamma\omega^{1}-\delta\omega^{2}-(1-\beta/3)\omega^{3} 0
0 \lambda\omega^{1} -\lambda\omega^{2}

0 -\lambda\omega^{2} -\lambda\omega^{1}

0 0 0

-\lambda\omega^{2}\lambda\omega^{1}00

-\lambda\omega^{1}-\lambda\omega^{2}00

-(1-\beta)\omega^{1}+\alpha\omega^{2}\alpha\omega^{1}+(1-\beta)\omega^{2}0000)

-\gamma\omega^{1}+\delta\omega^{2}-(1+\beta/3)\omega^{3}

\gamma\omega^{1}-\delta\omega^{2}+(1+\beta/3)\omega^{3}

-\alpha\omega^{1}-(1-\beta)\omega^{2} (1-\beta)\omega^{1}-\alpha\omega^{2}

Proof. This is a direct calculation using equation (1). We use the nota-
tions: F_{1+}=F_{0} , F_{1-}=F_{5} , F_{2+}=F_{1} , F_{2-}=F_{3} , F_{3+}=F_{2} , F_{3-}=F_{4} .
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2DF_{1\pm}

=D(E_{0}\wedge E_{3}\pm E_{1}\wedge E_{2})

=(\omega^{1}\otimes E_{1}+\omega^{2}\otimes E_{2}+\omega^{3}\otimes E_{3})\wedge E3

+E_{0}\wedge(-\epsilon\omega^{3}\otimes E_{0}+(-\alpha\omega^{1}+\beta\omega^{2})\otimes E_{1}-(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{2})

\pm(-\epsilon\omega^{1}\otimes E_{0}+\lambda\omega^{1}\otimes E_{1}+(-\gamma\omega^{1}+(\delta-\lambda)\omega^{2}-\frac{\beta}{3}\omega^{3})\otimes E_{2}

+(\alpha\omega^{1}-\beta\omega^{2})\otimes E_{3})\wedge E_{2}

\pm E_{1}\wedge(-\epsilon\omega^{2}\otimes E_{0}+(\gamma\omega^{1}-(\lambda+\delta)\omega^{2}+\frac{\beta}{3}\omega^{3})\otimes E_{1}-\lambda\omega^{1}\otimes E_{2}

+(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{3})

=(-\alpha\omega^{1}+\beta\omega^{2}\pm\epsilon\omega^{2})\otimes E_{0}\wedge E_{1}+(\omega^{2}\mp(\alpha\omega^{1}-\beta\omega^{2}))\otimes E_{2}\wedge E_{3}

+(-\beta\omega^{1}-\alpha\omega^{2}\mp\epsilon\omega^{1})\otimes E_{0}\wedge E_{2}+(-\omega^{1}\mp\beta\omega^{1}\mp\alpha\omega^{2})\otimes E_{3}\wedge E_{1}

=((1\pm 1)(-\alpha\omega^{1}+\beta\omega^{2})+(1\pm\epsilon)\omega^{2})\otimes F_{2+}

+((1\mp 1)(-\alpha\omega^{1}+\beta\omega^{2})-(1\mp\epsilon)\omega^{2})\otimes F_{2-}

+(-(1\pm\epsilon)\omega^{1}-(1\pm 1)(\beta\omega^{1}+\alpha\omega^{2}))\otimes F_{3+}

+((1\mp\epsilon)\omega^{1}-(1\mp 1)(\beta\omega^{1}+\alpha\omega^{2}))\otimes F_{3-} ,

2DF_{2\pm}

=D(E_{0}\wedge E_{1}\pm E_{2}\wedge E_{3})

=(\omega^{1}\otimes E_{1}+\omega^{2}\otimes E_{2}+\omega^{3}\otimes E_{3})\wedge E_{1}

+E_{0} \wedge(-\epsilon\omega^{1}\otimes E_{0}+\lambda\omega^{1}\otimes E_{1}+(-\gamma\omega^{1}+(\delta-\lambda)\omega^{2}-\frac{\beta}{3}\omega^{3})\otimes E_{2}

+(\alpha\omega^{1}-\beta\omega^{2})\otimes E_{3})

\pm(-\epsilon\omega^{2}\otimes E_{0}+(\gamma\omega^{1}-(\lambda+\delta)\omega^{2}+\frac{\beta}{3}\omega^{3})\otimes E_{1}-\lambda\omega^{1}\otimes E_{2}

+(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{3})\wedge E_{3}

\pm E_{2}\wedge(-\epsilon\omega^{3}\otimes E_{0}+(-\alpha\omega^{1}+\beta\omega^{2})\otimes E_{1}-(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{2})

=(\alpha\omega^{1}-\beta\omega^{2}\mp\epsilon\omega^{2})\otimes E_{0}\wedge E_{3}+(-\omega^{2}\pm\alpha\omega^{1}\mp\beta\omega^{2})\otimes E_{1}\wedge E_{2}

+(\lambda\omega^{1})\otimes E_{0}\wedge E_{1}+(\mp\lambda\omega^{1})\otimes E_{2}\wedge E_{3}

+(( \delta-\lambda)\omega^{2}-\gamma\omega^{1}-\frac{\beta}{3}\omega^{3}\pm\epsilon\omega^{3})\otimes E_{0}\wedge E_{2}



M. Kriele, C. Scharlach and L. Vrancken

+( \omega^{3}\pm(\delta+\lambda)\omega^{2}\mp\gamma\omega^{1}\mp\frac{\beta}{3}\omega^{3})\otimes E_{3}\wedge E_{1}

=((1\pm 1)(\alpha\omega^{1}-\beta\omega^{2})-(1\pm\epsilon)\omega^{2})\otimes F_{1+}

+((1\mp 1)(\alpha\omega^{1}-\beta\omega^{2})+(1\mp\epsilon)\omega^{2})\otimes F_{1-}

+(1\mp 1)\lambda\omega^{1}\otimes F_{2+}+(1\pm 1)\lambda\omega^{1}\otimes F_{2-}

+ ( (1\pm\epsilon)\omega^{3}-(1\mp 1)\lambda\omega^{2}+(1\pm 1) (- \gamma\omega^{1}+\delta\omega^{2}-\frac{\beta}{3}\omega^{3}) ) \otimes F_{3+}

+(-(1 \mp\epsilon)\omega^{3}-(1\pm 1)\lambda\omega^{2}+(1\mp 1)(-\gamma\omega^{1}+\delta\omega^{2}-\frac{\beta}{3}\omega^{3}))\otimes F_{3-} ,

2DF_{3\pm}

=D(E_{0}\wedge E_{2}\pm E_{3}\wedge E_{1})

=(\omega^{1}\otimes E_{1}+\omega^{2}\otimes E_{2}+\omega^{3}\otimes E_{3})\wedge E_{2}

+E_{0} \wedge(-\epsilon\omega^{2}\otimes E_{0}+(\gamma\omega^{1}-(\lambda+\delta)\omega^{2}+\frac{\beta}{3}\omega^{3})\otimes E_{1}-\lambda\omega^{1}\otimes E_{2}

+(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{3})

\pm(-\epsilon\omega^{3}\otimes E_{0}+(-\alpha\omega^{1}+\beta\omega^{2})\otimes E_{1}-(\beta\omega^{1}+\alpha\omega^{2})\otimes E_{2})\wedge E_{1}

\pm E_{3}\wedge(-\epsilon\omega^{1}\otimes E_{0}+\lambda\omega^{1}\otimes E_{1}+(-\gamma\omega^{1}+(\delta-\lambda)\omega^{2}-\frac{\beta}{3}\omega^{3})\otimes E_{2}

+(\alpha\omega^{1}-\beta\omega^{2})\otimes E_{3})

=(\beta\omega^{1}+\alpha\omega^{2}\pm\epsilon\omega^{1})\otimes E_{0}\wedge E_{3}+(\omega^{1}\pm\beta\omega^{1}\pm\alpha\omega^{2})\otimes E_{1}\wedge E_{2}

+( \gamma\omega^{1}-(\lambda+\delta)\omega^{2}+\frac{\beta}{3}\omega^{3}\mp\epsilon\omega^{3})\otimes E_{0}\wedge E_{1}

+(- \omega^{3}\mp(-\gamma\omega^{1}+(\delta-\lambda)\omega^{2}-\frac{\beta}{3}\omega^{3}))\otimes E_{2}\wedge E_{3}

+(-\lambda\omega^{1})\otimes E_{0}\wedge E_{2}+(\pm\lambda\omega^{1})\otimes E_{3}\wedge E_{1}

=((1\pm 1)(\beta\omega^{1}+\alpha\omega^{2})+(1\pm\epsilon)\omega^{1})\otimes F_{1+}

+((1\mp 1)(\beta\omega^{1}+\alpha\omega^{2})-(1\mp\epsilon)\omega^{1})\otimes F_{1-}

+((1 \pm 1)(\gamma\omega^{1}-\delta\omega^{2}+\frac{\beta}{3}\omega^{3})-(1\mp 1)\lambda\omega^{2}-(1\pm\epsilon)\omega^{3})\otimes F_{2+}

+((1 \mp 1)(\gamma\omega^{1}-\delta\omega^{2}+\frac{\beta}{3}\omega^{3})-(1\pm 1)\lambda\omega^{2}+(1\mp\epsilon)\omega^{3})\otimes F_{2-}

+(-(1\mp 1)\lambda\omega^{1})\otimes F_{3+}+(-(1\pm 1)\lambda\omega^{1})\otimes F_{3-} .

\square
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We are now in a position to describe the reduction referred to in the
last section. We will show how the frame given in Lemma 4 in the elliptic
case can be geometrically interpreted. Unfortunately such an interpretation
does not seem to exist in the hyperbolic case. We denote by S_{3}^{5} the unit
pseudosphere in R_{3}^{6} , i.e. S_{3}^{5} has dimension 5 and index 3. In the following the
notion of a minimal immersion g:N -arrow S_{3}^{5} means that the mean curvature
vector field of g vanishes. This is not equivalent to g(N) spanning locally
minimal area.

Theorem 1 Let f:Marrow \mathbb{R}^{4} be a 3-dimensional elliptic affiffiffine unit sphere
which satisfifies Chen’s equality. Assume that K_{x}\neq 0 for all x\in M and let
N be a 2-dimensional submanifold of M which is transverse to the elliptic

E_{3}(x)+E_{1}(x) \wedge E_{2}(x))rulingdefifinedbyE_{3}.isa\min^{9}.imalimmersionwithpositivedefifini’ einducedThen.Narrow S_{3}^{5},x\mapsto g(x)=F_{0}(x)=\frac{1}{2,t}(E_{0}(x)\wedge

metric whose ellipses of curvature are circles.

Proof Since N is transverse to the flow lines of E3, F_{0} restricted to N
is an immersion into S_{3}^{5} . If \{f_{1}, f_{2}\} is the basis dual to the pullback
\{(\omega^{1})_{TN}, (\omega^{2})_{TN}\} of (\omega^{1}, \omega^{2}) to N then the basis

e_{1}= \frac{1}{\alpha^{2}+(1+\beta)^{2}}(-\alpha f_{1}+(1+\beta)f_{2}) ,

e_{2}= \frac{1}{\alpha^{2}+(1+\beta)^{2}}(-(1+\beta)f_{1}-\alpha f_{2})

satisfies dF_{0}(e_{i})=F_{i} and is therefore an orthonormal basis of N equipped
with the metric induced by F_{0} . The shape tensor is given by

I(e_{1}, e_{1})= \frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}(-\alpha F_{3}-(1+\beta)F_{4}) ,

\mathbb{J}(e_{1}, e_{2})=\frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}(-(1+\beta)F_{3}+\alpha F_{4}) ,

ff(e_{2}, e_{2})= \frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}(\alpha F_{3}+(1+\beta)F_{4}) .

Hence F_{0} must be a minimal immersion. Since

\mathbb{I}(\cos(t)e_{1}+\sin(t)e_{2}, \cos(t)e_{1}+\sin(t)e_{2})

= \frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}(\cos^{2}(t)(-\alpha F_{3}-(1+\beta)F_{4})

+2 \sin(t)\cos(t)(-(1+\beta)F_{3}+\alpha F_{4})
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+\sin^{2}(t)(\alpha F_{3}+(1+\beta)F_{4}))

= \frac{\lambda}{\alpha^{2}+(1+\beta)^{2}}(\cos(2t)(-\alpha F_{3}-(1+\beta)F_{4})

+\sin(2t)(-(1+\beta)F_{3}+\alpha F_{4}))

the ellipses of curvature are circles. \square

In the rest of this section we will elaborate on the relation between
this class of minimal immersions and elliptic affine unit 3-spheres which
satisfy Chen’s equality. We will show that we can find an orthonormal
frame adapted to the minimal immersion such that the frame map satisfies
dF=T_{+}F .

Let N be a 2-dimensional manifold, let g:N - S_{3}^{5} be an immersion with
positive definite induced metric and without totally geodesic points. Then,
taking an arbitrary orthonormal basis \{e_{1}, e_{2}\} at a point p and writing a
unit vector v as v=\cos\theta e_{1}+\sin\theta e_{2} , we see that

I(v, v)=\cos^{2}\theta I(e_{1}, e_{1})+2 sin \theta cos \theta E(e_{1}, e_{2})+\sin^{2}\theta ff(e_{2}, e_{2})

= \frac{1}{2}(I(e_{1}, e_{1})+ff(e_{2}, e_{2}))+\frac{1}{2} cos 2\theta(I(e_{1}, e_{1})

-I(e_{2}, e_{2}))+\sin 2\theta I(e_{1}, e_{2}) .

Prom this, we see that the image of \{I(v, v)|\langle v, v\rangle=1\} is at every point an
ellipse. This ellipse is a circle centered at the origin if and only if

I(e_{1}, e_{1})+I(e_{2}, e_{2})=0 , (2)

\langle ff(e_{1}, e_{1})-I(e_{2}, e_{2}), \mathbb{I}(e_{1}, e_{2})\rangle=0 , (3)

\langle\frac{1}{2} (ff(e_{1}, e_{1})-ff(e_{2}, e_{2})) , \frac{1}{2} (ff(e_{1}, e_{1})-I(e_{2}, e_{2}))\rangle

=\langle ff(e_{1}, e_{2}), E(e_{1}, e_{2})\rangle (4)

In particular, we see that an immersion with ellipse of curvature centered
at the origin is minimal and has the property that ||\mathbb{I}(v, v)|| =
\sqrt{-\langle I(v,v),E(v,v)\rangle} is independent of the unit length vector at the point p.
Conversely, it is also clear that all minimal immersions with that property
have ellipse of curvature a circle centered at the origin.

Assume now that g has no totally geodesic points and has ellipse of
curvature a circle. Let \{e_{1}, e_{2}\} be an orthonormal frame. Then M=
||ff(e, e)||>0 for any unit vector e and independent of the choice of unit
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vector at a point p and we can associate with g a second order frame
G:Narrow SO(3,3) ,
x\mapsto G(x)=(G_{0}(x)G_{1}(x)G_{2}(x)G_{3}(x)G_{4}(x)G_{5}(x))^{T}

such that G_{0}=g , G_{1}=g_{*}(e_{1}) , G_{2}=g_{*}(e_{2}) , G_{3}= \frac{1}{M}I(e_{1}, e_{2}) , G_{4}=

\frac{1}{M}I(e_{1}, e_{1}) . G_{5} is uniquely defined by G\in SO(3,3) .
Since g_{*}TN=span\{G_{1}, G_{2}\} and the image of ff is given by span

\{G_{3}, G_{4}\} , we have for each x\in N a splitting \mathbb{R}^{6}=span\{G_{0}\}\oplus span
\{G_{1}, G_{2}\}\oplus span\{G_{3}, G_{4}\}\oplus span\{G_{5}\} which is invariant with respect to
the orthonormal frame \{e_{1}, e_{2}\} . We denote the orthogonal projection \mathbb{R}^{6}arrow

span\{G_{5}\} by pr_{5} and we let \nabla_{U}I(V, W)=D_{U}^{\perp}(I(V, W))-ff(\nabla_{U}V, W)-

I(V, \nabla_{U}W) , where D_{U}^{\perp} denotes the normal component to the surface, but
tangential to the sphere, of D_{U}ff(V, W) .

Lemma 5 Let g:Narrow S_{3}^{5} 6e a minimal immersion whose ellipses of cur-
vature are non-degenerate circles. Then there exist a local orthonormal
frame \{e_{1}, e_{2}\} with dual basis \{\mu^{1}, \mu^{2}\} , one-forms \omega_{2}^{1} and S_{4}^{3} , and a func-
tion N_{4} such that the corresponding frame G satisfifies

dG=( -\mu^{2}-\mu^{1}0000
M\mu M\mu\omega_{0}^{1}\mu^{1}0_{2}21 -M^{2}M\mu-\omega_{2}^{1}\mu^{2}00^{\mu}1

-N^{1}M^{1}M^{2}S_{4}^{3}00_{4\mu}^{\mu}\mu -N^{2}-M\mu M\mu-S_{4}^{3}o_{4\mu}012
N_{4\mu}^{1}N_{4}^{2}0000^{\mu} ) G. (5)

Proof. We start with a second order frame G:N -arrow SO (3, 3) . Since the
Codazzi equation is given by \nabla_{U}I(V, W)=\nabla_{V}I(U, W) and G_{5} is perpen-
dicular to \mathbb{I}(V, W) for all V, W\in TM , we have

\langle D_{e_{1}}G_{3}, G_{5}\rangle=\langle\frac{1}{M}D_{e_{1}}(I(e_{1}, e_{2})) , G_{5} \rangle=\langle\frac{1}{M}\nabla_{e_{1}}I(e_{1}, e_{2}) , G_{5}\rangle

= \langle\frac{1}{M}\nabla_{e_{2}}\mathbb{I}(e_{1}, e_{1}) , G_{5})\rangle=\langle D_{e_{2}}G_{4}, G_{5}\rangle

and similarly

\langle D_{e_{2}}G_{3}, G_{5}\rangle=\langle\frac{1}{M}D_{e_{2}} (ff(e_{1}, e_{2})) , G_{5} \rangle=\langle\frac{1}{M}\nabla_{e_{1}}ff(e_{2}, e_{2}) , G_{5}\rangle

=- \langle\frac{1}{M}\nabla_{e_{1}}I(e_{1}, e_{1}) , G_{5}\rangle=-\langle D_{e_{1}}G_{4}, G_{5}\rangle ,
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where we have used that I(e_{1}, e_{1})+I(e_{2}, e_{2})=0 . This implies that S:=
dGG^{-1}\in SO(3,3) is of the following form:

dG=

(_{0}^{-\mu^{1}}-\mu^{2}000
M^{1}M\mu\omega_{2}^{1}\mu^{1}00^{\mu}2 -M^{2}M\mu-\omega_{2}^{1}\mu^{2}00^{\mu}1

-N_{4\mu}^{1}+N_{3\mu}^{2}M^{1}M^{2}S_{4}^{3}00^{\mu}\mu -N_{3\mu}^{1}-N_{4\mu}^{2}-M^{2}M^{1}-S_{4}^{3}00\mu\mu N^{1}4\mu-N_{3}^{2}N_{3\mu}^{1}+N_{4\mu}^{2}\mu 0000 ) G.

(6)

By a rotation of \{e_{1}, e_{2}\} we can obtain N_{3}=0 . (Here we have rede-
fined G_{1} , G_{2} accordingly so that g_{*}e_{i}=G_{i} ). To see this note first that
\langle D_{e_{1}}G_{3}, D_{e_{1}}G_{4}\rangle=-N_{3}N_{4} and \langle D_{e_{2}}G_{3}, D_{e_{2}}G_{4}\rangle=N_{3}N_{4} . For \psi\in[0,2\pi) we
define \tilde{e}_{1}=\cos\psi e_{1}+\sin\psi e_{2},\tilde{e}_{2}=- sin \psi e_{1}+\cos\psi e_{2} . Since F(e_{2}, e_{2})=

-MG_{4} we have

\tilde{G}_{3}=\frac{1}{M}I(\tilde{e}_{1},\tilde{e}_{2})=(\cos^{2}\psi-\sin^{2}\psi)G_{3}-2 cos \psi sin \psi G_{4}

and

\tilde{G}_{4}=\frac{1}{M}I(\tilde{e}_{1},\tilde{e}_{1})=2 cos \psi sin \psi G_{3}+(\cos^{2}\psi-\sin^{2}\psi)G_{4} .

Now a short calculation gives for \psi=0

\langle D_{\overline{e}_{1}}\tilde{G}_{3}, D_{\tilde{e}_{1}}\tilde{G}_{4}\rangle=\langle D_{e_{1}}G_{3}, D_{e_{1}}G_{4}\rangle=-N_{3}N_{4}

and for \psi=\pi/2

\langle D_{\tilde{e}_{1}}\tilde{G}_{3}, D_{\tilde{e}_{1}}\tilde{G}_{4}\rangle=\langle D_{e_{2}}G_{3}, D_{e_{2}}G_{4}\rangle=N_{3}N_{4} .

Hence there is a \psi\in[0, \pi/2] with -\tilde{N}_{3}\tilde{N}_{4}=0 . Without loss of generality
we can assume that N_{3}=0 . Choosing the corresponding orthonormal frame
\{\tilde{e}_{1},\tilde{e}_{2}\} and dropping the \sim proves our assertion. \square

If we rotate the pair of vectors (G_{1}, G_{2}) and (G_{3}, G_{4}) independently by
two angles \theta and \varphi so that

\tilde{G}_{1}=\cos\theta G_{1}+\sin\theta G_{2} , \tilde{G}_{2}=- sin \theta G_{1}+\cos\theta G_{2} ,
\tilde{G}_{3}=\cos\varphi G_{3}+\sin\varphi G_{4} , \tilde{G}_{4}=- sin \varphi G_{3}+\cos\varphi G_{4} ,
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then we obtain the 1-form valued matrix

\tilde{S}=\{

0 cos \theta\mu+si1n\theta\mu 2

-cos \theta\mu 1- sin \theta\mu 2 0
sin \theta\mu-1 cos \theta\mu 2 \omega_{2}^{1}-d\theta

0 M(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2})

0 M(\cos(\theta+\varphi)\mu^{1}-\sin(\theta+\varphi)\mu^{2})

0 0

-sin \theta\mu 1+\cos\theta\mu 2 0
-\omega_{2}^{1}+d\theta M(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2})

0 M(\cos(\theta+\varphi)\mu^{1}-\sin(\theta+\varphi)\mu^{2})

M(\cos(\theta+\varphi)\mu^{1}-\sin(\theta+\varphi)\mu^{2}) 0
-M(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2}) S_{4}^{3}-d\varphi

0 -N_{4} (cos \varphi\mu^{1}+\sin\varphi\mu^{2} )

-M(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2}) 0M(\cos(\theta+\varphi)\mu^{1}-\sin(\theta+\varphi)\mu^{2})-S_{4}^{3}+d\varphi 00

N_{4}(-\sin\varphi\mu^{1}+\cos\varphi\mu^{2})N_{4}(\cos\varphi\mu^{1}+\sin\varphi\mu^{2})000)

-N_{4}(-\sin\varphi\mu^{1}+\cos\varphi\mu^{2})

Lemma 6 Let N be a 2-dimensional manifold. For any frame G:N -

SO(3, 3) satisfying (5) there exist uniquely defifined functions \varphi , \lambda , \alpha , \beta , \gamma , \delta :
\mathbb{R}\cross Narrow \mathbb{R} and 1-forms \omega^{1} , \omega^{2} , \omega^{3} such that the map (\theta, x^{1}, x^{2})\mapsto\tilde{G}

satisfifies d\tilde{G}=T_{+}\tilde{G} .

Proof We will use the freedom to choose \varphi(x^{1}, x^{2}, \theta) so that \tilde{S}=T_{+} .
Since

(T_{+})_{0}^{1}+(T_{+})_{3}^{5}+ \frac{2}{\lambda}(T_{+})_{1}^{4}=0 , (T_{+})_{0}^{2}+(T_{+})_{4}^{5}+ \frac{2}{\lambda}(T_{+})_{1}^{3}=0 ,

we have to satisfy

\tilde{S}_{0}^{1}+\tilde{S}_{3}^{5}+\frac{2}{\lambda}\tilde{S}_{1}^{4}=0 , \tilde{S}_{0}^{2}+\tilde{S}_{4}^{5}+\frac{2}{\lambda}\tilde{S}_{1}^{3}=0 ,

and therefore

cos \theta\mu 1+\sin\theta\mu 2+N_{4} (cos \varphi\mu^{1}+\sin\varphi\mu^{2} )

= \frac{2M}{\lambda}(-\cos(\theta+\varphi)\mu^{1}+\sin(\theta+\varphi)\mu^{2}) ,

sin \theta\mu-1 cos \theta\mu 2+N_{4} (sin \varphi\mu^{1}- cos \varphi\mu^{2} )
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= \frac{2M}{\lambda}(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2}) .

By interchanging \mu^{1} - -\mu^{2} and \mu^{2}arrow\mu^{1} it is clear that both equations
are equivalent. From the first equation the 1-forms cos \theta\mu 1+ sin \theta\mu 2+

N_{4} (cos \varphi\mu^{1}+\sin\varphi\mu^{2} ) and -\cos(\theta+\varphi)\mu^{1}+\sin(\theta+\varphi)\mu^{2} are linearly dependent
which is equivalent to

\sin(2\theta+\varphi)+N_{4}\sin(\theta+2\varphi)=0 . (7)

From the same equation we get then

\lambda=-\frac{2M\cos(\theta+\varphi)}{\cos\theta+N_{4}\cos\varphi} . (8)

The equations (T_{+})_{1}^{3}=\tilde{S}_{1}^{3} and (T_{+})_{1}^{4}=\tilde{S}_{1}^{4} imply

\omega^{1}=\frac{M}{\lambda}(\sin(\theta+\varphi)\mu^{1}+\cos(\theta+\varphi)\mu^{2}) , (9)

\omega^{2}=-\frac{M}{\lambda}(\cos(\theta+\varphi)\mu^{1}-\sin(\theta+\varphi)\mu^{2}) . (10)

Since (T_{+})_{0}^{1}-(T_{+})_{3}^{5}=\tilde{S}_{0}^{1}-\tilde{S}_{3}^{5} is equivalent to

-2\alpha\omega^{1}+2\beta\omega^{2}= ( \cos\theta-N_{4} cos \varphi ) \mu^{1}+ ( \sin\theta-N_{4} sin \varphi ) \mu^{2} ,

we obtain

\alpha=-\frac{\lambda}{2M}(\sin(2\theta+\varphi)-N_{4}\sin(\theta+2\varphi)) , (11)

\beta=-\frac{\lambda}{2M}(\cos(2\theta+\varphi)-N_{4}\cos(\theta+2\varphi)) . (12)

The only independent relations left is the pair of equations 2\omega_{3}=(T_{+})_{1}^{2}-

(T_{+})_{3}^{4}=\tilde{S}_{1}^{2}+\tilde{S}_{3}^{4}=S_{4}^{3}-\omega_{2}^{1}+d(\theta-\varphi) , 2 (- \gamma\omega^{1}+\delta\omega^{2}-\frac{\beta}{3}\omega^{3})=(T_{+})_{1}^{2}+(T_{+})_{3}^{4}=

\tilde{S}_{1}^{2}+\tilde{S}_{3}^{4}=-S_{4}^{3}-\omega_{2}^{1}+d(\theta+\varphi) . Denote the basis dual to \{\mu^{1}, \mu^{2}, d\theta\} by
\{e_{1}, e_{2}, e_{\theta}\} and write \omega^{3}=(\omega^{3})_{1}\mu^{1}+(\omega^{3})_{2}\mu^{2}+(\omega^{3})_{\theta}d\theta . Then the first
equation is equivalent to

( \omega^{3})_{1}=\frac{1}{2}(S_{4}^{3}-\omega_{2}^{1}-d\varphi)(e_{1}) ,

( \omega^{3})_{2}=\frac{1}{2}(S_{4}^{3}-\omega_{2}^{1}-d\varphi)(e_{2}) ,

( \omega^{3})_{\theta}=\frac{1}{2}(1-d\varphi(e_{\theta})) .

(13)

(14)

(15)
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The second equation gives

(\begin{array}{l}\gamma\delta\end{array}) =- \frac{\lambda}{2M} (\begin{array}{ll}sin(\theta+\varphi) cos(\theta+\varphi)cos(\theta+\varphi) -sin(\theta+\varphi)\end{array})

(_{((-1)(S_{4}^{3}-d\varphi)-(+1)\omega_{2}^{1})}(( \frac{\beta}{\frac{\beta 3}{3}}-1)(S_{4}^{3}-d\varphi)-(\frac{\beta}{\frac{\beta 3}{3}}+1)\omega_{2}^{1})(e_{2})(e_{1})) , (16)

( \omega^{3})_{\theta}=-\frac{3}{2\beta}(1+d\varphi(e_{\theta}))1 (17)

Thus the functions \varphi , \lambda , \alpha , \beta , \gamma , \delta and the 1-forms \omega^{1} , \omega^{2} , \omega^{3} are all deter-
mined. Therefore we only need to show that the equation (17) is a conse-
quence of equations (7)-(16) . Inserting equations (9), (10) into (T_{+})_{0}^{1}=\tilde{S}_{0}^{1}

we obtain - \frac{M}{\lambda}(1+\beta)=\cos(2\theta+\varphi) . Using equation (7) and equation (8)
after some computations we obtain \lambda=-2M/(\cos(2\theta+\varphi)+N_{4}\cos(\theta+2\varphi)) .
Taking the \theta-derivative of equation (7) gives

0=(\cos(2\theta+\varphi)+N_{4}\cos(\theta+2\varphi))(1+2d\varphi(e_{\theta}))

+\cos(2\theta+\varphi)(1-d\varphi(e_{\theta}))

= \frac{-2M}{\lambda}(1+2d\varphi(e_{\theta}))-(1-d\varphi(e_{\theta}))\frac{(1+\beta)M}{\lambda} .

This is equivalent to 0=-3-\beta-(3-\beta)d\varphi(e_{\theta}) which together with equation
(15) implies equation (17). \square

Theorem 2 Let \tilde{N} be a twO-dimensional manifold and let \tilde{g}:\tilde{N}
- S_{3}^{5} be

a minimal immersion with positive definite induced metric whose ellipses of
curvature are non-degenerate circles. Then there is a 3-dimensional elliptic
affiffiffine unit sphere f:Marrow \mathbb{R}^{4} which satisfifies Chen’s equality and a natural
immersion j:\tilde{N} – M such that j(\tilde{N}) can be identifified with the submanifold
N given in Theorem 1.

Proof. Let \{e_{1}, e_{2}\} be the orthornormal frame of T\tilde{N} provided by Lemma 5
and denote by \{\mu^{1}, \mu^{2}\} the dual frame. Let (x^{1}, x^{2}) be a coordinate system
of \tilde{N} , and denote an additional coordinate by \theta . We now can define functions
\varphi , \alpha , \beta , \gamma , \delta , \lambda and 1-forms \omega^{1} . \omega^{2} . \omega^{3} via equations (7)-(16) . The frame
map

F:\mathcal{U}\subset \mathbb{R}^{3}arrow SO(3, 3) ,



16 M. Kriele, C. Scharlach and L. Vrancken

x\mapsto(\begin{array}{l}gcos(\theta)dg(e_{1})+sin(\theta)dg(e_{2})-sin(\theta)dg(e_{1})+cos(\theta)dg(e_{2})\frac{1}{M}(cos(\varphi)ff(e_{1},e_{2})+sin(\varphi)ff(e_{1},e_{1}))\frac{1}{M}(-sin(\varphi)ff(e_{1},e_{2})+cos(\varphi)ff(e_{1},e_{1}))F_{5}\end{array}) ,

where F_{5} is uniquely determined by the requirement F\in SO(3,3) , satisfies
dF=T_{+}F Since \iota:SL(4, \mathbb{R}) – SO(3, 3) is a covering map, it has a 10-
cal inverse \iota^{-1} . By the form of T_{+} , the immersion f(x^{1}, x^{2}, x^{3})=(\iota^{-1}(F))_{0}

defines a 3-dimensional ellipic affine unit sphere which satisfies Chen’s
equality. \square

Remark 2 Let (x^{1}, x^{2}) be coordinates of N\subset M . It would then be
natural to choose a third coordinate x^{3} of M such that it is aligned with
the invariant vector field E3.

Let x^{3}= \frac{1}{2}(\theta-\varphi) , \rho=\frac{1}{2}(\theta+\varphi) . Then we have E_{3}=\partial_{x^{3}} and the
system (7)-(17) is equivalent to

0=\sin(x^{3}+3\rho)+N_{4} sin(-x^{3}+3\rho) , (18)

\lambda=\frac{-2M\cos(2\rho)}{\cos(x^{3}+\rho)+N_{4}\cos(-x^{3}+\rho)} , (19)

\omega^{1}=-\frac{\cos(x^{3}+\rho)+N_{4}\cos(-x^{3}+\rho)}{2\cos(2\rho)}(\sin(2\rho)\mu^{1}+\cos(2\rho)\mu^{2}) ,

(20)

\omega^{2}=\frac{\cos(x^{3}+\rho)+N_{4}\cos(-x^{3}+\rho)}{2\cos(2\rho)}(\cos(2\rho)\mu^{1}-\sin(2\rho)\mu^{2}) ,

(21)

\omega^{3}=\frac{1}{2}(S_{4}^{3}-\omega_{2}^{1})+dx^{3} , (22)

( \alpha, \beta)=\cos(2\rho)(\frac{\sin(x^{3}+3\rho)-N_{4}\sin(3\rho-x^{3})}{\cos(x^{3}+\rho)+N_{4}\cos(-x^{3}+\rho)} ,

\frac{\cos(x^{3}+3\rho)-N_{4}\cos(3\rho-x^{3})}{\cos(x^{3}+\rho)+N_{4}\cos(-x^{3}+\rho)}) , (23)
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(\begin{array}{l}\gamma\delta\end{array}) =- \frac{\lambda}{2M} (\begin{array}{ll}sin(2\rho) cos(2\rho)cos(2\rho) -sin(2\rho)\end{array})

(\begin{array}{l}((\frac{\beta}{3}-1)(S_{4}^{3}+d(x^{3}-\rho))-(\frac{\beta}{3}+1)\omega_{2}^{1})(e_{1})((\frac{\beta}{3}-1)(S_{4}^{3}-d(x^{3}-\rho))-(\frac{\beta}{3}+1)\omega_{2}^{1})(e_{2})\end{array}) (24)

Remark 3 The frame \{e_{1}, e_{2}\} used in Theorem 2 is uniquely (up to
finitely many choices) defined unless dff(e_{1}, e_{1})(TN)\subset span\{dg(e_{1}) , dg(e_{2}) ,
ff(e_{1}, e_{1}) , I(e_{1}, e_{2})\} . Hence in this (generic) case, to each minimal immer-
sion g:N - S_{3}^{5} whose ellipses of curvature are non-degenerate circles we
can uniquely (up to finitely many choices) assign an affine unit sphere
f:Marrow \mathbb{R}^{4} which satisfies Chen’s equality and vice versa.

If dI(e_{1}, e_{1})(TN) \subset span\{dg(e_{1}), dg(e_{2}), I(e_{1}, e_{1}), ff(e_{1}, e_{2})\} , then
N_{3}=N_{4}=0 and we can reduce to an immersion \hat{g}:Narrow S_{2}^{4} . Then
the 1-form valued matrix T_{+} is determined by

\varphi(\theta)=-2\theta+k\pi , k\in \mathbb{Z} , \lambda=\pm 2M , \alpha=0 , \beta=1 ,

(\begin{array}{l}\gamma\delta\end{array})=-\frac{2}{3} (\begin{array}{ll}-sin(\theta) cos(\theta)cos(\theta) sin(\theta)\end{array})(\begin{array}{l}(S_{4}^{3}+2\omega_{2}^{1})(e_{1})(S_{4}^{3}+2\omega_{2}^{1})(e_{2})\end{array}) ,

\omega^{1}=\frac{1}{2} (sin \theta\mu-1 cos \theta\mu 2 ), \omega^{2}=\frac{1}{2} (cos \theta\mu 1+\sin\theta\mu 2 ),

\omega^{3}=\frac{1}{2}(S_{4}^{3}-\omega_{2}^{1}+3d\theta) ,

which follow directly from equations (7)-(16) and N_{4}=0 .

Remark 4 The sub-case previously classified in [SSVV97] is the case
where \beta=0 (cf. the discussion following Lemma 2). By equations (7),
(12), this reduces to N_{4}=\pm 1 . The function \varphi again depends only on \theta .
In the next section we will see that in this case the integrability conditions
have an especially simple form.

4. Minimal immersions g:N arrow S_{3}^{5} whose ellipses of curvature
are circles

After we have reduced the problem to the classification of minimal
immersions whose ellipses of curvature are circles, an investigation of this
class will be done in the following. Consider a minimal immersion g:N -arrow S_{3}^{5}
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with positive definite induced metric whose ellipses of curvature are non-
degenerate circles. We can choose isothermal coordinates (u, v) and a frame
G as defined in equation (6) such that \mu^{1}=\sigma du , \mu^{2}=\sigma dv . Writing dG=
SG the integrability conditions ddG=0 are equivalent to dS-S\wedge S=0

and reduce to
01_{:}0=d\mu 1-\mu^{2}\wedge\omega_{2}^{1}

02_{:}0=d^{2}\mu+\mu^{1}\wedge\omega_{2}^{1}

21 : 0=-d\omega_{2}^{1}+\mu^{1}\wedge\mu^{221}+2M\mu\wedge\mu^{2}

31 : 0=d(M\mu)2-M^{1}\mu\wedge(\omega_{2}^{1}+S_{4}^{3})

41 : 0=d(M\mu)1-M(\omega_{2}^{1}+S_{4}^{3})\wedge\mu^{2}

43: 0=-dS_{4}^{3}+(2M^{2}+(N_{3})^{2}+(N_{4})^{2})\mu^{1}\wedge\mu^{2}

35_{:}0=d(N_{4\mu-N_{3}\mu)}^{12}+S_{4}^{3}\wedge(N_{3\mu}^{1}+N_{4\mu}^{2})

45_{:}0=d(N_{3\mu}^{1}+N_{4\mu}^{2})-S_{4}^{3}\wedge(N_{4\mu-N_{3}\mu)}^{12} .

Since M\neq 0 , the integrability conditions can be re-expressed as

\omega_{2}^{1}=(\ln\sigma)_{v}du- ( ln \sigma)_{u}dv , S_{4}^{3}=adu+bdv , (\ln(\sigma^{2}M))_{u}=b ,
(\ln(\sigma^{2}\mathbb{J}I))_{v}=-a , ( ln \sigma)_{uu}+(\ln\sigma)_{vv}=-(1+2M^{2})\sigma^{2} ,
-a_{v}+b_{u}=(2M^{2}+(N_{3})^{2}+(N_{4})^{2})\sigma^{2} ,
(N_{3})_{u}+(N_{4})_{v}=-N_{3}(\ln(\sigma^{3}M))_{u}-N_{4}(\ln(\sigma^{3}M))_{v} ,
(N_{3})_{v}-(N_{4})_{u}=-N_{3}(\ln(\sigma^{3}\lambda 4))_{v}+N_{4}(\ln(\sigma^{3}M))_{u} .

Setting \sigma^{3}M=A , the system of differential equations is equivalent to the
following determined system:

(ln A)_{uu}+(\ln A)_{vv}=\sigma^{2}((N_{3})^{2}+(N_{4})^{2}-1) ,

( ln \sigma)_{uu}+(\ln\sigma)_{vv}=-(\sigma^{2}\dashv-\frac{2}{\sigma^{4}}A^{2}) , (25)

(AN_{3})_{u}+(AN_{4})_{v}=0 , (AN_{3})_{v}-(AN_{4})_{u}=0 . (26)

Lemma 7 Let g:N – S_{3}^{5} be a minimal immersion with positive defifi-
nite induced metric whose ellipse of curvature is a non-degenerate circle.
Then either N_{3} and N_{4} vanish identically, in which case the image of N
is contained in a totally geodesic S_{2}^{4} , or except at isolated points there exist
isothermic coordinates with \sigma^{3}MN_{4}=1 and N_{3}=0 .

Proof. Let (\tilde{u},\tilde{v}) be any system of isothermal coordinates and define the
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complex coordinate \tilde{z} by \tilde{z}=\tilde{u}+i\tilde{v} . Equations (26) are satisfied if and
only if \tilde{A}(\tilde{N}_{3}-i\tilde{N}_{4}) is a holomorphic function with respect to \tilde{z} . It is
straight forward to show that \frac{1}{2}\tilde{A}(\tilde{N}_{3}-i\tilde{N}_{4}) is just the G_{5} component of
\nabla ff(\partial_{\overline{z}}, \partial-, \partial_{\tilde{z}}) . In fact, note first that

I( \partial_{\tilde{z}}, \partial_{\tilde{z}})=\frac{1}{4}(I(\partial_{\tilde{u}}, \partial_{\tilde{u}})-ff(\partial_{\tilde{v}}, \partial_{\overline{v}})-2iff(\partial_{\tilde{u}}, \partial_{\tilde{v}}))

= \frac{1}{2}\tilde{\sigma}^{2}M(G_{4}-iG_{3}) .

Since \nabla ff(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}})=D_{\partial_{\tilde{z}}}^{\perp}(I(\partial_{\tilde{z}}, \partial_{\tilde{z}}))-2\mathbb{I}(\nabla_{\partial_{\overline{z}}}\Gamma\partial_{\tilde{z}}, \partial-) , where ff(\nabla_{\partial_{\overline{z}}}\partial_{\tilde{z}}, \partial_{\tilde{z}}\in

span\{G_{3}, G_{4}\} , the projection pr_{5} of this vector to span\{G_{5}\} is given by

pr_{5}(\nabla ff(\partial_{\tilde{z}}, \partial_{\tilde{z}}, \partial_{\tilde{z}}))=pr_{5}(D_{\partial_{\overline{z}}}^{\perp}(E(\partial_{\tilde{z}}, \partial_{\overline{z}})))

= \frac{\tilde{\sigma}^{2}M}{4}pr_{5}(D_{\partial_{\overline{u}}-i\partial_{\overline{v}}}^{\perp}(G_{4}-iG_{3}))

= \frac{1}{2}\tilde{A}(\tilde{N}_{3}-i\tilde{N}_{4})G_{5} .

Observe that in T_{x}S_{3}^{5}span\{(G_{5})_{x}\}=(g_{*}^{r}I_{x}N\oplus Image(I_{x}))^{\perp} which implies
that \pm G_{5} is invariant under coordinate transformations (\tilde{u},\tilde{v}) -\mapsto(u, v) .
Since \tilde{A}(\tilde{N}_{3}-i\tilde{N}_{4}) is a holomorphic function, it vanishes either identically
or only at isolated points. In the first case, it follows immediately that G_{5}

is a constant vector and hence N is contained in a totally geodesic S_{2}^{4} . In
the other case, at a point where (N_{3}, N_{4})\neq 0 , it is now clear that there is
a holomorphic coordinate z with respect to which

\frac{1}{2}A(N_{3}-iN_{4})G_{5}=pr_{5}(\nabla ff(\partial_{z}, \partial_{z}, \partial_{z}))

=( \frac{\partial\tilde{z}}{\partial z})^{3}pr_{5}(\nabla I(\partial_{\overline{z}}, \partial_{\overline{z}}, \partial_{\overline{z}}))=-\frac{i}{2}G_{5} .

\square

Corollary 2 Let (A, \sigma):N -arrow \mathbb{R}^{2} , (u, v) – (A(u, v), \sigma(u, v)) be positive
functions such that ( ln \sigma)_{uu}+(\ln\sigma)_{vv}=-\sigma^{2}(1+2\sigma^{-6}A^{2}) and either

(i) ( ln A)_{uu}+( \ln A)_{vv}=\sigma^{2}(\frac{1}{A^{2}} –1 ) or
(ii) ( ln A)_{uu}+(\ln A)_{vv}=-\sigma^{2} .

Then there is either a

(i) minimal immersion g:Narrow S_{3}^{5} or a

(ii) minimal immersion g:N - S_{2}^{4}
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with g^{*}\langle\cdot, \cdot\rangle=\sigma^{2}(du^{2}+dv^{2}) whose ellipses of curvature are non-degenerate
circles and whose curvature is given by k=1+2A^{2}\sigma^{-6}>1 .

Proof. Note that in case (i) (A, \sigma, N_{3}=0, N_{4}=\frac{1}{A}) is a solution of the
integrability conditions (25)-(26) while in case (ii) (A, \sigma, N_{3}=0, N_{4}=0)

is a solution of the integrability conditions. \square

Theorem 3 (i) Let g:N – S_{3}^{5} be a minimal immersion with positive
defifinite induced metric whose ellipses of curvature are non-degenerate cir-
cles and denote its curvature by k . Then k>1 , B:=\triangle\ln\sqrt{k-1}-3k+1\geq

0 , and satisfifies B\triangle B-||gradB||^{2}=-2B^{2}(B-1) .
(ii) Let g:Narrow S_{2}^{4} be a minimal immersion whose ellipses of curvature

are non-degenerate circles and denole its curvature by k . Then k>1 and
\triangle ln \sqrt{k-1}-3k+1=0 .

Proof. We only prove the first case (i). The proof of (ii) is analogous.

and

(\ln(k-1))_{uu}+(\ln(k-1))_{vv}

=(\ln(2M^{2}))_{uu}+(\ln(2M^{2}))_{vv}=2((\ln M)_{uu}+(\ln M)_{vv})

=2((\ln(\sigma^{3}M))_{uu}+(\ln(\sigma^{3}M))_{vv}-3((\ln\sigma)_{uu}+(\ln\sigma)_{vv}))

=2 \sigma^{2}(3(1+2M^{2})+\frac{1}{(\sigma^{3}M)^{2}}-1) .

To avoid the problems at isolated points, we now consider B:=\triangle ln \sqrt{k-1}-

3k+1 , which then satisfies B\triangle B-||gradB||^{2}=-2B^{2}(B-1) \square

Theorem 4 (i) Let (N, g) be a 2-dimensional Riemannian manifold
with curvature k>1 and \triangle ln \sqrt{k-1}-3k+1>0 . If A:=1/
\sqrt{\triangle\ln\sqrt{k-1}-3k+1} satisfifies \triangle\ln A=\frac{1}{A^{2}} –1, then (N, \mathfrak{g}) can be re-
alised as a minimal immersion g:Narrow S_{3}^{5} whose ellipses of curvature are
non-degenerate circles.

(ii) Let (N, \mathfrak{g}) be a 2-dimensional Riemannian manifold with curva-
ture k>1 and \triangle ln \sqrt{k-1}-3k+1=0 . Then (N, g) can be realised
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as a minimal immersion g:N - S_{2}^{4} whose ellipses of curvature are non-
degenerate circles.

Proof. We only prove the first case (i). The proof of (ii) is analogous.

Let M=\sqrt{(k-1)}/2 and \sigma=\sqrt[3]{A}/M . Then the assertion follows from
Corollary 2 applied to (A, \sigma) . \square

Remark 5 We have pointed out in Remark 4 that the integrable case
\beta=0 discussed in [SSVV97] is equivalent to N_{4}=\pm 1 (or A=\pm 1 ). In this
case (N, \mathfrak{g}) also determines an affine unit 2-sphere of mean curvature 1 with
non-zero Pick invariant [SW93, Corollary 2.17]. Conversely, any affine unit
2-sphere of mean curvature 1 satisfies A=1 and therefore determines a min-
imal immersion g:N -arrow S_{3}^{5} whose ellipses of curvature are non-degenerate
circles by Theorem 3. Affine unit 2-spheres with mean curvature 1 can there-
fore be considered as a proper subclass of minimal immersions g:N - S_{3}^{5}

whose ellipses of curvature are circles.

The following generalizes well known facts about affine unit spheres
[LSZ93, paragraph 2.4].

Corollary 3 Any complete minimal immersion with positive defifinite in-
duced metric g:N - S_{3}^{5} whose ellipses of curvature are circles must be
compact.

Proof. Since k=1+2M^{2}\geq 1 the assertion follows immediately from the
Theorem of Myers. \square

Theorem 5 Let g:N -arrow S_{3}^{5} be a compact minimal immersion with positive
defifinite induced metric whose ellipses of curvature are circles. Then there
exists a spacelike plane E through 0 such that g(N)=S_{3}^{5}\cap E . In particular,
the circle of curvature is degenerate everywhere.

Proof. Clearly we may assume that N is orientable. We then recall the
following integral formula from [ROs85]. Let T be a tensor field on a com-
pact manifold N with unit tangent bundle UN and let \nabla T be the c0-

variant derivative of T Then \int_{UN}\sum_{i=1}^{n}(\nabla_{e_{i}}T)(e_{i}, v, v, , v)=0 , where
\{e_{1}, . , e_{n}\} is an orthonormal basis at a point p. For simplicity we write
\nabla I(X_{1}, X_{2}, X_{3}) = \nabla_{X_{1}}I(X_{2}, X_{3}) and by \nabla^{2}I(X_{1}, X_{2}, X_{3}, X_{4}) =
(\nabla_{X_{1}}(\nabla ff))(X_{2}, X_{3}, X_{4}) . Applying the above integral formula, to the tensor
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field

T(X_{1}, X_{2}, X_{3}, X_{4}, X_{5})=\langle\nabla_{X_{1}} ff(X_{2}, X_{3}), ff(X_{4}, X_{5})\rangle ,

we obtain that

\int_{UN}\langle\nabla^{2}I(v, v, v, v), Vf(v, v)\rangle+\langle\nabla^{2}ff(u, u, v, v), Vf(v, v)\rangle

+\langle\nabla I(v, v, v), Vf(v, v, v)\rangle+\langle\nabla ff(u, v, v), I(u, v, v)\rangle=0 ,

where v\in UN and u is the corresponding orthogonal vector such that \{v, u\}

are positively oriented. Since the induced metric on the normal space is
negative definite it follows that

\int_{UN}\langle\nabla^{2}I(v, v, v, v), I(v, v)\rangle+\langle\nabla E(u, u, v, v), Vf(v, v)\rangle\geq 0

Applying the Ricci identity for submanifolds in space forms,

\nabla^{2}I(X, Y, Z, W)-\nabla^{2}ff(Y, X, Z, W)

=R^{\perp}(X, Y)ff(Z, W)-I(R(X, Y)Z, W)-ff(Z, R(X, Y)W) ,

together with the fact that the immersion is minimal, we find that

\int_{UN}\langle R^{\perp}(u, v)I(v, u)-I(R(u, v)v, u)-I(v, R(u, v)u)), ff(v, v)\rangle\geq 0 .

Using now that the ellipse of curvature is a circle ((2), (3) and (4) ) with
radius M centered at the origin together with the Ricci equation, it follows
that

\int_{UN}-2(M^{4}+kM^{2})\geq 0 . (27)

Since by the Gauss equation k\geq 1 the above equation implies that 0=M.
Hence the immersion g is totally geodesic. \square
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