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Volterra integral equations: the singular case
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Abstract. Positive solutions are established for the Volterra integral equation y(t)=
\int_{0}^{t}k(t, s)f(s, y(s))ds , t\in[0, T] . Our nonlinearity may be singular at y=0 .
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1. Introduction

This paper discusses the singular Volterra equation

y(t)= \int_{0}^{t}k(t, s)f(s, y(s))ds for t \in[0, T] , T>0 fixed. (1.1)

Our nonlinearity f may not be a Carath\’eodory function because of the
singular behavior of the y variable i.e. f may be singular at y=0 . In the
literature (see [3, 4] and the references therein) almost all results concern
the case when f is a L^{\infty} -Carath\’eodory function; to our knowledge only one
paper [1] has discussed (1.1), in its full generality, when f is singular at
y=0 . We also note that only a handful of papers (see [2, Chapter 1]) have
discussed the initial value problem (which is a special case of (1.1)),

\{

y^{(n)}=\phi(t)f(t, y) for t\in[0, T]

y^{(i)}(0)=0 , 0\leq i\leq n-1 , n\geq 1

when f is singular at y=0 . This paper presents new results for (1.1). In
particular new ((lower type inequalities” on solutions to (1.1) are presented.
Also by exploiting the monotonicity of the kernel we are able to relax some of
the assumptions in [1], For example if we consider the initial value problem

\{

y’=[y(t)]^{-a}+A[y(t)]^{b} for t\in[0, T]

y(0)=y’(0)=0 , A>0 , 0\leq b\leq 1 , a>0 ,
(1.2)

then the results in [1] guarantee that (1.2) has a solution if a \in(0, \frac{1}{2})

whereas the results in this paper guarantee that (1.2) has a solution if
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a\in(0,1) . Moreover in this paper we can consider (1.2) with A=0 (see
Remark 2.2). We were unable to discuss the case A=0 in [1] since (2.7) in
[1] is not satisfied.

The theory in Section 2 makes use of the following well known existence
principle from the literature [4].

Theorem 1.1 Suppose the following conditions hold:

h\in C[0, T] (1.3)

\{\begin{array}{l}F\cdot.[0,T]\cross Rarrow RisaL^{\infty}- Carath\acute{e}odoryfunction.Bythiswemean\cdot.(i) themapy\mapsto F(t,y) isconlinuousforalmostalltin[0,T], (1.4)(ii) themapt\mapsto F(t,y) ismeasurableforallyinR,(iii)foranyr>0thereexists\mu_{r}\in L^{\infty}[0,T] suchthal|y|\leq rimplies|F(l,y)|\leq\mu_{r}(t)foralmostalltin[0,T]\end{array}

k_{t}(s)=k(t, s)\in L^{1}[0, t] for each t\in[0, T] (1.5)

and

\{
for any t , t’\in[0, T] , \int_{0}^{t^{\star}}|k_{t}(s)-k_{t’}(s)|ds -0

as t – t’ ; here t^{\star}= \min\{t, t’\} .

(1.6)

In addition suppose there is a constant M>0 , independent of \lambda , with
|y|_{0}= \sup_{[0,T]}|y(t)|\neq M for any solution y\in C[0, T] to

y(t)=h(t)+ \lambda\int_{0}^{t}k(t, s)F(s, y(s))ds , t\in[0, T] ,

for each \lambda\in(0,1) . Then

y(t)=h(t)+ \int_{0}^{t}k(t, s)F(s, y(s))ds , t\in[0, T]

has at /east one solution in C[0, T] .
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2. Singular problems

In this section we consider the singular integral equation

y(t)= \int_{0}^{t}k(t, s)[g(y(s))+h(y(s))]ds for t\in[0, T] ; (2.1)

here T>0 is fixed.
For our main result we will assume the following conditions are satisfied:

g>0 is continuous and nonincreasing on (0, \infty) (2.1)

\{

h\geq 0 is continuous and nondecreasing
on [0, \infty) with h>0 on (0, \infty)

(2.1)

k_{t}(s)=k(t, s)\in L^{1}[0, t] for each t\in[0, T] (2.4)

\{astarrow tforanyt,,\cdot’ t’\in[0,T]heret^{\star}=
’

\int_{0}^{t^{\star}}|k_{t}(,s)-k_{t’}(s)|ds\min\{t,t\}arrow 0 (2.5)

for each t\in[0, T] , k(t, s)\geq 0 for a.e . s\in[0, t] (2.6)

\{
for t_{1} , t_{2}\in(0, T) with t_{1}<t_{2} we have
k(t_{1}, s)\leq k(t_{2}, s) for a.e . s\in[0, t_{1}]

(2.7)

\{

\exists a\in L^{1}[0, T] , a>0 on (0, T] with k(t, s)\leq a(s)

for a.e . s\in[0, t] , for each t\in[0, T]
(2.1)

\{f_{Or}\int_{0}\tau_{S\in[0,T]andG(z)=\frac{z}{g(z)}for}a(s)g(\alpha(s))ds<\infty where\alpha(s)=G^{-1}(\int_{0}^{s}k(s,x)dx)z>0(2.9)

\{\begin{array}{l}\exists r\in C[0,T]with\int_{0}^{t}|k(x,s)-k(t,s)|g(\alpha(s))ds\leq|r(x)-r(t)|fort,x\in[0,T]witht<x\end{array} (2.10)



374 R.P. Agarwal and D. O ’Regan

and

\int_{\theta}^{\infty}\frac{dx}{h(x)}=\infty for any \theta>0 . (2.11)

Remark 2.1 Notice (2.2) guarantees that G is an increasing function.

Theorem 2.1 Suppose (2.2)-(2.11) hold. Then (2.1) has a solution y\in

C[0, T] with y(t)\geq\alpha(t) for t\in[0, T] (here \alpha is as in (2.9)).

Proof. Let N_{0}=\{1,2, .\} . We first show the nonsingular problem

y(t)= \frac{1}{m}+\int_{0}^{t}k(t, s)[g^{\star}(y(s))+h(y(s))]ds , t\in[0, T] (2.12)^{m}

has a solution for each m\in N_{0} ; here

g^{\star}(u)=\{

1
g(u) , u\geq\overline{m}

g( \frac{1}{m}) u \leq\frac{1}{m} .

Fix m\in N_{0} . To show (2.12)^{m} has a solution we will use Theorem 1.1, so
as a result we consider the family of problems

y(t)= \frac{1}{m}+\lambda\int_{0}^{t}k(t, s)[g^{\star}(y(s))+h(y(s))]ds , t\in[0, T] (2.13)_{\lambda}^{m}

for 0<\lambda<1 . Let y\in C[0, T] be any solution of (2.13)_{\lambda}^{m} . Then y(t) \geq\frac{1}{m}

for t\in[0, T] . Also for t\in[0, T] we have from (2.8) that

y(t) \leq\frac{1}{m}+\int_{0}^{t}a(s)[g(\frac{1}{m})+h(y(s))]ds ,

so

y(t) \leq K_{m}+\int_{0}^{t}a(s)h(y(s))ds for t\in[0, T] ; (2.14)

here K_{m}= \frac{1}{m}+g(\frac{1}{m})\int_{0}^{T}a(s)ds . Let

u(t)=K_{m}+ \int_{0}^{t}a(s)h(y(s))ds for t\in[0, T] .
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Then u’(t)=a(t)h(y(t))\leq a(t)h(u(t)) for t\in(0, T) , so as a result

\int_{K_{m}}^{u(t)}\frac{du}{h(u)}\leq\int_{0}^{T}a(x)dx for t\in[0, T] . (2.15)

Let

J_{m}(z)= \int_{K_{m}}^{z}\frac{du}{h(u)} for z\geq K_{m} ,

so (2.14) and (2.15) imply

\frac{1}{m}\leq y(t)\leq u(t)\leq J_{m}^{-1}(\int_{0}^{T}a(x)dx) for t\in[0, T] .

Theorem 1.1 guarantees that (2.12)^{m} has a solution y_{m}\in C[0, T] with
y_{m}(t) \geq\frac{1}{m} for t\in[0, T] , and of course y_{m} is a solution of

y(t)= \frac{1}{m}+\int_{0}^{t}k(t, s)[g(y(s))+h(y(s))]ds for t\in[0, T] . (2.16)

We will now obtain a solution to (2.1) by means of the Arzela-Ascoli The-
orem, as a limit of solutions of (2.12)^{m} . To this end we will show

\{y_{m}\}_{m\in N_{0}} is a bounded, equicontinuous family on [0, T] . (2.17)

However before we prove (2.17) we will show

y_{m}(t) \geq G^{-1}(\int_{0}^{t}k(t, s)ds)\equiv\alpha(t) for t\in[0, T] , (2.18)

for each m\in N_{0} . Fix m\in N_{0} and t , x\in[0, T] with t<x . Then (2.7)
implies

y_{m}(x)-y_{m}(t)= \int_{0}^{t}[k(x, s)-k(t, s)][g(y_{m}(s))+h(y_{m}(s))]ds

+ \int_{t}^{x}k(x, s)[g(y_{m}(s))+h(y_{m}(s))]ds

\geq 0 ,

so y_{m} is nondecreasing on (0, T) . As a result for t\in[0, T] we have

y_{m}(t) \geq\int_{0}^{t}k(t, s)g(y_{m}(s))ds\geq g(y_{m}(t))\int_{0}^{t}k(t, s)ds .



376 R.P. Agarwal and D. O ’Regan

That is

G(y_{m}(t))= \frac{y_{m}(t)}{g(y_{m}(t))}\geq\int_{0}^{t}k(t, s)ds for t\in[0, T] ,

so (2.18) holds; note G is an increasing function since g is nonincreasing.
Next we show \{y_{m}\}_{m\in N_{0}} is a bounded family on [0, T] . Fix m\in N_{0} . For
t\in[0, T] we have from (2.18) that

y_{m}(t)= \frac{1}{m}+\int_{0}^{t}k(t, s)[g(y_{m}(s))+h(y_{m}(s))]ds

\leq 1+\int_{0}^{t}a(s)[g(\alpha(s))+h(y_{m}(s))]ds ,

so

y_{m}(t) \leq K+\int_{0}^{t}a(s)h(y_{m}(s))ds for t\in[0, T] ;

here K=1+ \int_{0}^{T}a(s)g(\alpha(s))ds . Let

w(t)=K+ \int_{0}^{t}a(s)h(y_{m}(s))ds for t\in[0, T] .

Notice w’(t)=a(t)h(y_{m}(t))\leq a(t)h(w(t)) for t\in(0, T) , so

0 \leq y_{m}(t)\leq w(t)\leq J^{-1}(\int_{0}^{T}a(x)dx)\equiv M for t\in[0, T] ;

here

J(z)= \int_{K}^{z}\frac{du}{h(u)} for z\geq K .

Thus |y_{m}|_{0}= \sup_{t\in[0,T]}|y_{m}(t)|\leq M for m\in N_{0} . To show the second part
of (2.17) fix m\in N_{0} , and note for t , x\in[0, T] with t<x that

0 \leq y_{m}(x)-y_{m}(t)=\int_{0}^{t}[k(x, s)-k(t, s)][g(y_{m}(s))+h(y_{m}(s))]ds

+ \int_{t}^{x}k(x, s)[g(y_{m}(s))+h(y_{m}(s))]ds

\leq\int_{0}^{t}[k(x, s)-k(t, s)]g(\alpha(s))ds

+h(M) \int_{0}^{t}[k(x, s)-k(t, s)]ds



Volterra integral equations: the singular case 377

+ \int_{t}^{x}a(s)[g(\alpha(s))+h(M)]ds

\leq|r(x)-r(t)|+h(M)\int_{0}^{t}[k(x, s)-k(t, s)]ds

+ \int_{t}^{x}a(s)[g(\alpha(s))+h(M)]ds ;

here we used (2.10). Now this together with (2.5), (2.9) and (2.10) implies
\{y_{m}\}_{m\in N_{0}} is a equicontinuous family on [0, T] .

The Arzela-Ascoli theorem guarantees the existence of a subsequence
N of N_{0} and a function y\in C[0, T] with y_{m} converging uniformly on [0, T]

to y as m – \infty through N . In addition \alpha(t)\leq y(t)\leq M for t\in[0, T] .
Next fix t\in[0, T] . Then

y_{m}(t)= \frac{1}{m}+\int_{0}^{t}k(t, s)[g(y_{m}(s))+h(y_{m}(s))]ds .

Let m – \infty through N , and use the Lebesgue dominated convergence
theorem with (2.9), to obtain

y(t)= \int_{0}^{t}k(t, s)[g(y(s))+h(y(s))]ds .

We can do this argument for each t\in[0, T] . \square

Remark 2.2 If h\equiv 0 in (2.1), then the result in Theorem 2.1 is again
true with (2.3) and (2.11) removed.

Remark 2.3 Suppose there exists p , 1\leq p\leq\infty and q , \frac{1}{p}+\frac{1}{q}=1 with

\int_{0}^{t}g^{q}(\alpha(s))ds<\infty (2.19)

and

\{foranytastarrow t".

,
t’\in[0,T]heret^{\star}’=

\int_{0}^{t^{\star}}|k_{t}(,s)-k_{t’}(s)|^{p}ds\min\{t,t\}arrow 0 (2.20)

Then (2.10) (and of course (2.5)) is not needed in Theorem 2.1.
To see this notice (2.10) is needed to show (2.17) in Theorem 2.1. How-

ever this is automatically true in this case since if t , x\in[0, T] with t<x
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then

y_{m}(x)-y_{m}(t) \leq(\int_{0}^{t}|k_{x}(s)-k_{t}(s)|^{p}ds)^{\frac{1}{p}}(\int_{0}^{T}[g(\alpha(s))+h(M)]^{q}ds)^{\frac{1}{q}}

+ \int_{t}^{x}a(s)[g(\alpha(s))+h(M)]ds .

Remark 2.4 If we replace (2.3), (2.8), (2.9) and (2.11) in Theorem 2.1
by

\{

h\geq 0 is continuous on [0, \infty) and

\frac{h}{g} is nondecreasing on [0, \infty)

(2.11)

\sup_{t\in[0,T]}\int_{0}^{t}k(t, s)g(\alpha(s))ds<\infty (2.22)

and

\{aandb)suchimp1ies^{1}z\leq M\exists constantsa,

,

that0<z\leq a+bandM(whichb\{1may+\frac{h(z)end}{g(z)}\}depon

(2.23)

then the result in Theorem 2.1 is again true.
To see this notice if y\in C[0, T] is any solution of (2.13)_{\lambda}^{m} then

|y(t)| \leq 1+\int_{0}^{t}k(t, s)g(y(s))\{1+\frac{h(y(s))}{g(y(s))}\}ds for t\in[0, T] ,

so

|y|_{0} \leq 1+(g(\frac{1}{m})\sup_{t\in[0,T]}\int_{0}^{t}k(t, s)ds)\{1+\frac{h(|y|_{0})}{g(|y|_{0})}\}

Then there exists a constant M_{m} (independent of any solution y to (2.13)_{\lambda}^{m} )
with |y|_{0}\leq M_{m} . Theorem 1.1 guarantees that (2.12)^{m} has a solution y_{m}

and it is easy to check that y_{m}(t)\geq\alpha(t) for t\in[0, T] and

|y_{m}|_{0} \leq 1+\{1+\frac{h(|y_{m}|_{0})}{g(|y_{m}|_{0})}\}\sup_{t\in[0,T]}\int_{0}^{t}k(t, s)g(\alpha(s))ds .
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Then there exists a constant M (independent of m) with |y_{m}|_{0}\leq M . Es-
sentially the same reasoning as in Theorem 2.1 establishes the result.

Example 2.1 Consider

y(t)= \int_{0}^{t}k(t, s)\{[y(s)]^{-a}+A[y(s)]^{b}\}ds for t\in[0, T] (2.24)

with A\geq 0,0\leq b\leq 1 and a>0 . Assume (2.4)-(2.8) hold and in addition
suppose the following conditions are satisfied:

\int_{0}^{T}a(s)[\int_{0}^{s}k(s, x)dx]^{-\frac{a}{a+1}}ds<\infty (2.25)

and

\{\exists r\in C[0,T]\leq|r(x)r(t)|fort,x\in[0\int_{-}0|k(x,s)-k(t, s)|,[t\int_{T]}0k(s, u)du]^{-\frac{a}{a+1}}s_{Witht<X}.dswith (2.26)

Then (2.24) has a solution y\in C[0, T] with

y(t) \geq[\int_{0}^{t}k(t, x)dx]\frac{1}{a+1} for t\in[0, T] .

To see this apply Theorem 2.1 with

g(y)=y^{-a} . h(y)=Ayb and note G^{-1}(z)=z^{\frac{1}{a+1}} ;

note if A=0 we can apply Remark 2.2. Clearly (2.11) holds since 0\leq b\leq

1 .

Example 2.2 Consider

y(t)= \int_{0}^{t}(t-s)\phi(s)\{[y(s)]^{-a}+A[y(s)]^{b}\}ds for t\in[0, T]

(2.27)

with A\geq 0,0\leq b\leq 1 and a>0 . Assume the following conditions are
satisfied:

\phi\in C(0, T]\cap L^{1}[0, T] with \phi>0 on (0, T] (2.28)
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and

\int_{0}^{T}\phi(s)[\int_{0}^{s}(s-x)\phi(x)dx]^{-\frac{a}{a+1}}ds<\infty . (2.29)

Then (2.27) has a solution y\in C[0, T] with

y(t) \geq[\int_{0}^{t}(t-x)\phi(x)dx]\frac{1}{a+1} for t\in[0, T] .

To see this we apply Example 2.1 with k(t, s)=(t-s)\phi(s) for 0\leq

s\leq t . Clearly (2.4)-(2.7) hold and in addition (2.8) is satisfied if we choose
a(s)=(T-s)\phi(s) . Also (2.25) is immediate since

\int_{0}^{T}a(s)[\int_{0}^{s}k(s, x)dx]^{-\frac{a}{a+1}}ds

= \int_{0}^{T}(T-s)\phi(s)[\int_{0}^{s}(s-x)\phi(x)dx]^{-\frac{a}{a+1}}ds ,

which is finite from (2.29). Finally (2.26) holds with a linear function r(z)
of z since if t , x\in[0, T] with t<x then

\int_{0}^{t}|k(x, s)-k(t, s)|[\int_{0}^{s}k(s, u)du]^{-\frac{a}{a+1}}ds

=(x-t) \int_{0}^{t}\phi(s)[\int_{0}^{s}(s-u)\phi(u)du]^{-\frac{a}{a+1}}ds .

Remark 2.5 In Example 2.2 if \phi=1 then (2.29) (and automatically
(2.29) ) is satisfied if 0<a<1 since

\int_{0}^{T}\phi(s)[\int_{0}^{s}(s-x)\phi(x)dx]^{-\frac{a}{a+1}}ds=\int_{0}^{T}(\frac{s^{2}}{2})-\frac{a}{a+1}ds .

Remark 2.6 The results in this paper can easily be extended to the
Volterra equation y(t)=h(t)+ \int_{0}^{t}k(t, s)f(s, y(s))ds for t\in[0, T] .
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