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Stability of fold maps of manifolds with boundary

Naoki SHIBATA
(Received March 14, 2001; Revised June 10, 2002)

Abstract. Let X be a compact orientable smooth m-manifold with non-empty bound-
ary, Y a smooth n-manifold (m\geq n) and f:Xarrow Y a stable map with only fold
singularities. In this paper we clarify the structure of the fold set of the stable map f
near the boundary.
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1. Introduction

In the previous paper Shibata [7], we considered the non-singular stable
maps of compact orientable 3-manifolds with non-empty boundary into R^{2} .
In history, H. Levine [4] studied the stable maps of compact n-dimensional
manifolds (n\geq 2) with non-empty boundary into R^{2} under the condition
that each singular set does not intersect with the boundary. However, as
will be explained in this paper, the notion of stability is also effective for
the case that each singular set is possible to intersect with the boundary.
In fact, we will clarify how the singular set intersects with the boundary in
the case of fold stable maps.

In this paper, the domain manifold X is a compact orientable smooth
m-manifold with non-empty boundary and Y is a smooth n manifold, and
the stable maps X – Y will have singularities of fold points only, which
are defined in \S 2.

In \S 3, we prove Lemma 6 which will be used for the characterization
of fold stable maps on manifolds with boundary in \S 4. Moreover in \S 3,
we prove Proposition 1 which characterizes the stability of immersions on
manifolds with boundary. Proposition 1 explains that the fold stable maps
restricted on the set of fold points are also stable based on Theorem 1 in
\S 4.

In \S 4, we prove our main result as Theorem 1 which clarifies how the
singularities of fold stable maps Xarrow Y(m\geq n) intersect with the bound-
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ary. The method of proof belongs to geometric topology rather than the
theory of singularity. In the proof of Theorem 1, we give a quasi-normal
form of fold singularities around the boundary as Lemma 7. When X is a
closed manifold, the corresponding result has been proven in Golubitsky-
Guillemin [3]. However for our case with boundary, we need some original
techniques different from the case without boundary.

2. Preliminaries

Let X be a m-dimensional smooth manifold with or without boundary
and Y a smooth n-manifold. We denote by C^{\infty}(X, Y) the set of the smooth
maps of X into Y with the Whitney C^{\infty} topology. First, we define df at
p\in\partial X or at f\underline{(p} ) \in\partial Y For f : Xarrow Y , we exten\underline{d}f slightly to a smooth
map \tilde{f} : \overline{X}

– Y which satisfies \tilde{f}|X=f where X\supset X and \overline{Y}\supset Y are
open manifolds. Then we regard T_{p}\overline{X} and T_{f(p)}\overline{Y} as the tangent spaces at
p\in\partial X and f(p)\in\partial Y respectively. Therefore, the rank of df at p\in\partial X is
different from that of d(f|\partial X) at p . For a smooth map f : Xarrow Y . S(f)
denotes the singular set of f ; i.e., S(f) is the set of the points in X where
the rank of the differential df is strictly less than \min\{m, n\} . A smooth
map f : X – Y is stable if there exists an open neighborhood N(f) of f in
C^{\infty}(X, Y) such that every g in N(f) is right-left equivalent to f ; i.e., there
exist diffeomorphisms \phi : X – X and \varphi : Yarrow Y satisfying g=\varphi\circ f\circ\phi^{-1} .

Next, we give a definition of the fold point for the case with bound-
ary. We can define J^{1}(X, Y) in the usual way, which has a structure of a
manifold. For \sigma\in J^{1}(X, Y) , let h be a representative of \sigma in C^{\infty}(X, Y)

and put corank \sigma=\min(\dim X, \dim Y)-rank(dh)_{p} , where dh is already
defined. Then define S_{r}= { \sigma\in J^{1} (X , Y) | corank \sigma=r }, and for a stable
map f : X – Y. define S_{1}(f)=(j^{1}f)^{-1}(S_{1}) .

Definition 1 For p\in S_{1}(f) , p is also in S_{1,0}(f) if the following (i) or (ii)
is satisfied.

(i) When p is in Int X. j_{1}f is transverse to S_{1} at p and T_{p}S_{1}(f)+

Ker (df)_{p}=T_{p}X is satisfied.
(ii) When p is in \partial X . we extend f around p to \tilde{f} which is a smooth

map from an extended manifold \overline{X}\supset X to an extended manifold \overline{Y}\supset Y

so that p\in Int\overline{X} and \tilde{f}|X=f are satisfied. Then p\in S_{1}(\tilde{f}) satisfies that
j_{1}\tilde{f} is transverse to S_{1} at p and that T_{p}S_{1}(\tilde{f})+Ker(d\tilde{f})_{p}=T_{p}\overline{X} .

In addition, if p\in S_{1,0}(f) satisfies (i) or (ii) with the condition that
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S_{1}(\tilde{f}) is transverse to \partial X at p , then p is said to be a fold point.

Definition 2 We call f : X – Y a submersion with S_{1,0} (or folds) if
S(f)=S_{1,0}(f) (resp. = {folds}).

3. Stability of immersions on manifolds with boundary

\alpha^{s,s’} : J^{k}(X, Y)^{s,s}
’

X^{s,s’}

as the induced map by \alpha . Then

J_{s,s’}^{k}(X, Y)=(\alpha^{s,s’})^{-1}(X^{(s,s’)})

is called an (s, s’) -fold multi-k-jet bundle.
X^{(s,s’)} is a manifold since it is an open subset of X^{s,s’} Thus J_{s,s}^{k} , (X, Y)

is an open subset of J^{k}(X, Y)^{s,s’} and is also a smooth manifold.
Let f : Xarrow Y be smooth. Then we can also define j_{s,s}^{k},f : X^{(s,s’)}

-

J_{s,s’}^{k}(X, Y) by

j_{s,s’}^{k}f(x_{1} , . ,_{x_{s+s’})}

= (j^{k}f(x_{1}), . ’ j^{k}f(x_{s}), j^{k}(f|\partial X)(x_{s+1}), ., j^{k}(f|\partial X)(x_{s+s’})) .

Lemma 1 (Multijet Transversality Theorem; the case with boundary) Let
W\subset J_{s,s}^{k} , (X, Y) be a submanifold. Then T_{w}=\{f\in C^{\infty}(X, Y)|j_{s,s}^{k},f is
transverse to W } is a residual subset of C^{\infty}(X, Y) .

Proof It is sufficient to modify the proof of Theorem 4.13 in [3, p. 57] for
the case with boundary. The concept of jets is local, and local arguments
of jets on closed manifolds hold on manifolds with boundary. Since almost
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all needed lemmas depend on the local arguments of jets, they are easily
modified relatively for our proof. \square

Lemma 2 (Whitney Immersion Theorem; the case with boundary) Sup-
pose that X and Y satisfy dim Y\geq 2\dim X . Then the set of immersions
Xarrow Y is an open dense subset of C^{\infty}(X, Y) in the Whitney C^{\infty} topology.

Proof. On the proof of Theorem 5.6 in [3, p. 61], use the modified version
of Thom transversality theorem for the case with boundary. \square

Lemma 3 C^{\infty}(X, Y) is a Baire space in the Whitney C^{\infty} topology.

Proof. It is similar with the case without boundary. \square

Definition 3 Let f arrow

Y^{s+s’} the restriction arrow

Y^{s+s’} to X^{(s,s’)} . Then f is a mapping with strictly normal crossings if
for every s , s’(s+s’>1) , f^{(s,s’)} is transverse to \triangle Y^{s+s’}=\{(y, ., y)\in

Y^{s+s’}|y\in Y\} .

Lemma 4 The set of mappings of X into Y with only strictly normal
crossings is dense in C^{\infty}(X, Y) .

Proof. Use the arguments of Proposition 3.2 in [3, p. 82] with the notion of
strictly normal crossings. In addition, use Lemma 1 and Lemma 3 for the
case with boundary instead of the corresponding facts for the case without
boundary. \square

Corollary 1 Immersions with strictly normal crossings are dense in the
set of all immersions X – Y

Lemma 5 If f : X – Y is an immersion which is stable, then f is an
immersion with strictly normal crossings and f(X)\subset IntY is satisfified.

Proof. If f(X)\cap\partial Y\neq\emptyset is satisfied then a slight perturbation of f is
possible to change f such as f(X)\cap\partial Y=\emptyset , however this perturbation is
not expressed by the right-left equivalence. This indicates the latter claim.

Moreover, any mapping equivalent to an immersion with strictly normal
crossings is an immersion with strictly normal crossings, thus Lemma 4
implies the former claim. \square
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To treat manifolds with boundary, we recall a definition in Shibata [7],
and in addition, we prepare a useful lemma as follows.

Definition 4 Let \alpha : X – Y be a smooth map and \pi_{Y} : TY – Y
the canonical projection. A smooth map w : X – TY is called a vector
fifield along \alpha if w satisfies \alpha=\pi_{Y}\circ w . Then we say that \alpha is strongly
infifinitesimally stable if for every w , a vector field along \alpha , there always
exist a vector field s on X whose restriction to \partial X is a vector field on \partial X

(i.e., each vector of s on \partial X is tangent to \partial X ) and a vector field t on Y
whose restriction to \partial Y is a vector field on \partial Y such that

w=(d\alpha)os+to\alpha ,

where d\alpha : TX – TY is the differential of \alpha .

Henceforth, we denote the set of vector fields along \alpha : X – Y by
C_{\alpha}^{\infty}(X, TY) .

Lemma 6 A smooth map f : Xarrow Y is stable if and only if f is strongly
infifinitesimally stable.

Outline of proof. Necessity is obtained by modifying the argument in [3].
To begin with, we define the notion of strongly transverse stable as follows:
Let \sigma be an (s, 0) -fold multijet in J_{s,0}^{k}(X, Y) , then, let D_{\sigma}^{s} be the orbit
through \sigma under the action of Diff x Diff(y) on J_{s,0}^{k}(X, Y) . We can prove
that D_{\sigma}^{s} is an immersed submanifold without boundary of J_{s,0}^{k}(X, Y) for
each \sigma . Furthermore, D_{\sigma}^{s} is a submanifold without boundary in J_{s,0}^{k}(X, Y) .
Then f is said to be strongly transverse stable if for every s with 1\leq s\leq

n+1 and diagonal element \sigma in J_{s,0}^{n}(X, Y) , j_{s,0}^{n}f is transverse to D_{\sigma}^{s} .
First, we show that, if f is stable then f is strongly transverse stable.

Second, we show that, if a smooth map Xarrow Y is strongly transverse stable
with f(X)\subset IntY , then f is strongly infinitesimally stable. In this process
of our proof, we need to use the notation C^{\infty}(TX)_{p}(p\in X) in the sense
that C^{\infty}(TX) denotes the set of vector fields on TX whose restrictions onto
\partial X are vector fields on \partial X ; The same for Y Details of these modifications
are not difficult.

Sufficiency has been shown by von Essen [2] based on Mather’s theory
[5]. We can remark that the above lemma is a special case of the generalized
theorem which is obtained in Shibata [6]. \square
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Corollary 2 If f : Xarrow Y is stable, then f|\partial X is also stable.

Proof. Let w be a vector field along f|\partial X , and let \overline{w} be a vector field
along f which is an arbitrary extension of w . Then by Lemma 6, \overline{w} is
expressed by \overline{w}=(df)\circ s+t\circ f where s is a vector field on X tangential
to \partial X on \partial X and t is a vector field on Y tangential to \partial Y on \partial Y So,
w=\overline{w}|\partial X=d(f|\partial X)\circ(s|\partial X)+t\circ(f|\partial X) is satisfied. Hence, if f is
stable then f|\partial X is stable. \square

Definition 5 Let V=R v_{1}+ +R v_{k} be a k-dimensional vector
space in R^{l} with a fixed basis v_{i}(1\leq i\leq k\leq l) . Then V^{\partial} is defined by
{ \alpha_{1}v_{1}+\alpha_{2}v_{2}+ +\alpha_{k}v_{k}|\alpha_{1}\in R_{\geq 0} , \alpha_{i}\in R for i\neq 1 }.

Proposition 1 Let f : Xarrow Y be an immersion. Then f is stable if and
only if f(X)\subset IntY and f has only strictly normal crossings.

Proof. Necessity has been proven by Lemma 5. Hence it is sufficient to
show sufficiency. Let q\in f(X) and \{p_{1}, \ldots, p_{r}\}=f^{-1}(q) . As in the proof
of Theorem 3.11 in [3, p. 85], there exist a neighborhood W_{q} of q in Y and
neighborhoods U_{i} of p_{i} in X(1\leq i\leq r) which satisfy

(1) U_{i}\cap U_{j}=\emptyset ( 1\leq i , j\leq r for i\neq j ),
(2) f|U_{i} is a 1: 1 proper immersion into W_{q} ,

(3) f(U_{i})\subset W_{q}\subset\overline{W_{q}}\subset IntY .
(4) f^{-1}(W_{q})= \bigcup_{i=1}^{r}U_{i} ,
(5) W_{q} can be chosen as small as desired.

Then put Y_{i}=f(U_{i})(1\leq i\leq r) . By using the arguments in [3], we know
that Y_{1} , . ’

Y_{r} are submanifolds with or without boundary and assume that
only Y_{i}(1\leq i\leq k) have non-empty boundary for some k(\leq r) . Then the
assumption of strictly normal crossings implies that \partial Y_{i}(1\leq i\leq k) and Y_{j}

(k+1\leq j\leq r) are in general position at q . So, we may choose W_{q} so that
Y_{i}(1\leq i\leq k) are simultaneously linearized orthonormally in W_{q} although
our case permits to have boundary.

From the argument of a partition of unity, it is sufficient to prove that

f is strongly infinitesimally stable for vector fields along f whose supports
are in f^{-1}(W_{q}) . Let t_{i} be t_{i}=\omega\circ(f|U_{i})^{-1} which is a compactly supported
vector field on Y_{i} , where \omega\in C_{f}^{\infty}(X, TY) with supp \omega\subset f^{-1}(W_{q}) . Then we
show that there exists a vector field t on W_{q} so that t|Y_{i}-t_{i} is tangential
to Y_{i} and to \partial Y_{i} on \partial Y_{i} for any i .
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Y_{1} , . ., Y_{r} will be regarded to be subspaces in R^{n} with admitting to
have boundary. To avoid complexity, we may assume Y_{i} have boundary and
Y_{i}=\overline{Y_{i}}^{\partial}(1\leq i\leq r) for some m-dimensional vector spaces \overline{Y}_{i} with bases in
R^{n} . By using the arguments of Lemma 3.8 in [3, p. 84], we can construct a
vector field t such that t|Y_{i}-t_{i} is tangential to Y_{i} .

Based on this t , we will construct a new vector field t^{\partial} on W_{q} so that
t^{\partial}|Y_{i}-t_{i} is tangential to Y_{i} on Y_{i} and to \partial Y_{i} on \partial Y_{i} . For the case of r=1 ,
it is easy to find a vector field v_{1} on W_{q} whose elements are tangential to
Y_{1} so that (t+v_{1})|Y_{1}-t_{1} is tangential to Y_{1} on Y_{1} and to \partial Y_{1} on \partial Y_{1} . For
the case of r>1 , we can find a vector field v_{i} on W_{q} whose elements are
tangential to Y_{i} and orthogonal to \partial Y_{i} so that (t+v_{i})|Y_{i}-t_{i} is tangential to
Y_{i} on Y_{i} and to \partial Y_{i} on \partial Y_{i} . Then by Lemma 3.7 of [3, p. 83], our condition
of strictly normal crossings means that the elements of v_{i} can be assumed
to be tangential to Y_{j} on Y_{j} and to \partial Y_{j} on \partial Y_{j} for i\neq j . Hence it is
sufficient to define t^{\partial} by t^{\partial}=t+ (v_{1}+ +v_{r}) , since t^{\partial}|Y_{i}-t_{i}=(t+

v_{i})|Y_{i}-t_{i}+(v_{1}+ +v_{i-1}+v_{i+1}+ +v_{r}) . Extend t^{\partial} to a vector
field on Y such as t^{\partial}\equiv 0 off W_{q} . Then \omega^{\partial}=\omega-t^{\partial}

\circ f satisfies that for
p\in U_{i} , \omega^{\partial}(p)=\omega(p)-t^{\partial}\circ(f(p)) is tangent to f(U_{i}) at f(p) and that for
p’\in\partial U_{i} , \omega^{\partial}(p’) is tangent to f(\partial U_{i})=\partial Y_{i} at f(p’) . Therefore there exists
a unique vector field s_{i}^{\partial} on U_{i} such that s_{i}^{\partial}|\partial U_{i} is tangential to \partial U_{i} and
that (df)\circ s_{i}^{\partial}=\omega^{\partial} holds. The remainder of our proof is similar to that of
Theorem 3.11 of [3, p. 85]. Finally we obtain a vector field s^{\partial}\in C^{\infty}(TX)

so that s^{\partial}|(f^{-1}(W_{q})\cap\partial X)\in C^{\infty}(T(f^{-1}(W_{q})\cap\partial X)) , s^{\partial}=0 off
f^{-1}(W_{q})\square

and \omega=(df)\circ s^{\partial}+t^{\partial} \circ f are satisfied.

Proposition 2 Let \dim Y=2 \dim X. Then f : X – Y is stable if
and only if f is an immersion with strictly normal crossings and satisfies
f(X)\subset IntY

Proof It is an easy modification of the argument in the proof of PropO-
sition 3.12 in [3, p. 86] to the case with boundary. Sufficiency has been
proven. By Lemma 2 the immersions of X into Y are open and dense,
hence every stable map Xarrow Y must be an immersion, then Corollary 1
implies that any stable map is an immersion with strictly normal crossings,
and f(X)\subset IntY is obtained by the same reason stated in the proof of
Lemma 5. \square
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4. Characterization of fold maps on manifolds with boundary

In this section, we prove our main result as Theorem 1 which clarifies
the structure of fold maps Xarrow Y(m\geq n) . X and Y are same with that
in \S 3.

Remark 1 Let f : X –Y be a submersion with S_{1,0} , then f|S_{1,0}(f) is
an immersion.

Definition 6 (Global condition (G)) Let f : X – Y be a submersion
with S_{1,0} so that f|\partial X is stable. Since f|\partial X is a Boardman map, f|\partial X

has the Thom-Boardman stratification. Then it is known that on every
stratum S_{r_{1},\ldots,r_{s},0}(f|\partial X) , f|S_{r_{1},\ldots,r_{s},0}(f|\partial X) : S_{r_{1},\ldots,r_{s},0}(f|\partial X) – Y is an
immersion. We consider the tangent spaces on S_{1,0}(f) as those on S_{1,0}(\tilde{f})

with the extended manifolds \overline{X} and \overline{Y} in the sense of Definition 1 and define
a global condition (G) as follows:

Case 1: When dim X=\dimY. for any q\in Y put a finite set f^{-1}(q)\cap

(\partial X\cup S_{1,0}(f))=\{p_{1}, ., p_{N}\} so that \partial X\backslash S_{1,0}(f)\ni p_{1} , \ldots , p_{N_{1}} , S_{1,0}(f)\backslash

\partial X\ni p_{N_{1}+1} , ., p_{N_{1}+N_{2}} and S_{1,0}(f)\cap\partial X\ni p_{N_{1}+N_{2}+1} , \ldots , p_{N_{1}+N_{2}+N_{3}}=

p_{N} . Then d(f|\partial X)_{pi}(T_{pi}\partial X) , d(f|S_{1,0}(f))_{p_{j}}(T_{p_{j}}S_{1,0}(f)) and d(f|S_{1,0}(f)\cap

\partial X)_{pk}(T_{pk}(S_{1,0}(f)\cap\partial X))(1\leq i\leq N_{1} , N_{1}+1\leq j\leq N_{1}+N_{2} , N_{1}+N_{2}+

1\leq k\leq N_{1}+N_{2}+N_{3}) are in general position at q .

Case 2: When dim X\geq\dim Y+1 , for any q\in Y , f^{-1}(q)\cap(S(f|\partial X)\cup

S_{1,0}(f)) is a set of discrete points in a compact set X , so this is a finite set,
hence put f^{-1}(q)\cap(S(f|\partial X)\cup S_{1,0}(f))=\{p_{1}, ., p_{N}\} so that S(f|\partial X)\backslash

S_{1,0}(f)\ni p_{1} , ., p_{N_{1}} , S_{1,0}(f)\backslash S(f|\partial X)\ni p_{N_{1}+1} , . ., p_{N_{1}+N_{2}} and S_{1,0}(f)\cap

S(f|\partial X)\ni p_{N_{1}+N_{2}+1} , . , p_{N_{1}+N_{2}+N_{3}}=p_{N} . Then
d(f|S_{r_{1},\ldots,r_{s(i)},0}(f|\partial X))_{pi}(T_{pi}S_{r_{1},\ldots,r_{s(i)},0}(f|\partial X)) , d(f|S_{1,0}(f))_{p_{j}}(T_{p_{j}}S_{1,0}(f))

and d(f|\partial X)_{pk}(T_{pk}(S_{1,0}(f)\cap\partial X))\cap d(f|\partial X)_{pk}(T_{pk}S_{t_{1},\ldots,t_{s(k)},0}(f|\partial X))

(1\leq i\leq N_{1}, N_{1}+1\leq j\leq N_{1}+N_{2}, N_{1}+N_{2}+1\leq k\leq N_{1}+N_{2}+N_{3}) are
in general position at q , where S_{r_{1},\ldots,r_{s(i)},0}(f|\partial X) (or S_{t_{1},\ldots,t_{s(k))}0}(f|\partial X) )
is the stratum of f|\partial X containing p_{i} (resp. p_{k} ) and of course S_{0}(f|\partial X)

means \partial X\backslash S(f|\partial X) .

Theorem 1 Let f : X – Y be a submersion with S_{1,0} . Then f is stable
if and only if f satisfifies the following conditions (1), (2) and (3):
(1) Every point in S_{1,0}(f) is a fold point.
(2) f|\partial X is stable and f satisfifies the condition (G).
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(3) f(X)\subset IntY

Proof. Necessity: First, we show (3). If f(X)\cap\partial Y\neq\emptyset , then a slight
perturbation of f is possible to change f such as f(X)\cap\partial Y=\emptyset , and then,
the diffeomorphism type of f is not kept. This implies (3).

Second, we show (2). The stability of f|\partial X is already shown by Corol-
lary 2. Next, the definition of stability implies that there exists an open
neighborhood N(f) of f in C^{\infty}(X, Y) such that every 9 in N(f) satisfies
g=\varphi\circ f\circ\phi^{-1} where \phi : X – X and \varphi : Y – Y are some diffeomorphisms.
Then rank(df)_{p}=rankd(\varphi\circ f\circ\phi^{-1})_{\phi(p)}(p\in X) holds, thus \phi(S_{1,0}(f))=

S_{1,0}(g) holds, i.e., the right-left equivalence preserves S_{1,0}(f) . Similarly, the
right-left equivalence preserves the Boardman sets S_{r_{1},\ldots,r_{s},0}(f|\partial X) also.
Hence for each case 1 or 2, if the condition (G) is not hold then a slight
perturbation of f is possible to change the diffeomorphism type of f . i.e., f
is not stable. More precisely, we can use the arguments similar to the proof
of Proposition 5.6 in [3, p. 158].

Third, we show (1). We suppose that S_{1,0}(f) intersects not transversely
with \partial X at p in X\tau From the definition of S_{1,0}(f) , we can express \tilde{f} as
(x_{1}, . , x_{m})\mapsto(x_{1}, . ., x_{n-1}, x_{n}^{2}\pm\cdot. \pm x_{m}^{2}) around p in \overline{X} . Since S_{1,0}(f)

corresponds to \{x_{n}=x_{n+1}= =x_{m}=0\} , we may assume that \partial X

corresponds to \{x_{m}=\phi(x_{1}, x_{2}, \ldots, x_{m-1})\} with a C^{\infty} -function \phi satisfying
\frac{\partial\phi}{\partial x_{m}}(0)\neq 0 , \frac{\partial\phi}{\partial x_{1}}(0)= = \frac{\partial\phi}{\partial x_{m-1}}(0)=0 , and then we may assume that
Int X corresponds to \{x_{m}>\phi(x_{1}, x_{2}, . ., x_{m-1})\} .

We put \tau\in C_{f}^{\infty}(X, TY) by

\tau(x_{1} , .,
^{x_{m})=}(f(x_{1}

, . .,
^{x_{m});(0,\ldots,0,2x_{m}))}\tilde{n-1}

.

Then we will show that if \tau is expressed by \tau=df\circ\zeta^{\partial}+\eta^{\partial} \circ f \cdot\cdot(\star) where
(^{\partial}=((x_{1}, ., x_{m});(w_{1}, ., w_{m}))\in C^{\infty}(TX) with (^{\partial}|\partial X\in C^{\infty}(T\partial X)

and \eta^{\partial}= ((y_{1}, . , y_{n});(v_{1}, . ., v_{n}))\in C^{\infty}(TY) with \eta^{\partial}|\partial Y\in C^{\infty}(T\partial Y) ,
then this produces a contradiction. (\star) means w_{k}+Vk (%i, . , x_{n-1} , x_{n}^{2}\pm

\pm x_{m}^{2})=0(1\leq k\leq n-1) , 2x_{n}w_{n}\pm 2x_{n+1}w_{n+1}\pm \pm 2x_{m}w_{m}+

v_{n} (x_{1}, ., x_{n-1}, x_{n}^{2}\pm \pm x_{m^{2}})=2x_{m} . Then the partial differential
2x_{n} \frac{\partial w_{n}}{\partial x_{m}}\pm\cdot\cdot\pm 2x_{m^{\frac{\partial w_{m}}{\partial x_{m}}}}\pm 2w_{m}\pm 2x_{m^{\frac{\partial v_{n}}{\partial x_{m}}}}=2 implies w_{m}(0)\neq 0 . Therefore
\zeta^{\partial} is not tangential to \partial X at p . This is a contradiction. \square

Before proving sufficiency, we prepare the following Lemma 7.



482 N. Shibata

Lemma 7 Let f : X – Y be a submersion with S_{1,0}(f) , and suppose that
the conditions (1) and (3) of Theorem 1 are satisfified. Then, for p\in S_{1,0}(f)\cap

\partial X . t/iere exist local coordinates t , x_{2} , , x_{m} centered at p , y_{1} , ., y_{n} cen-
tered at f(p) and \phi a C^{\infty} -function of x_{2} , ., x_{m} such that f is expressed
by

(t, x_{2}, . ’ x_{m})

\mapsto (t+\phi(x_{2}, ., x_{m}), x_{2}, . , x_{n-1}, x_{n}^{22}\pm x_{n+1}\pm \pm x_{m}^{2}) ,

where \partial X corresponds to \{t=0\} and Int X corresponds to \{t>0\} .

Proof Theorem 4.5 in \underline{[}3 , p. 88] has shown that in the previous extended
manifolds \overline{X}\supset X and Y\supset Y such as p\in Int\overline{X} with an extended C^{\infty} -

function \tilde{f} of f.\tilde{f} is expressed by (x_{1}, , x_{m}) –(x_{1} , . ’ x_{n-1} , x_{n}^{2}\pm\cdots\pm

x_{m}^{2}) around a neighborhood U_{p} of p , and a neighborhood V_{\overline{f}(p)} of \tilde{f}(p) ,

where S_{1,0}(\tilde{f}) corresponds to x_{n}=x_{n+1}= =x_{m}=0 .
Since the codimension of \partial X is one, by_{-the} condition (1) we may as-

sume that \partial X is a graph of x_{2} , \ldots , x_{m} in X for x_{1}=\phi(x_{2}, . . ’ x_{m}) with
a C^{\infty} -function \phi . Through a change of coordinates such as x_{1}’=x_{1} -

\phi(x_{2}, ., x_{m}) , x_{2}’=x_{2} , ., x_{m}’=x_{m} , we can write \tilde{f} by (x_{1}’, ., x_{m}’) -

(x_{1}’+\phi(x_{2}’, . ., x_{m}’), x_{2}’, \ldots, x_{n-1}’, x_{n}^{\prime 2}\pm x_{n+1}^{\prime 2}\pm \cdot \pm x_{m}^{\prime 2}) where \{x_{1}’=0\}

corresponds to \partial X and we may assume \{x_{1}’>0\} corresponds to Int Xr This
induces our conclusion. \square

Remark 2 By calculating the rank of Jacobian matrix of f based on
Lemma 7, we know that S_{1,0}(f)\cap\partial X\subset S(f|\partial X) .

Proof of the sufficiency of Theorem 1. We use the notion of stability ap-
peared in the proof of Lemma 6, i.e.; we will show that if f satisfies the
conditions (1), (2) and (3) then for every v with 1\leq v\leq n+1 and any
diagonal element \sigma in J_{v,0}^{n}(X, Y) , j_{v,0}^{n}f is transverse to D_{\sigma}^{v} .

From the arguments in the case of manifolds without boundary, if the
source of \sigma does not contain a point on \partial X , j_{v,0}^{n}f is transverse to D_{\sigma}^{v} .
Therefore, we may assume that the source of \sigma contains a point of \partial X We
give a proof by two steps.

Step 1. [If f satisfies the conditions (1), (2) and (3) then it will be shown
that there exists a sufficiently small n\underline{ei}ghborhood- N of f in C^{\infty}(X, Y) such
that for any \tilde{g} in D(\underline{\tilde{f})}=\{\underline{\tilde{h}}\in C^{\infty}(X,\underline{Y})|\exists\underline{\tilde{\varphi}}\circ\tilde{f}0^{\exists}\tilde{\phi}^{-1}=\tilde{h}\}\cap N with
diffeomorphisms \tilde{\phi} : X – X and \tilde{\varphi} : Y – Y , two maps f=\tilde{f}|X and
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g=\tilde{g}|X are R-L ( i.e. , right-left) equivalent.]
Indeed, the global condition (G), the condition of transversality between

S_{1,0}(f) and \partial X , andf(X)_{-}\subset- Int Y guarantee the existence of the following
diffeomorphism \tilde{\phi}’ : Xarrow X which satisfies from (i) to (iii). (See Figure 1.)
(i) \tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(X)=X ( \phi\sim’-1\circ\tilde{\phi}^{-1}(\partial X)=\partial X automatically.)
(ii) \tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(S_{r_{1},\ldots,r_{s},0}(g|\partial X))=S_{r_{1},\ldots,r_{s},0}(f|\partial X)

(iii) If p_{1} , p_{2}\in\overline{X} satisfies \tilde{f}\circ\tilde{\phi}^{-1}(p_{1})=\tilde{f}\circ\tilde{\phi}^{-1}(p_{2}) then \tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(p_{1})=

\tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(p_{2}) is also satisfied. Oppositely, if \tilde{f}0\tilde{\phi}^{-1}(p_{1})\neq\tilde{f}0\tilde{\phi}^{-1}(p_{2})

holds then \tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(p_{1})\neq\tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}(p_{2}) is also satisfied.

Fig. 1.

By the assumption of sufficiency, there exist diffeomorphisms \phi^{\partial} : \partial Xarrow

\partial X and \varphi^{\partial} : Y – Y such that \varphi^{\partial}\circ(\tilde{f}|\partial X)\circ(\phi^{\partial})^{-1}=\tilde{g}|\partial X . Here we
extend \varphi^{\partial} to a diffeomorphism \tilde{\varphi}^{\partial} : \overline{Y}

–

\overline{Y} with holding \tilde{\varphi}^{\partial}|Y=\varphi^{\partial} . Thus
we may assume that the previous \tilde{\phi}’ satisfies (\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1})|\partial X-=(\phi^{\partial}\underline{)}^{-1} .
With respect to the above \tilde{\phi}’ . we can find a diffeomorphism \tilde{\varphi}’ : Y – Y so
that \tilde{\varphi}’\circ\tilde{\varphi}\circ\tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}=\tilde{g} and \tilde{\varphi}’\circ\tilde{\varphi}(Y)=Y are satisfied, because \varphi^{\partial}\circ

\tilde{\varphi}^{-1} : \overline{Y}

–

\overline{Y} is a diffeomorphism such as (\tilde{\varphi}^{\partial}\circ\tilde{\varphi}^{-1})\circ\tilde{\varphi}=\tilde{\varphi}^{\partial} . Thus we can
deform (\tilde{\varphi}’=)\tilde{\varphi}^{\partial}\circ\tilde{\varphi}^{-1}def outside \tilde{\varphi}\circ\tilde{f}(\partial X) so that \tilde{\varphi}’\circ\tilde{\varphi}\circ\tilde{f}\circ\tilde{\phi}^{\prime-1}\circ\tilde{\phi}^{-1}=\tilde{g}
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holds. Then (\tilde{\varphi}’\circ\tilde{\varphi}|Y)\circ f\circ(\tilde{\phi}0\tilde{\phi}’|X)^{-1}=g gives a R-L equivalence
between f and g .

Step 2. [We will show that, if f : Xarrow Y is not stable then all of the
previous conditions (1), (2) and (3) are not satisfied, i.e., the non-existence
of N in the claim of Step 1 follows.]

It is su fRcient to prove that if there is a diagonal element \sigma in J_{v,0}^{n}(X, Y)

for a v(1\leq v\leq n+1) so that j_{v,0}^{n}f is not transverse to D_{\sigma}^{v} , then for any
neighborhood N’ of f in C^{\infty}(X, Y) , there exists a g’ in D(\tilde{f})\cap N’ which
does not have definitely diffeomorphisms \phi : Xarrow X and \varphi : Yarrow Y such
as \varphi\circ fo\phi^{-1}=g’ .

We will explain that for the above any N’ , there exists such a g’ by
separating the assumption into the following two cases.

Case 1: [ \sigma is an isolated point in j_{v,0}^{n}f\cap D_{\sigma}^{v}. ]
Let \overline{X},\overline{Y} be extended manifolds of X and Y respectively due to the

definition of S_{1,0}(f) . First, we can regard that j_{v,0}^{n}f is in j_{v,0}^{n}\tilde{f} and D_{\sigma}^{v} is
in J_{v,0}^{n}(\overline{X},\overline{Y}) by J_{v,0}^{n}(X, Y)\subset J_{v,0}^{n}(\overline{X},\overline{Y}) . For an appropriate manifold X_{-}

diffeomorphic to X and an appropriate diffeomorphism \tilde{\phi} : \overline{X}

–

\overline{X} such
as X_{-}\subset IntX\subset X\subset\overline{X} and \tilde{\phi}(X_{-})=X , put \tilde{g}=id-\circ\tilde{f}\circ\tilde{\phi}^{-1} where
id_{\overline{Y}} : \overline{Y}arrow\overline{Y} is the identity, and then we may assume that \tilde{g} is sufficiently
close to \tilde{f} . Then we show that f and g=\tilde{g}|X are not R-L equivalent.
If f and g are R-L equivalent then there must exist diffeomorphisms \phi :
X – X and \varphi : Yarrow Y such as g=\varphi\circ f\circ\phi^{-1} . However, by taking an
appropriate X_{-} close to X , it is possible to the image of R-L equivalence of
\sigma , j_{v,0}^{n}id_{Y}\circ\sigma\circ j_{v,0}^{n}\tilde{\phi}^{-1} , is not in D_{\sigma}^{v} from the assumption of Case 1. Hence
it is shown that f and g are not R-L equivalent.

Case 2: [ \sigma is not an isolated point in j_{v,0}^{n}f\cap D_{\sigma}^{v}. ]
Let \overline{X}.\overline{Y} be extended manifolds of X and Y respectively due to the

definition of S_{1,0}(f) . Then the non-transversality condition between j_{v,0}^{n}f

and D_{\sigma}^{v}\underline{a}dmits to the existences of \tilde{f} with \overline{X},\overline{Y} and a neighborhood of \sigma

in J_{v,0}^{n}(X,\overline{Y}) , N(\sigma) , so that (j_{v,0}^{n}\tilde{f}\backslash j_{v,0}^{n}f)\cap D_{\sigma}^{v}\cap N(\sigma)=\emptyset is satisfied, or
so that for any neighborhood of \sigma in N(\sigma) , N’(\sigma)(\subset N(\sigma)) , (j_{v,0}^{n}\tilde{f}\backslash j_{v,0}^{n}f)\cap

D_{\sigma}^{v}\cap N’(\sigma) has more than two components in J_{v,0}^{n}(\overline{X},\overline{Y}) (i.e., it seems to
be ramified.), where D_{\sigma}^{v} is defined in the subspace J_{v,0}^{n}(X, Y)\subset J_{v,0}^{n}(\overline{X},\overline{Y}) .
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For an appropriate manifold X_{+} diffeomorphic to X and an \underline{a}ppropriate

diffeomorphism \tilde{\phi} : \overline{X}arrow\overline{X} such as X\subset IntX_{+}-\subset X_{+}\subset IntX\subset X and
\tilde{\phi}(X_{+})=X , put \tilde{g}=id_{\overline{Y}}\circ\tilde{f}\circ\tilde{\phi}^{-1} where id_{\overline{Y}} : Y –

\overline{Y} is the identity. Then
we may assume that \tilde{g} is sufficiently close to \tilde{f} , and then we show that f
and g=\tilde{g}|X are not R-L equivalent. Indeed, since a diffeomorphism on X
induces a diffeomorphism of \partial X onto \partial X , if f and g are R-L equivalent by
g=\varphi\circ f\circ\phi^{-1} with some diffeomorphisms \phi : X – X and \varphi : Y – Y .

then the above induced R-L equivalence on \partial X must map the point \sigma into
an empty set or at least two distinct points from the assumption of Case 2.
This is a contradiction. \square

Appendix

We give an appendix as the following Lemma 8. This will be welcomed
for reader who requests for severe explanations in the proof of Theorem 1.

Lemma 8 Let Y be a manifold with submanifolds Y_{1} , \ldots , Y_{r} . Suppose
q\in Y_{1}\cap \cap Y_{r} and Y_{1} , , Y_{r} are in general position at q . Then, for
diffeomorphisms f_{i} : Y_{i}arrow f_{i}(Y_{i})\subset Y close to the identity id_{Y_{i}} : Y_{i} – Y_{i}\subset

Y with the Whitney C^{\infty} -topology, there exists a diffeomorphism \Phi : Y – Y
which satisfy \Phi(Y_{1}\cup\cdots\cup Y_{r}\cap N)=f_{1}(Y_{1})\cup\cdot\cdot\cup f_{r}(Y_{r})\cap\Phi(N) and \Phi(Y_{i}\cap

N)=f_{i}(Y_{i})\cap\Phi(N)(1\leq i\leq r) for a neighborhood of q in Y, N

Proof (sketch) First, we can find a diffeomorphism \overline{\Phi} : R^{\dim Y}(\supset N) -

R^{\dim Y} and q’\in Y such that \overline{\Phi}(T_{q}Y_{1}\cup \cdot\cup T_{q}Y_{r}\cap N)=T_{q’}f_{1}(Y_{1})\cup \cdot\cup

T_{q’}f_{r}(Y_{r})\cap\overline{\Phi}(N) with \overline{\Phi}(T_{q}Y_{i}\cap N)=T_{q’}f_{i}(Y_{i})\cap\overline{\Phi}(N)(1\leq i\leq r) .
Next consider a deformation by diffeomorphisms \overline{\Phi}_{1},\overline{\Phi}_{2}- : R^{\dim Y}(\supset

\underline{N})
– R^{\dim Y} so that \overline{\Phi}_{1}(T_{q}\underline{Y}_{i})\cap N=Y_{i}\cap N with \Phi_{1}(q)=q and

\Phi_{2}(T_{q’}f_{i}(Y_{i}))\cap\overline{\Phi}(N)=f_{i}(Y_{i})\cap\Phi(N) with \overline{\Phi}_{2}(q’)=q’ (for 1\leq i\leq r ). \square

Problem 1 For the stable maps treated in this paper, consider the cor-
responding theorem with that in Levine [4, p. 2567].
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