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On the nilpotent complex of simple groups of Lie type
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Abstract. In this paper we describe the connected components of Nl(G) , the partially
ordered set of nilpotent subgroups of a finite simple group of Lie type.
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1. Introduction

The prime graph \Gamma(G) of a finite group G has been studied by various
authors. Its connected components have been described in [8], [9], [11] and
[16]. Its diameter has been calculated in [12] and the groups in which the
prime graph is a tree have been investigated in [13].

More recently some generalisations of the prime graph have been intr0-
duced by Abe and Iiyori, in [1], as follows. In the prime graph \Gamma(G) vertices
p and q are defined to be joined when there exists an element x of G whose
order is pq . This condition can be interpreted by the property that G con-
tains a cyclic subgroup of order pq . This suggests to define the\cup-- graph of
a group G , \Gamma---(G) , as follows: the vertices are the primes dividing the order
of G and two vertices p , q are joined if G contains a S-subgroup of order
pq (here — is a group theoretical property). They define the cyclic graph,
\Gamma_{cyc1}(G)=\Gamma(G) , the abelian and nilpotent graph, denoted respectively by
\Gamma_{abe1}(G) and \Gamma_{ni1p}(G) . They observe that \Gamma_{cyc1}(G)=\Gamma_{abe1}(G)=\Gamma_{ni1p}(G)

and investigate the soluble graph \Gamma_{so1}(G) .
However these graphs defined over a group G cannot be equipped with a

G-structure. Therefore, instead of considering the order of_{\cup}^{-}- subgroups,
we can investigate the poset of all non trivial S-subgroups of G . Then G
acts by conjugation over these \cup---posets. Moreover there is a covariant
functor from the category of finite posets to the category of finite simplicial
complexes. This allows to associate combinatorial or topological concepts
and terminology to the posets.

This procedure has been applied to different classes of— subgroups of G .
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The most interesting instance is the s0-called Brown complex, introduced
by K. Brown in connection to cohomological questions; it is the complex
associated to the poset of non trivial p-subgroups of G . By now there is a
rich literature on this subject; see for instance the seminal paper by Quillen
[14] or the more recent paper by Aschbacher and Smith [2].

As for the graphs defined in [1], the corresponding posets have been
defined in [10]. In fact in that paper the simplicial complexes related to the
following posets have been studied:

K(G)= {non trivial cyclic subgroups of G },
Ab(G)= {non trivial abelian subgroups of G },
Nl(G)= {non trivial nilpotent subgroups of G }.

In Proposition 1.2 of [10] it is proved that they are all G-homotopy
equivalent. In that paper it is also proved the following:

Proposition 1 (Proposition 2.1 of [10]) Nl(G) is not connected if and
only if \Gamma(G) is not connected.

However the connected components of \Gamma(G) are not in correspondance
with those of Nl(G) . In the paper [10], we determine the connected com-
ponents of Nl(G) in the case in which G is a soluble group. In this paper
we determine the connected components of Nl(G) , where G is a simple
non abelian group of Lie type. We consider separately the case in which G
admits a partition.

Proposition 2 Let G be a simple non abelian group of Lie type, defifined
over the fifield with q=p^{f} elements, except for A_{1}(q) , 2B_{2}(q) and A_{2}(4) . Let
U be a p-Sylow subgroup of G. Then the connected components of Nl(G)
are [U] and those described in Tables la, 1b .

If G\cong A_{1}(q) , 2B_{2}(q) or A_{2}(4) , then G admits a partition and the
connected components are {Nl(R):R is a subgroup of the partition}.

Moreover we describe the action of G over Nl(G) :

Corollary 2 Let G be a fifinite simple group of Lie type with t(G)\geq 2 .
Then the number of G-Orbits of Nl(G) is exactly t(G) , the number of con-
nected components of \Gamma(G) . Moreover, if G has not a partition, then there
is only one G-Orbit, [U] , fifixed by G .
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2. Notation

We first briefly recall how to construct a simplicial complex from a
poset. Let X be a finite partially ordered set. To X it is associated an
abstract simplicial complex |X| , the simplicial realisation of X. by taking
the elements of X as vertices (0-simplices) and, as n-simplices the chains
of (n+1) elements of X. for n\geq 0 . Furthermore, any map of posets f :
(X_{1}, \leq_{1})arrow(X_{2}, \leq_{2}) yields a simplicial map between |X_{1}| and |X_{2}| . Thus,
if a finite group acts on a poset X , that is X is a G-poset, then G will act
on |X| simplicially.

For the notation concerning finite groups of Lie type, we refer to [3]. Let
G be a finite group of Lie type defined on a field K with q=p^{f} elements.
We denote by \Phi a system of roots of the corresponding Lie algebra. We
also denote by \Pi a fundamental system for \Phi , and an element of \Pi will be
called a simple root. If G has Lie rank l , then we denote by r_{1} , ., r_{l} the
simple roots related to G , following the numbering of roots, using Dynkin
diagrams, as in [6].

We denote by U the unipotent subgroup of G , generated by the positive
root subgroups, H the diagonal subgroup of G , and by W(G) the Weyl group
of G . We also write N_{W(G)} for the subgroup of G generated by H and n_{r} ,
with r\in\Phi (see [3], page 101). Then we have H\triangleleft N_{W(G)} and N_{W(G)}/H\cong

W(G) , moreover if 1\neq H , then N_{W(G)}=N_{G}(H) .

We can consider the algebraic closure \overline{K} of K and \overline{G} a connected re-
ductive group over \overline{K} , with a Frobenius map F : \overline{G}arrow\overline{G} , such that the
group G is exactly \overline{G}^{F} , the F-fixed points subgroup of \overline{G} .

Then H. the diagonal subgroup of G , \underline{i}s exactly \overline{H}^{F} . where \overline{H} is a
maximally-split F-stable maximal torus of G , and B=UH=\overline{B}^{F} , where
\overline{B} is a Borel subgroup of \overline{G} .

A maximal torus T of G is T=\overline{T}^{F} , where \overline{T} is an F-stable maximal
torus of \overline{G} .

We denote the connected components of the prime graph \Gamma(G) by
\{\pi_{i}(G), i=1,2, ., t(G)\} where t(G) is the number of connected com-
pose ts of \Gamma(G) and, if the order of G is even, we denote the component
containing 2 by \pi_{1}(G) .

We remember that non-connectedness of \Gamma(G) has relations also with
the existence of isolated subgroups of G . A proper subgroup M of G is
isolated if M\cap M^{g}=\{1\} or M for every g\in G and C_{G}(m)\leq M for all
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m\in M\backslash \{1\} . It was proved in [16] that G has a nilpotent isolated Hall
\pi-subgroup whenever G is non-soluble and \pi=\pi_{i}(G) , i>1 .

We also recall some notations from [10] and refer to that paper for the
construction of topological spaces from posets.

3. Simple groups of Lie type

The aim of this section is to prove Proposition 2.
We define Nl(G) to be the set of all non-trivial nilpotent subgroups of a

group G . We define the following relation in Nl(G) : R\sim S if, for some n\in

N , there exist R_{0} , R_{1} , . ., R_{n} such that R_{0}=R , R_{n}=S and either R_{i}\leq

R_{i+1} or R_{i}\geq R_{i+1} . This is an equivalence relation. A connected component
of Nl(G) is an equivalence class for the relation\sim and we denote by [R]
the connected component of Nl(G) containing R. We observe that if all the
Sylow subgroups of G are in the same connected component, then Nl(G)
itself is connected.

Lemma 1 If G=A_{1}\cross A_{2} , with A_{1}\neq 1\neq A_{2} , then Nl(G) is connected.

Proof. If P\in Sy1_{p}(G) and Q\in Sy1_{q}(G) , with p and q primes not necessarily
different, then P=P_{1}\cross P_{2} and Q=Q_{1}\cross Q_{2} , with P_{i} , Q_{i}\leq A_{i} , i=1,2 .
If P_{1}\neq 1 and Q_{2}\neq 1 we have P\sim P_{1}\sim P_{1}\cross Q_{2}\sim Q_{2}\sim Q . Similarly
we have P\sim Q , if P_{2}\neq 1 and Q_{1}\neq 1 . If P_{1}=1=Q_{1} , then for any
R\in Nl(A_{1}) , we have: P\sim P\cross R\sim R\sim Q\cross R\sim Q . \square

Proposition 3 If G is a fifinite group of Lie type and B=UH is a
Borel subgroup of G , then Nl(B) is connected, except for G=A_{1}(q) , A_{2}(4) ,
2B_{2}(q) .

Proof. If q=2 , then H=1 and B=U is a nilpotent group so Nl(B)
is contractible, by Remark 2.2 of [10]. So we can suppose that q\neq 2 , and
both Nl(U) and Nl(H) are contractible, because they are both nilpotent.
Then by Theorem 2.61) of [10], we have that Nl(B) is not connected if and
only if B is a Frobenius group. We choose now some elements 1\neq u\in U ,
1\neq h\in H . Here t and \lambda are elements of the field K on which G is defined.

If G is a Chevalley group and rk(G)\geq 3 , there exist two simple roots
r and s such that 1 \neq x_{r}(t)=u\in U and 1 \neq h_{s}(\lambda)=h\in H with
[x_{r}(t), h_{s}(\lambda)]=1 . We suppose now that rk(G)=2 . If G=A_{2}(q) , we call
h=h_{r_{1}}(\lambda)h_{r_{2}}(\lambda^{-1})\in H and u=x_{r_{1}+r_{2}}(t)\in U , if q\neq 4 , then h\neq 1\neq u ;
if G=B_{2}(q) we call 1\neq h=h_{r_{2}}(\lambda)\in H and 1\neq u=x_{r_{1}+r_{2}}(t)\in U ; if
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G=G_{2}(q) we call 1\neq h=h_{r_{1}}(\lambda)\in H and 1\neq u=x_{3r_{1}+2r_{2}}(t)\in U . Then
we have [u, h]=1 .

We suppose now that G is a twisted group. Let f:Karrow K be the
field automorphism, used to construct the twisted group (see [3], chapter
13), and we put \overline{t}=f(t) for any t\in K

If G=2A_{l}(q^{2}) , l\geq 5 and l odd, let r_{1} , r_{2} , . ’ r_{2k-1} be a fundamental
system for A_{l} . Then we have 1\neq u=x_{r_{1}}(t)x_{r_{2k-1}}(\overline{t})\in U and 1\neq h=

h_{r_{k}}(\lambda)\in H , if \overline{\lambda}=\lambda .
If l is even, and r_{1} , r_{2} , ., r_{2k} are the simple roots of A_{l} , we have that

1\neq u=x_{r_{1}}(t)x_{r_{2k}}(\overline{t})\in U and 1\neq h=h_{r_{k}}(\lambda)h_{r_{k+1}}(\overline{\lambda})\in H .
If l=2,3,4 , let r be the root that is the sum of all the simple roots of

A_{l} . Then we have 1\neq u=x_{r}(t)\in U . with t=\overline{t} for l=3,4 and t+\overline{t}=0

for l=2 . We also have 1\neq h=h_{r_{1}}(\lambda)h_{r_{2}}(\overline{\lambda})\in H with \lambda a (q+1)-th
root of unity for l=2;1\neq h=h_{r_{2}}(\lambda)\in H , with \overline{\lambda}=\lambda for l=3 , and
1\neq h=h_{r_{2}}(\lambda)h_{r_{3}}(\overline{\lambda})\in H for l=4 .

Let G be 2D_{l}(q^{2}) with l\geq 4 . Let r_{1} , r_{2} , \ldots , r_{l-2} , r_{l-1} , r_{l} be a fundamen-
tal system for D_{l} , then 1\neq u=x_{r_{l-1}}(t)x_{r_{l}}(\overline{t})\in U and 1\neq h=h_{r_{1}}(\lambda)\in H ,
where \lambda=\overline{\lambda} .

Let G be 3D_{4}(q^{3}) and r be the root that is the sum of all the simple roots
of D_{4} , then 1\neq u=x_{r}(t)\in U with t=\overline{t} and 1\neq h=h_{r_{1}}(\lambda)h_{r_{3}}(\overline{\lambda})h_{r_{4}}(\overline{\overline{\lambda}})\in

H .
Let G be 2E_{6}(q^{2}) and let r_{1} , r_{2} , . . , r_{6} be a fundamental system for E_{6} .

Then 1\neq u=x_{r_{1}}(t)x_{r_{6}}(\overline{t})\in U and 1\neq h=h_{r_{2}}(\lambda)\in H , \lambda=\overline{\lambda} .
Let G be 2F_{4}(q^{2}) and r=r_{1}+2r_{2}+2r_{3}+r_{4} , then 1\neq u=x_{r}(1)\in U

and 1\neq h=h_{r_{1}}(\lambda)h_{r_{4}}(\overline{\lambda})\in H , with r_{4} a short root.
Let G be 2G_{2}(q^{2}) and \chi the character defined on the root system \Phi of

G=2G_{2} by \chi(a)=\chi(b)=-1 . By paragraph 6.4 of [15], we know that 1\neq

h_{0}=h(\chi)\in H and by Proposition 13.6.4 [3], 1\neq u=x_{a+b}(\overline{t})x_{3a+b}(t)\in U .
So in any case that we have considered, B cannot be a Frobenius group

because [u, h]=1 , for the u\in U and h\in H described in any singular case.
\square

Lemma 2 Let G be a Chevalley group and W(G) be its Weyl group. Then
Nl(W(G)) is connected, except for G=A_{l} , with l prime or l+1 prime,
and G=D_{l} , with l an odd prime.

In any case, except G=A_{2} , the 2-subgroups of W(G) lie in the same
connected component of Nl(W(G)) and, except G=A_{2} , A3, also the 3-
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subgroups of W(G) lie in this same connected component.

Proof. The Weyl groups of the Chevalley groups can be found in [3]. We
recall them here.

W(A_{l})\cong S_{l+1} of order (l+1)! ;
W(B_{l})\cong W(C_{l})\cong Z_{2}^{l}S_{l} of order 2^{l}l !;
W(D_{l})\cong Z_{2}^{l-1}S_{l} of order 2^{l-1} l !;
W(E_{6})\cong O_{6}^{-}(2).2\cong 2A_{3}(2).2\cong C_{2}(3).2 of order 2^{7}3^{4}5 ;
W(E_{7})\cong Z_{2}\cross Sp_{6}(2) of order 2^{10}\cdot 3^{4} 5\cdot 7 ;
W(E_{8})\cong 2.O_{8}^{+}(2).2 of order 2^{14}3^{5}\cdot 5^{2} 7 ;
W(F_{4})\cong W(D_{4}) : S_{3} of order 2^{7}\cdot 3^{2} ;
W(G_{2})\cong D_{12} of order 2^{2}3 .

If l or l-1 are not prime numbers, then Nl(S_{l}) is connected by PropO-
sition 1, since \Gamma(S_{l}) is connected (see [16]). In any case, except l=3 there
is a connected component of Nl(S_{l}) , containing all the 2-subgroups of S_{l} ,
and if l\geq 5 also the 3-subgroups of S_{l} lie in this connected component. So
the lemma is proved for G=A_{l} , l\geq 4 .

Nl(W(E_{6})) is connected since \Gamma(W(E_{6})) is connecetd (see [5]). We
conclude by Proposition 1.

Nl ( W(E7)) is connected by Lemma 1.
Nl(W(F_{4})) is connected because \Gamma(W(F_{4})) is connected, since there is

an element of order 6 in W(F_{4}) . We conclude by Proposition 1.
Nl(W(B_{l})) , Nl(W(E_{8})) , Nl(W(G_{2})) are contractible, and therefore

connected, by Remark 2.2 of [10], because they have a non-trivial centre.
Nl(W(D_{l})) is connected if l is not a prime. In fact \Gamma(S_{l}) is connected

if l , l-1 are not prime numbers (see [16]) and therefore also \Gamma(W(D_{l}))

because \pi(W(D_{l}))\subseteq\pi(S_{l}) . If l-1 is a prime, let x be an element of order
l-1 of W=W(D_{l}) . Then it can be easily checked that 2 divides |C_{W}(x)|

and therefore \Gamma(W) is connected. We conclude again by Proposition 1.
If l is a prime, l\geq 5 there is a connected component of Nl(S_{l})) con-

taining all the 2-subgroups of S_{l} and also the 3-subgroups of S_{l} . The same
is true for W. since O=O_{2}(W)\neq 1 , and for any 2-Sylow subgroup P of
W , we have P\sim O . \square

Proposition 4 If G is a fifinite group of Lie Type, over a fifinite fifield of
characteristic p , then the p-groups of G are all in the same connected com-
ponent of Nl {G) , except for G=A_{1}(q) and 2B_{2}(q) .
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Proof. We first suppose that H\neq\{1\} and G\neq A_{2}(4) , A_{1}(q) or 2B_{2}(q) . As
U is a p-Sylow subgroup of G , it is enough to prove that all its conjugates
lie in the same connected component of Nl(G) . Any g\in G is uniquely
expressible in the form g=bnu, with b\in B , n\in N_{G}(H) and u\in U . We
observe that U is a normal subgroup of B and that H\sim U in Nl(G) , by
Proposition 3. Then

U=U^{u}\sim H^{u}=H^{nu}\sim U^{nu}=U^{g} .

A direct computation shows that the 2-subgroups of A_{2}(4) are all in
the same connected component of Nl(G) .

If H=\{1\} , then G is a Chevalley group and q=2 . Then N=N_{W(G)} is
isomorphic to W(G) , the Weyl group of G . If r_{1} , ., r_{l} are the simple roots
of G , we put \overline{n}=n_{w_{r_{1}}} the element of N , corresponding to the involution w_{r_{1}} ,
and u=x_{r_{3}}(t) , if l\geq 3 or u=x_{r_{1}+r_{2}}(t) if G=B_{2}(q) or u=x_{3r_{1}+2r_{2}}(t)

if G=G_{2}(q) , where t is the only non-zero element of the field with two
elements. Then 1\neq u\in U and \overline{n}^{2}=1 and u^{\overline{n}}=u . By Lemma 2, we
know that all the 2-subgroups of N\cong W(G) are in the same connected
component of Nl(G) . So for any n\in N we have \langle \overline{n}\rangle^{n}\sim\langle\overline{n}\rangle\sim\langle\overline{n}, u\rangle\sim U .

We can therefore conclude because any g\in G can be written as g=
u_{1}nu_{2} with u_{i}\in U , i=1,2 and n\in N and then

U=U^{u_{2}}\sim\langle\overline{n}\rangle^{u_{2}}\sim(\langle\overline{n}\rangle^{n})^{u_{2}}\sim U^{nu_{2}}=U^{u_{1}nu_{2}}=U^{g} .
\square

Corollary 1 If G is a Chevalley group of Lie rank l>2 over the fifield
with two elements, then a maximal torus \overline{H} of order q+1=3 lies in the
connected component of the 2-subgroups in Nl(G) .

Proof. By Lemma 2, the 2-subgroups and the 3-subgroups of W(G) lie in
the same connected component of Nl(W(G)) and N=N_{W(G)}\cong W(G) ,
except G=A_{3}(2) , A_{2}(2) .

Therefore there must exist an element g in G , an element x\in N of
order 3 and a 3-Sylow subgroup Q of G such that

\overline{H}\sim Q\sim\langle x\rangle^{g}\sim\langle\overline{n}\rangle^{g}\sim U^{g}\sim U.

Since A_{2}(2)\cong A_{1}(7) , we only have to consider the group G=A_{3}(2)\cong

A_{8} . The statement is again true, as it can be easily checked. \square

Remark The groups A_{1}(q)\cong PSL(2, q) , 2B_{2}(q)\cong Sz(q) an(l A_{2}(4)\cong

PSL(3,4) are groups with a partition. Therefore the connect ed (.()I111)()11C^{1}11f_{\iota}s^{1}
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are exactly Nl(R) , where R is one of the subgroups of G , forming the
partition (see for example Proposition 2.9 of [10]). We observe that if G\cong

PSL(3,4) , then the subgroups forming the partition are exactly the Sylow
subgroups of G .

In all the remaining cases, we have that \overline{H} lie in [U] , where \overline{H}=\overline{H} if
q=2 and \overline{H}=H otherwise.

Proposition 5 Let G be a fifinite simple group of Lie type. Then
a) If R is a nilpotent subgroup of G , then either R\sim U or there

exists T_{-} a maximal torus of G , such that R\sim T ;
b) if T is a maximal torus of G that is isolated, then [T]=Nl(T) ;
moreover, if G is not of the type A_{1}(q) , A_{2}(4) or 2B_{2}(q) ,
c) any maximal torus T which is not isolated lie in [U] ;
d) the connected components of Nl(G) are [U] and Nl(T) , for T is0-

lated maximal tori.

Proof, a) Let g be an element of R ; if p divides the order of g , then there
exists n\in \mathbb{Z} such that g^{n} is a p element and so g^{n}\in U^{x} for some x\in G .
Then by Proposition 4 we have that \langle g\rangle\sim\langle g^{n}\rangle\leq U^{x}\sim U .

If p does not divide the order of g , then g is a semisimple element and
so it is contained in a maximal torus T So R\sim\langle g\rangle\sim T

b) We suppose that R\sim T . for some nilpotent subgrou\underline{p}R of G with
\underline{R}\not\leq T Then there exists a nilpotent subg\underline{r}oup \overline{R} such that R\cap T>1 , but
R\not\leq T Therefore, if the center Z(\overline{R}) of R is contained in \overline{R}\cap T , we take
1\neq x\in Z(\overline{R})_{-}andk\in\overline{R}\backslash T . while if Z(\overline{R})\not\leq\overline{R}\cap T we take k\in Z(\overline{R})\backslash T

and 1\neq x\in R\cap T Then 1\neq x\in T and k\not\in T , but [x, k]=1 , against our
hypothesis that T=C_{G}(x) .

c) If T is not isolated, there exists an element y\in T such that C_{G}(y)\not\leq

T. with |y|=r , r a prime in \pi_{1}(G) (see Lemma 5 of [16]). This means that
\langle y\rangle\sim\langle x\rangle for some involution x . Therefore T\sim\langle y\rangle\sim\langle x\rangle\sim U . because
in our hypothesis, all the 2-subgroups of G lie in [U] , by the Remark pre-
ceding this proposition.

d) If R is a nilpotent subgroup of G , then by a), we have that either
R\sim U or R\sim T for some maximal torus T If T\sim U . then R\sim U .
if T\eta^{l}U , by c), T is isolated and therefore applying b), we obtain that
R<T- \square
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Remark If we consider two maximal tori T_{1} and T_{2} that are isolated and
have the same order, then they are conjugate. In fact, if we take a prime r
dividing |T_{1}| and an r-Sylow subgroup R of G contained in T_{1} , there exists
an element g\in G such that R^{g}\leq T_{2} . Then T_{1}\cap T_{2}^{g^{-1}}=R>1 , and
therefore we have that T_{1}\sim T_{2}^{g^{-1}} By Proposition 5 d) this is possible if
and only if T_{1}=T_{2}^{g^{-1}} We conclude that T_{1} and T_{2} are conjugate.

Then we need to know the number of the conjugates of each of these
maximal tori which are isolated; this is exactly |G : N_{G}(T)| . From PropO-
sition 3.3.6 of [4] we obtain that

N_{G}(T)/T\cong C_{W,F}(w)=\{x\in W : x^{-1}wF(x)=w\} ,

where F is the Frobenius map and W is the Weyl group of \overline{G} such that
\overline{G}^{F}=G . Moreover in [7], Chapter 5 and 7, these centralizers C_{W,F}(w) are
calculated for any finite simple group of Lie type.

We shall denote by n(T) the order of the group N_{G}(T)/T , so that
for any maximal torus T that is isolated, we have that the number of its
conjugates is exactly |G|/n(T)|T| .

The groups G such that Nl(G) is not connected are exactly the groups
G such that \Gamma(G) is not connected, by Proposition 1. All the simple groups
G such that \Gamma(G) is not connected have been described in [8], [9] and [16].
Therefore it is now enough to calculate the connected components of Nl(G) ,
in the case in which Nl(G) is not connected.

By Proposition 5 and last Remark, these are exactly [U] and [T_{i}]=

Nl(T_{i}) , for i>1 , with all its conjugates, where T_{i} are the maximal tori of
G such that \pi_{i}(G)=\pi(|T_{i}|) for i>1 , as it is described in [16].

So now we can describe Nl(G) for any finite simple group of Lie type
such that Nl(G) is not connected. In Tables la) and 1b), we describe G ,
|T_{i}| and n(T_{i}) .

As observed in the introduction, the group G acts by conjugacy on the
poset Nl(G) of nilpotent subgroups of G . We would like to describe this
action, as it is done in Corollary 2.8 of [10] for the soluble groups.

Corollary 2 Let G be a fifinite simple group of Lie type with t(G)\geq 2 .
Then the number of G -Orbits of Nl(G) is exactly t(G) , the number of con-
nected components of \Gamma(G) . Moreover, if G has not a partition, then there
is only one G-Orbit, [U] , fifixed by G .
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Table la. Connected components of Nl(G) , except [U] , with G finite simple
group of Lie type, not twisted, G\not\cong A_{1}(q) , A_{2}(4)

|G=Aandq=2,3\iota(q)withl>2andG=A_{l}(q)withlddprimeG=B_{l}(q)withl=2^{n}\geq 4,qoddG=A_{2}(q)withq\neq 2,4G=C_{l}(q)withl=2^{n}G=B\iota(q)withlprimeandq=3G=C_{l}(q)withlprimeG=D_{l}(q)withlprimeG=D_{l}(q)withl-1primeG=E_{6}(q)G=E_{7}(q)withq=2,3G=E_{8}(q)G=F_{4}(q)G=G_{2}(q)withq\equiv 1(3)G=G_{2}(q)withq\equiv 0(3)G=G_{2}(q)withq\equiv-1(3)moreoverifq=2^{f}moreover,ifq\equiv 0,1,4(5)l+1aprime_{O}and(q-1)|(l+1)andq=2,3andq=2,3,5

|T_{2}|=(q^{l}+q^{l-1}+\cdots+1)/

(q-1, l+1)
|T_{2}|=q^{\prime-1}+q^{l-2}+\cdots+1

|T_{2}|=(q^{2}+q+1)/(q-1,3)

|T_{2}|=(q^{l}+1)/(q-1,2)

|T_{2}|=q^{l-1}+q^{l-2}+\cdots+1

|T_{2}|=(q^{l}+1)/(q-1,2)

|T_{2}|=q^{l-1}+q^{l-2}+\cdots+1

|T_{2}|=q^{l-1}+q^{l-2}+\cdots+1

|T_{2}|=q^{l-2}+q^{l-3}+\cdots+1

|T_{2}|=(q^{6}+q^{3}+1)/(3, q-1)

|T_{2}|=q^{6}+q^{3}+1

|T_{3}|=(q^{7}-1)/(q-1)

|T_{2}|=q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1

|T_{3}|=q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1

|T_{4}|=q^{8}-q^{4}+1

|T_{5}|=q^{8}-q^{6}+q^{4}-q^{2}+1

|T_{2}|=q^{4}-q^{2}+1

|T_{3}|=q^{4}+1

|T_{2}|=q^{2}-q+1

|T_{2}|=q^{2}+q+1

|T_{2}|=q^{2}-q+1

|T_{3}|=q^{2}+q+1

n(T_{2})=l+1

n(T_{2})=l

n(T_{2})=3

n(T_{2})=2l

n(T_{2})=2l

n(T_{2})=2l

n(T_{2})=2l

n(T_{2})=l

n(T_{2})=2(l-1)

n(T_{2})=9

n(T_{2})=18

n(T_{3})=14

n(T_{2})=30

n(T_{3})=30

n(T_{4})=24

n(T_{5})=20

n(T_{2})=12

n(T_{3})=8

n(T_{2})=6

n(T_{2})=6

n(T_{2})=6

n(T_{3})=6
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Table 1b . Connected components of Nl(G) , except [U] , with G finite simple
group of Lie type, twisted, G\not\cong^{2}B_{2}(q)

G=^{2}A_{l}(q^{2}) with l+1 prime

G=^{2}A_{l}(q^{2}) with l odd prime
and (q+1)|(l+1)

moreover if q=2 and l=5
or q=3 and l=3

G=^{2}A_{3}(2^{2})

G=^{2}D_{l}(q^{2}) with l=2^{n}

G=^{2}D_{l}(2^{2}) with l=2^{n}+1
G=^{2}D_{l}(3^{2}) with l prime

and l\neq 2^{n}+1

G=^{2}D\iota(3^{2}) with l not a prime
and l=2^{n}+1

G=^{2}D_{l}(3^{2}) with l a prime
and l=2^{n}+1

G=^{2}E_{6}(q^{2})

moreover if q=2

G=^{3}D_{4}(q^{2})

G=^{2}F_{4}(q^{2})

G=^{2}F_{4}(2)’

G=^{2}G_{2}(q^{2})

|T_{2}|=((-q)^{l}+(-q)^{l-1}+\cdots

+(-q)+1)/(q+1, l+1)
|T_{2}|=(-q)^{l-1}+(-q)^{l-2}+\cdots

+(-q)+1
|T_{3}|=(q^{l+1}-1)/

(q+1)(l+1, q+1)
|T_{2}|=(q^{4}-1)/(q+1)

|T_{2}|=(q^{l}+1)/(2, q+1)

|T_{2}|=2^{l-1}+1

|T_{2}|=(3^{l}+1)/4

|T_{2}|=(3^{l-1}+1)/2

|T_{2}|=(3^{l}+1)/4

|T_{3}|=(3^{l-1}+1)/2

|T_{2}|=(q^{6}|+q^{3}+1)/(3, q+1)

|T_{3}|=(q^{4}-q^{2}+1)(q^{2}-q+1)/

(3, q+1)=\{13\}

|T_{4}|=(q^{4}+1)(q+1)(q-1)/

(3, q+1)=\{17\}

|T_{2}|=q^{4}-q^{2}+1

|T_{2}|=q^{4}-\sqrt{2}q^{3}+q^{2}-\sqrt{2}q+1

|T_{3}|=q^{4}+\sqrt{2}q^{3}+q^{2}+\sqrt{2}q+1

|T_{2}|=q^{4}-q^{2}+1

|T_{2}|=q^{2}-\sqrt{3}q+1

|T_{3}|=q^{2}+\sqrt{3}q+1

n(T_{2})=l+1

n(T_{2})=l

n(T_{3})=l+1

n(T_{2})=4

n(T_{2})=l

n(T_{2})=l

n(T_{2})=ln(T_{3})=2(l-1)n(T_{2})=2(l-1)n(T_{2})=2(l-1)|

n(T_{2})=9

n(T_{3})=12

n(T_{4})=8

n(T_{2})=9

n(T_{2})=12

n(T_{3})=12

n(T_{2})=6

n(T_{2})=6

n(T_{3})=6
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Proof. It is enough to consider the connected component of Nl(G) . If
G has a partition, then the behaviour of G on Nl(G) is as described in
Proposition 2.9 of [10]. Otherwise, we observe that by Proposition 5 d),
and the following Remark, G acts fixing the component [U] and transitively
permuting the components Nl(T_{i}^{g}) , where T_{i} is a maximal torus and a
\pi_{i}(G) -Hall subgroup of G , for i\geq 2 . \square
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