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A blow-up criterion for the curve shortening flow
by surface diffusion

Kai-Seng CHOU
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Abstract. A sharp criterion for finite time blow-up for the curve shortening flow by
surface diffusion is given. It is also shown that a multiply folded circle attracts some
nearby curves.
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1. Introduction

Let \gamma_{0} be an immersed plane curve. We consider the Cauchy problem
for the motion law

\frac{\partial\gamma}{\partial t}=-k_{ss}n , \gamma(\cdot, 0)=\gamma_{0} , (1)

where s , n and k are respectively the arc-length, unit normal and curva-
ture (with respect to n) of the curve \gamma(\cdot, t) . This motion law was first
proposed by Mullins [14] to model thermal grooving. More recent discus-
sion on its physical significance can be found in Cahn-Taylor [6] and Cahn-
Elliot-Novick-Cohen [5]. One may compare (1) with the well-studied motion
law-the curve shortening flow

\frac{\partial\gamma}{\partial t}=kn , (2)

which was also proposed by Mullins. According to [6], one may view (1)
and (2) respectively the negative H^{-1}-gradient and L^{2}-gradient flows of the
surface energy (it is the length energy in the planar case). (1) can be ob-
tained as the singular limit of the Cahn-Hilliard equation with a degenerate
concentration-dependent mobility [5]. This is parallel to the well-known
that fact that (2) arises as the singular limit of the Allen-Cahn equation.
Further discussion on (1) and its higher dimensional counterpart can also
be found in Bernoff-Bertozzi-Witelski [4].
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The curve shortening flow (2) has been studied in a rather detailed
way and now a comprehensive understanding has been achieved, see, e.g.,

the book Chou-Zhu [7]. In contrast, few results are known for (1). The

solvability of (1) for small time was established in Elliott-Garke [9] (see

also Alvarez-Liu [1] ) when \gamma_{0} is a simple, closed C^{4} -curve. Also, it was
shown that the flow exists globally and converges exponentially to a circle

when the initial curve is very close to a circle. Their results were subse-
quently generalized to higher dimensions in Escher-Mayers-Simonett [11],

where uniqueness of the flow is established and the regularity requirement

on the initial data is reduced. Besides, various interesting behavior of the

flow, including finite time blow-up, convergence to a multiply folded circle

and almost self-similar shrinking, are illustrated by numerical experiments.

In this paper sophisticated semi-group theory was used to prove existence.
In Giga-Ito ([12] and [13]), local existence and uniqueness are proved based

on a more elementary Lax-Milgram type theorem. More importantly, they

show two basic properties, namely, embeddedness and convexity preserving,

which have played an important role in the study of (2), are no longer valid

for (1). The failure of the maximum principle makes things more compli-

cated. For example, it is not clear at all how to introduce a good theory

of weak solution such as the viscosity solution, which has been so sucessful

in the study of (2). The difference may be explained by the structure of

the flows. When the flow \gamma(\cdot, t) is expressed as a family of local graphs or

when we look at the evolution equation for its curvature, the curve short-

ening flow is a second-0rder parabolic equation but the curve shortening by

surface diffusion is a fourth-0rder parabolic equation.
In this paper we shall use energy method to study (1). First of all,

the unique solvability of (1) for small time enables us to define a unique

maximal solution in a maximal interval [0, \omega) , \omega\leq\infty . The number \omega is

called the life-span of the flow.

Proposition A Let \gamma(\cdot, t) be a solution of (1) where \gamma_{0} is a closed, im-

mersed, smooth curve with nonzero area. Then the solution exists as long

as the L^{2} -norm of the curvature of \gamma(\cdot, t) is finite. Furthermore, when \omega is

finite,

\int_{\gamma(\cdot,t)}k^{2}(s, t)ds
\geq C(\omega-t)^{-1/4}
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for some constant C. When \omega is infinity, the curvature of \gamma(\cdot, t) converges
smoothly to the curvature of a circle whose area is the same as the area of
\gamma_{0} .

So, the situation is like the curve shortening flow. Although the equa-
tion is of higher order, the threshold for existence is again a bound on the
curvature.

Next, we have a criterion for blow-up in finite time.

Proposition B Let \gamma_{0} be a closed, immersed curve with total curvature
2mr . Suppose that n\geq 2 and the isoperimetric ratio of \gamma_{0} satisfies

\frac{L_{0}^{2}}{A_{0}}<4n\pi ,

Then \omega is finite.
By reversing the orientation of the curve if necessary, we shall always

assume the total curvature of the flow is non-negative.
Figure 1 in [11] shows the evolution of the lima\caon r(\theta)=1+1.7 sin \theta

under (1). The outer loop is almost circular, and the inner loop is very small
compared to the outer one. A direct computation verifies the hypotheses of
Proposition B and so the flow blows up in finite time. In fact, the numerical
study in [11] shows that it blows up rapidly by contracting the inner loop.
Notice that our criterion ensures blow-up even when the inner loop is just
a little shorter than the outer one.

The isoperimetric ratio for an n-fold circle is equal to 4nn . Since all
n-fold circles are stationary solutions of (1), Proposition B is sharp in the
sense that it no longer holds when 4n\pi is replaced by any larger number.

Proposition B implies that n-fold circles are not stable for |n|\geq 2 .
However, Figure 2 in [11] displays the evolution of the 4-leaf rose r(\theta)=

\sin 2\theta . It converges to a three fold circle. We have the following result
justifying behavior of this kind.

Proposition C Let \gamma_{0} be a locally convex, rotational symmetric curve
with m leaves. Suppose n/m<1 where 2n\pi is the lotal curvature of \gamma_{0} .
There exists a small number \rho , which depends only on n, A_{0} and L_{0} , such
that (1) converges smoothly and exponentially to the n-fold circle centered
at the origin and having the same enclosed area as \gamma_{0} , provided

L_{0}-2n\pi<\rho ,



4 K.-S. Chou

and

\int_{\gamma 0}(\frac{dk_{0}}{ds})^{2}ds<\rho .

Propositions A-C will be proved in Section 3, after some energy esti-
mates are derived in Section 2. In Section 4 we extend our results to a class
of complete, non-compact curves.

2. Energy estimates

First, we write down the evolution of various geometric quantities along
the flow (1). They can be obtained by direct computations, or may be
deduced from the general formulas in Chou-Zhu [7]. We use the following
notations:

s(t) the arc-length of \gamma(\cdot, t)

t and n the unit tangent and normal of \gamma(\cdot, t)

\theta the normal angle of \gamma(\cdot, t)

L(t) the length of \gamma(\cdot, t)

A(t) the area of \gamma(\cdot, t)

k(s, t) the curvature of \gamma(s, t) with respect to n.
When \gamma is closed, n is the inner unit normal.

We have

\frac{ds}{dt}=kk_{ss} ,

[ \frac{\partial}{\partial t} , \frac{\partial}{\partial s}]=-kk_{ss}\frac{\partial}{\partial s} ,

\frac{dt}{dt}=-\frac{dn}{dt}=-k_{sss} ,

\frac{d\theta}{dt}=-k_{sss} ,

\frac{dk}{dt}=-k_{ssss}-k^{2}k_{ss} ,

\frac{dL}{dt}=\int_{\gamma}kk_{ss}ds , (3)

and
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\frac{dA}{dt}=\int_{\gamma}k_{ss}ds . (4)

Recall that the (algebraic) area is defined only for closed curves and is given
by

A=- \frac{1}{2}\int_{\gamma}\langle\gamma, n\rangle ds .

It is equal to \sum n_{j}A_{j} where A_{j} and n_{j} are respectively the area and winding
number of the j-th component of the complement of \gamma in the plane. It follows
from the last two formulas that the area is unchanged along the flow, but
the length is strictly decreasing unless \gamma_{0} is an n-fold circle:

- \int_{0}^{t}\int_{\gamma}k_{s}^{2}(\cdot, \tau)dsd\tau=L(t)-L(0) . (5)

Let

\overline{k}(t)=\frac{1}{L(t)}\int_{\gamma}k(s, t)ds

= \frac{2n\pi}{L(t)} ,

where 2n\pi is the total curvature of \gamma_{0} . By the Poincar\’e inequality, we have

\int_{0}^{t}\frac{\pi^{2}}{L^{2}(\tau)}\int_{\gamma(\cdot,\tau)}(k-\overline{k})^{2}(s, \tau)dsd\tau\leq L(0)-L(t) .

Notice that \pi^{2} is the minimum for the problem

\{\frac{\int_{0}^{1}u_{x}^{2}dx}{\int_{0}^{1}u^{2}dx} : \int_{0}^{1}udx=0\}

It follows that

\int_{0}^{t}\int_{\gamma(\cdot,\tau)}(k-\overline{k})^{2}(s, \tau)dsd\tau\leq\frac{L_{0}^{2}}{\pi^{2}}(L_{0}-L(t)) . (6)

Now, we proceed to derive some energy inequalities for (1). First, we have,
by (3) and (4),

\frac{d}{dt}\int_{\gamma}k^{2}(s, t)ds=-2\int_{\gamma}k_{ss}^{2}ds+3\int_{\gamma}k^{2}k_{s}^{2}ds ,
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and

\frac{d}{dt}\int_{\gamma}(k-\overline{k})^{2}ds=-2\int_{\gamma}k_{ss}^{2}ds+3\int_{\gamma}(k-\overline{k})^{2}k_{s}^{2}ds

+6 \overline{k}\int_{\gamma}(k-\overline{k})k_{s}^{2}ds+2\overline{k}^{2}\int_{\gamma}k_{s}^{2}ds . (7)

We shall use the interpolation inequalities: For periodic functions with zero
mean,

||u^{(j)}||_{L^{r}}\leq C||u||\begin{array}{l}1-\theta L^{p}\end{array}||u^{(k)}||_{L^{q}}^{\theta} , \theta\in(0,1) ,

where r , g , p , j and k satisfy p, g , r>1 , j\geq 0 ,

\frac{1}{r}=j+\theta(\frac{1}{q}-k)+(1-\theta)\frac{1}{p} ,

and

\frac{j}{k}\leq\theta\leq 1 .

Here the constant C depends on r , p , q , j and k only. Using this interpola-
tion inequality, we have

( \int_{\gamma}(k-\overline{k})^{4}ds)^{\frac{1}{2}}\leq C(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{7}{8}(\int_{\gamma}k_{ss}^{2}ds)\frac{1}{8} ,

and

( \int_{\gamma}k_{s}^{4}ds)\frac{1}{2}\leq C(\int_{\gamma}(k-\overline{k})^{2}ds)^{\frac{3}{8}}(\int_{\gamma}k_{ss}^{2}ds)^{\frac{5}{8}}

Hence

\int_{\gamma}(k-\overline{k})^{2}k_{s}^{2}ds\leq(\int_{\gamma}(k-\overline{k})^{4}ds)\frac{1}{2}(\int_{\gamma}k_{s}^{4}ds)\frac{1}{2}

\leq C_{1}(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{5}{4}(\int_{\gamma}k_{ss}^{2}ds)\frac{3}{4}

\leq\epsilon_{1}\int_{\gamma}k_{ss}^{2}ds+\frac{27}{256}C_{1}^{4}\epsilon_{1}^{-3}(\int_{\gamma}(k-\overline{k})^{2}ds)^{5}
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Similarly,

| \int_{\gamma}(k-\overline{k})k_{s}^{2}ds|\leq(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{1}{2}(\int_{\gamma}k_{s}^{4}ds)\frac{1}{2}

\leq C_{2}(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{7}{8}(\int_{\gamma}k_{ss}^{2}ds)\frac{5}{8}

\leq\epsilon_{2}\int_{\gamma}k_{ss}^{2}ds+\frac{3}{8}(\frac{5}{8})\frac{5}{2}C^{\frac{7}{22}}\epsilon_{2}^{-\frac{5}{2}}(\int_{\gamma}(k-\overline{k})^{2}ds)^{\frac{7}{3}}’.

and

\int_{\gamma}k_{s}^{2}ds\leq(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{1}{2}(\int_{\gamma}k_{ss}^{2}ds)\frac{1}{2}

\leq\epsilon_{3}\int_{\gamma}k_{ss}^{2}ds+\frac{1}{4\epsilon_{3}}\int_{\gamma}(k-\overline{k})^{2}ds .

On the other hand, an isoperimetric inequality of Rado [15] asserts that for
any closed, immersed curve,

L^{2}\geq 4\pi\Sigma n_{j}A_{j} .

By the area preserving property of the flow, we have

L^{2}(t)\geq 4\pi A_{0} ,

that’s, |\overline{k}|\leq n\pi^{1/2}(A_{0})^{-1/2} . (We may assume A_{0} is positive by reversing
the orientation of the flow if necessary. Note that (1) is independent of the
orientation of the curves.) Putting these estimates into (7), we have

\frac{d}{dt}\int_{\gamma}(k-\overline{k})^{2}ds\leq(3\epsilon_{1}+6\epsilon_{2}+2\epsilon_{3}-2)\int_{\gamma}k_{ss}^{2}ds+p(E) ,

where

p(E)= \frac{81}{256}C_{1}^{4}\epsilon_{1}^{-3}E^{5}+\frac{9}{4}(\frac{5}{8})\frac{5}{2}C_{2}^{\frac{7}{2}}\epsilon_{2}^{-\frac{5}{2}}E^{\frac{7}{3}}+\frac{1}{2}\epsilon_{3}^{-1}E ,

and

E \equiv\int_{\gamma}(k-\overline{k})^{2}ds .



8 K.-S. Chou

By choosing \epsilon_{1} , i=1,2 , 3 so that 3\epsilon_{1}+6\epsilon_{2}+2\epsilon_{3}=2 , we have

\frac{dE}{dt}\leq C_{3}(E+E^{5}) , (8)

where C_{3} depends only on the initial area, total curvature, and the best
constants in these interpolation inequalities. When n is equal to zero, we
have \overline{k}=0 and

\frac{dE}{dt}\leq C_{3}E^{5} . (8)’

Next, we compute

\frac{d}{dt}\int_{\gamma}k_{s}^{2}ds=-2\int_{\gamma}k_{sss}^{2}+2\int_{\gamma}k^{2}k_{ss}^{2}+\frac{1}{3}\int_{\gamma}k_{s}^{4}

=-2 \int_{\gamma}k_{sss}^{2}+2\int_{\gamma}(k-\overline{k})^{2}k_{ss}^{2}+4\overline{k}\int_{\gamma}(k-\overline{k})k_{ss}^{2}

+2 \overline{k}^{2}\int_{\gamma}k_{ss}^{2}+\frac{1}{3}\int_{\gamma}k_{s}^{4} .

As before,

\int_{\gamma}(k-\overline{k})^{2}k_{ss}^{2}ds\leq(\int_{\gamma}(k-\overline{k})^{4}ds)^{\frac{1}{2}}(\int_{\gamma}k_{ss}^{4}ds)\frac{1}{2}

\leq C(\int_{\gamma}(k-\overline{k})^{2}ds)^{\frac{7}{6}}(\int_{\gamma}k_{sss}^{2}ds)^{\frac{5}{6}}

:

\int_{\gamma}(k-\overline{k})k_{ss}^{2}ds\leq(\int_{\gamma}(k-\overline{k})^{2}ds)^{\frac{1}{2}}(\int_{\gamma}k_{ss}^{4}ds)\frac{1}{2}

\leq C(\int_{\gamma}(k-\overline{k})^{2}ds)\frac{3}{4}(\int_{\gamma}k_{sss}^{2}ds)^{\frac{3}{4}} ,

and

\int_{\gamma}k_{s}^{4}d_{S}\leq C(\int_{\gamma}(k-\overline{k})^{2}ds)^{\frac{7}{6}}(\int_{\gamma}k_{sss}^{2}ds)^{\frac{5}{6}}

As a result of these estimates, we arrive at

\frac{d}{dt}\int_{\gamma}k_{s}^{2}ds\leq C_{4}(E^{3}+E^{7}) , (9)
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where C_{4} depends on various quantities like C_{3} . Finally,

\frac{d}{dt}\int_{\gamma}k_{ss}^{2}ds=-2\int_{\gamma}k_{ssss}^{2}ds-2\int_{\gamma}k^{2}k_{ss}k_{ssss}ds-2\int_{\gamma}kk_{s}k_{ss}^{2}ds .

By the interpolation inequality, we have

\int_{\gamma}k^{8}ds\leq C(\int_{\gamma}k^{2}ds)\frac{29}{8}(\int_{\gamma}k_{ssss}^{2}ds)\frac{3}{8} ,

and

\int_{\gamma}k_{ss}^{4}ds\leq C(\int_{\gamma}k^{2}ds)^{\frac{7}{8}}(\int_{\gamma}k_{ssss}^{2}ds)^{\frac{9}{8}}

Therefore,

\int_{\gamma}k^{4}k_{ss}^{2}ds\leq C(\int_{\gamma}k^{2}ds)^{\frac{9}{4}}(\int_{\gamma}k_{ssss}^{2}ds)^{\frac{3}{4}}

On the other hand,

| \int_{\gamma}kk_{s}k_{ss}^{2}ds|\leq(\int_{\gamma}k^{4}ds)\frac{1}{4}(\int_{\gamma}k_{s}^{4}ds)\frac{1}{4}(\int_{\gamma}k_{ss}^{4}ds)\frac{1}{2}

\leq C(\int_{\gamma}k^{2}ds)\frac{5}{4}(\int_{\gamma}k_{ssss}^{2}ds)\frac{3}{4}

Putting these together, we get

\frac{d}{dt}\int_{\gamma}k_{ss}^{2}ds\leq C_{5}(E^{9}+E^{5}) (10)

By the same procedure, one can obtain a general inequality

\frac{d}{dt}I_{\gamma}(\frac{d^{n}k}{ds^{n}})^{2}ds\leq CE^{2n+5} ,

for E\geq 1 . However, (8), (9) and (10) are sufficient for our purpose.

3. Proofs of the Propositions

Proof of Proposition A. bom [12] we know that for any closed, immersed
H^{4}-curve, there exists a unique solution of (1) in some [0, t_{1}) , t_{1}>0 where
t_{1} depends on the H^{4}-norm of the initial curve. Now, suppose that E(t) is
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uniformly bounded in [0, T) for some T By integrating (9) and (10), we
see that it implies a uniform bound on the L^{2}-norms of the first and the
second derivatives of the curvature, which in term implies a H^{4} bound on
the curve itself. (In fact, using the differential inequality next to (9), one
can obtain a uniform H^{k_{-}}bound on the curve with a prescribed k. ) We may
then use the local existence result in [12] again to extend the flow beyond
T Taking T to be \omega , we conclude that E must become unbounded as a
finite \omega is approached.

When \omega is finite, we can integrate (8) from t to \omega to obtain

E^{4}(t) \geq\frac{1}{8C}(\omega-t)^{-1} ,

when t is close to \omega . We have obtained the desired lower bound for the
blow-up rate.

Finally, when \omega is infinity, it follows from (5) and the isoperimetric
inequality that

\int_{0}^{\infty}\int_{\gamma}k_{s}^{2}(s, \tau)dsd\tau\leq L_{0} ,

for some constant L_{0} . Hence for any \epsilon>0 , there exists j_{0} such that we can
find, by the mean-value theorem, t_{j}\in[j, j+1] satisfying E(t_{j})\leq\epsilon for all
j\geq j_{0} . Prom (8) it is clear that we can find a sufficiently small \epsilon such that
E(t) is less than 1 for all t in [t_{j}, t_{j}+2] . It means that E(t) is uniformly
bounded in [j_{0}+1, \infty) . It follows from (9) and parabolic regularity that all
spatial and time derivatives of k are uniformly bounded. In view of (5), any
sequence \{k(\cdot, t_{j})\} contains a subsequence \{k(\cdot, t_{j_{i}})\} converging smoothly
to a constant as t_{j_{i}}

- \infty . Since the flow preserves both area and total
curvature, the constant must be the same for any converging subsequence.
We have shown that k(\cdot, t) tends to a constant as tarrow\infty . The proof of
Proposition A is completed. \square

Before proving Propositions B and C , we put down some comments.
First, \omega is always finite when n=0. For, by (5), we have

\frac{dL}{dt}\leq-\frac{\pi^{2}}{L^{2}(t)}\int_{\gamma}k^{2}ds

\leq-\frac{\pi^{2}}{L^{3}(t)}(\int_{\gamma}|k|ds)^{2}
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\leq-\frac{4\pi^{4}}{L^{3}(t)}

Hence

\omega\leq L_{0}^{4}/8\pi^{3} .

Second, we may call the flow develops a type I singularity if

\int_{\gamma(\cdot,t)}k^{2}d_{S}\leq C(\omega-t)^{-1/4} .

In view of Proposition A, the blow-up rate is the lowest for type I singu-
larities. Recall that for the curve shortening flow (2), a type I singularity
satisfies the lowest blow-up rate

|k|_{\max}(t)\leq C(\omega-t)^{-1/2} .

A theorem of Altschuler [2] states that if a flow develops only type I singu-
larities, then in fact it must shrink to a point and, after rescaling it so that
its area is always the same, the normalized flow converges to a contract-
ing self-similar solution of (2). All contracting self-similar solutions of (2)
were completely classified by Abresch-Langer [7]. We believe the present
situation is similar. We rescale the flow by setting

\gamma(s, t)=(\omega-t)^{\frac{1}{4}}\overline{\gamma}(s, t) .

Then \overline{\gamma} satisfies the flow

\frac{\partial\overline{\gamma}}{\partial\tau}=-\overline{k}_{\overline{ss}}n+\frac{1}{4}\overline{\gamma} .

where \tau=-\log(\omega-t) , and its stationary solution is a contracting self-
similar solution satisping

\gamma=4k_{ss}n .

It would be very interesting to find and classify all closed, contracting self-
similar solutions of (1).

Third, the inequalities (6) and (8) enable us to solve (1) for \gamma_{0}’s satis-
fying only the regularity requirement

\int_{\gamma 0}k_{0}^{2}ds<\infty .
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To see this, let’s apply the mean-value theorem to (5) to find some t^{*}\in(0, t)

such that

\int_{\gamma}k_{s}^{2}(s, t^{*})ds\leq L_{0}/t .

Therefore,

\int_{\gamma}k_{s}^{2}(s, t)ds
\leq\int_{\gamma}k_{s}^{2}(s, t^{*})ds+\int_{t^{*}}^{t}C(E^{3}+E^{7})ds

\leq L_{0}/t+C’ . (11)

This is because by (8) the second term in the right hand side of (11) is

uniformly bounded on (0, T] for some T depending only on the L^{2} curvature
of the initial curve. For any initial curve with finite L^{2}-curvature, we may

approximate it by a sequence of smooth curves \{\gamma_{j}^{0}\} whose L^{2} curvature
are uniformly bounded. By (8) and (11) we know that there is a uniform

T>0 such that the flow, \gamma_{j} , starting at \gamma_{j}^{0} exists in [o, _{T}] . By passing to a
converging subsequence we see that the flows \{\gamma_{j}\} approach to a flow of (1)

as jarrow\infty . To see that it takes \gamma_{0} as its initial curve we may first represent

the flow locally as graphs and then adapt, for instance, the argument in

Section 2 of Bernis-Friedman [3] to establish a uniform H\"older bound on
these graphs. By letting t go to 0 we see that it takes \gamma_{0} as its initial curve.

We point out that all results in this paper apply to flows whose initial

curves have L^{2_{-}}curvature

Proof of Proposition B. Suppose on the contrary that the flow exists for

all time. By Proposition A, it subconverges smoothly to an n-fold circle.

Since area is constant along the flow, the radius of the limit circle is equal

to (A_{0}/n\pi)^{1/2}- By the curve shortening property of the flow,

\frac{L_{0}^{2}}{A_{0}}\geq\frac{(2n\pi)^{2}A_{0}}{n\pi}\cross\frac{1}{A_{0}}=4n\pi .

The contradiction shows that Proposition B must hold. \square

The reader should not be left with the impression that long time exis-

tence of (1) always holds for curves with total curvature 2\pi . Some of these

curves do blow up in finite time, although we don’t have a result as general

as Proposition B. As an illustration, consider a circle centered at the origin

O and oriented in the counterclockwise direction. Place two small circles on
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the top and bottom of this circle respectively. These three circles together
form a smooth, immersed curve \gamma symmetric with respect to the x- and the
y-axes. The orientation of the small circles are clockwise, and so the total
curvature of this curve is -2\pi . Suppose that the isoperimetric ratio of \gamma

is not greater than 8\pi . We claim that the flow (1) starting at this curve
blows up in finite time. For, if it exists for all time, by Proposition A it
converges to a circle centered at O with total curvature -2\pi . Since the
winding number of the initial curve around O is 1 and it changes to -1
eventually, there is a time t^{*} at which the flow touches O . By symmetry,
the flow at t^{*} splits into a closed curve C touching O and its image under
reflection with respect to the x-axis. Denoting the perimeter and area of C
by l and a respectively, we have,

8 \pi\geq\frac{L_{0}^{2}}{A_{0}}>\frac{(2l)^{2}}{2a}\geq 8\pi .

Contradiction holds. Hence the flow cannot exist for long.
Now, we proceed to prove Proposition C. First, we need to recall some

basic properties of the support function of a locally convex curve with pos-
itive curvature. For such a curve \gamma , we may use the normal angle \theta , i.e ,
the unit outer normal is given by (cos \theta , sin \theta), to parametrise \gamma . Then the
support function is given by

h(\theta)=\langle \gamma(s(\theta)) , (cos \theta , sin \theta)\rangle

For a flow of (1) consisting of closed, locally convex curves \gamma(\cdot, t) , the sup-
port function h(\theta, t) satisfies

\frac{\partial h}{\partial t}=\langle t\frac{\partial s}{\partial t}+\frac{\partial\gamma}{\partial t} , (cos \theta , sin \theta ) \rangle

=k_{ss} .

By the formulas d\theta/ds=k and k=(h_{\theta\theta}+h)^{-1} , h satisfies the parabolic
equation

h_{t}=k^{2}( \frac{1}{h_{\theta\theta}+h})_{\theta\theta}+k[(\frac{1}{h_{\theta\theta}+h})_{\theta}]^{2}

In fact, it can be shown that this equation is equivalent to (1) ([7]).
Now, a locally convex, closed curve is called a rotational symmetric

curve with m leaves if its support function is T-period where T=2n\pi/m
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and (n, m)=1 . Let’s denote the class of all these curves by \mathcal{K}(n, m) . The
perimeter and area of \gamma\in \mathcal{K}(n, m) are given by

L= \int_{0}^{2n\pi}(h_{\theta\theta}+h)d\theta

= \int_{0}^{2n\pi}hd\theta

=m \int_{0}^{T}hd\theta ,

and

A= \frac{1}{2}\int_{0}^{2n\pi}(h_{\theta\theta}+h)hd\theta

= \frac{m}{2}\int_{0}^{T}(h^{2}-h_{\theta}^{2})d\theta ,

respectively. We have the following isoperimetric inequality.

Lemma 3.1 For any \gamma\in \mathcal{K}(n, m) , n/m<1 ,

\frac{L^{2}}{A}\geq 4n\pi ,

with equality holds if and only if \gamma is an n-fold circle.

Proof Let the Fourier expansion of the support function of \gamma be

h= \sum_{k=0}^{\infty}a_{k}\cos\frac{2k\pi\theta}{T}+\sum_{k=1}^{\infty}b_{k}\sin\frac{2k\pi\theta}{T} .

We have

\frac{L^{2}}{A}=2m\frac{(\int_{0}^{T}hd\theta)^{2}}{\int_{0}^{T}(h^{2}-h_{\theta}^{2})d\theta}

2mT^{2}a_{0}^{2}

Ta_{0}^{2}+ \frac{T}{2}\sum_{k=1}^{\infty}[1-(\frac{2k\pi}{T})^{2}](a_{k}^{2}+b_{k}^{2})
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\geq 2mT

=4n\pi ,

provided n/m<1 . By a routine application of the direct method, one
concludes that,

\mu=\inf\{\frac{L^{2}}{A} : h is an H^{1}-function of period T\}

has a minimizer whose support function is denoted by h^{*}- Taking first
variation, we have

2 \int_{0}^{T}\phi h\theta-\mu\int_{0}^{T}(h^{*}\varphi-h_{\theta}^{*}\phi_{\theta})d\theta=0 ,

for all smooth \phi . By elliptic regularity, h^{*} is smooth and satisfies

h_{\theta\theta}^{*}+h^{*}= \frac{2}{\mu} .

Hence h^{*}=2/\mu+a cos \theta+b sin \theta , i.e., the minimizer is a circle. \square

Proof of Proposition C. bom (8) and (9) we know that

E(t)\leq E(0)e^{d} ,

and

\int_{\gamma}k_{s}^{2}(s, t)ds\leq\rho+C(E^{3}(t)+E^{7}(t))

When \rho is small, |k_{0}-\overline{k}_{0}| and E(0) are small. We fix \rho so that the flow
exists in [0, 1] and k>0 . We claim that \omega=\infty . Suppose on the contrary
that \omega is finite. By the mean-value theorem there exists some t^{*}\in(\omega-1, \omega)

such that

\int_{\gamma}k_{s}^{2}(s, t)ds = \int_{\omega-1}^{\omega}\int k_{s}^{2}(s, \tau)dsd\tau

=L(\omega-1)-L(\omega)

\leq L_{0}-L(\omega)

\leq L_{0}-2(n\pi A_{0})^{1/2} (by Lemma 3.1)
\leq\rho .
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Using t^{*} as the initial time, we can extend the flow beyond \omega , contradic-
tion holds. Hence the flow exists for all time. By Proposition A the flow
subconverges to an n fold circle with area A_{0} . By rotational symmetry, all
limit circles must be centered at the origin and hence they are the same.

Hence the entire flow converges to an n-fold circle smoothly. ExpO-
nential decay can be proved by looking at the eigenvalues of the linearised
equation at this circle. A similar situation can be found in [11], and we
shall not repeat it here. \square

4. Periodic curves

The results proved in the previous sections not only apply to closed
but also to complete curves. Recall that when dealing with non-closed
curves, one usually assumes either the curve is complete or it satisfies some
boundary conditions. Moreover, as for the curve shortening flow, people
have studied the special case where the initial curve is a graph [8]. As a
consequence of the maximum principle, the flow remains as graphs over
the same axis as long as its slope is bounded at the boundary or near
infinity. Here the situation changes drastically for (1). Nice behavior along
the boundary or near infinity does not guarantee interior regularity. As an
illustration, we have

Proposition 4.1 There exists a solution of (1) of the form (x, u(x, t)) ,
(x, t)\in \mathbb{R}\cross[0, T) , T>0 , such that (1) u_{0} is smooth, (2) u and its derivatives
are uniformly bounded near\pm\infty for t \in[0, T) , (3) u is unformly bounded
in \mathbb{R}\cross[0, T) , and yet (4) |u_{x}(0, t)| becomes unbounded as t\uparrow T

Proof Fix an odd function \phi(y) , y\in(-1,1) , satisfying (a) d\phi/dy<0
(y\neq 0) and (y, \phi(y)) is asymptotic to the vertical line y=1 as y\uparrow 1 , and
(b) \phi^{(j)}=0 , j=1,2,3, 4 and \phi^{(5)}(0)=-1 . Let \gamma(\cdot, t) be the flow (1) whose
initial curve is given by (y, \phi(y)) . By modifying the arguments in [11] or
[13], one can show that the flow exists in [0, t_{1}) be some t_{1}>0 . By further
restricting t_{1} , we may assume that each \gamma(\cdot, t) is also a graph (y, v(y, t))
over (1) 1).

Now, the normal velocity of the flow is given by

\gamma_{t}n=\frac{v_{t}}{\sqrt{1+v_{y}^{2}}}
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Therefore, v satisfies the equation

-v_{t}=( \frac{1}{\sqrt{1+v_{y}^{2}}}(\frac{v_{yy}}{(1+v_{y}^{2})^{3/2}})_{y})y

By (a), (b) and Taylor expansion

v(y, t)=v(y, 0)+v_{t}(y, 0)t+O(t^{2})

= \frac{\phi^{(5)}(0)y^{5}}{120}-\phi^{(5)}(0)yt+O(t^{2}+|y|^{7})

=-y( \frac{y^{4}}{120}-t)+O(t^{2}+|y|^{7})

>0 ,

for y>0 , y^{4}\ll t\ll 1 .
Let \psi be another odd function close to \phi such that (a) and (b) hold for

\psi except now d\psi/dy <0 in (1) 1). When \psi is very close to \phi , the flow
starting at (y, \psi(y)) exists in [0, t_{1}/2) and assumes the form (y, w(y, t)) .
Moreover, w(y, t)>0 for x>0 and x^{4}<<t<<1 . Since \partial w/\partial y<0 , we
may represent this flow as a family of evolving graphs (x, u(x, t)) over the
x-axis. By continuity, there must be some T<t_{1}/2 such that \partial u/\partial x(0, T)

blows up. \square

Remark A fuller discussion on the graph-losing property of (1) can be
found in [10]. We thank the referee for providing us with this reference.

In view of this proposition, we do not consider evolving graphs. Instead
we consider periodic curves. A complete curve is called a periodic curve
(with period L) if there exists a vector \xi such that

\gamma(s+L)=\gamma(s)+\xi , for all s\in \mathbb{R} .

Proposition 4.2 Let \gamma_{0} be a periodic curve with period L_{0} . Then (1) has
a unique maximal solution in [0, \omega) such that

\gamma(s+L(t), t)=\gamma(s)+\xi , for all s\in \mathbb{R} ,

and

\int_{0}^{L(t)}k(s, t)ds=2n\pi , for all t \in[0, \omega) .
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Moreover, \omega is always finite when n\neq 0 . When n=0 and k_{0} is small, \omega

is infinity and the flow converges to a straight line.

Proof. We outline the proof of the proposition as follows. By representing
the flow as graphs over \gamma_{0} , one can follow the arguments in [11] or [13] to

show that a unique maximal solution exists. It follows from the uniqueness

of the solution that each \gamma(\cdot, t) is periodic with period L(t) along the same
direction \xi . When \omega is infinity, the proof of Proposition A shows that the

curvature k(\cdot, t) converges smoothly to some constant k_{\infty} . Since L(t)\geq|\xi| ,

the constant is non-zero when n\neq 0 . So, \gamma(\cdot, t) converges to a circle, but

this is impossible. Hence \omega must be finite when n\neq 0 . On the other hand,
k_{\infty} is zero when n=0. In other words, the flow converges to a straight line.

Finally, when k_{0} is small, one can argue as in the proof of Proposition C

that \omega is infinity. The proof of Proposition 4.2 is completed. \square
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