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On construction of continuous functions
with cusp singularities
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Abstract. In this paper, we study various constructions of continuous functions on
R which have the prescribed cusp singularities at each point. As applications, we get
some generalizations of the results given in our previous paper [7], which discuss the cusp
singularities of the classical Weierstrass functions and Takagi function.
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1. Introduction

Let s be a positive number, which is not an integer and let zg be a
point in R™®. Then a function f on R™ belongs to the pointwise Holder
space C*(xp), if there exists a polynomial P of degree less than s such that

|f(z) — P(z — z0)| < Clz — zol°

in a neighborhood of zy. The pointwise Hélder exponent of a function f at
a point g in R™ i defined as

H(f,z9) =sup{s > 0; f € C°(xp)}.

If a continuous function f does not belong to C*(xg) for every s > 0, then
H (f, iL'()) = 0.

However the pointwise Holder exponent of a function f at a point xg in
R" is not stable under the pseudo-differential operators. Similarly it does
not fully characterize the oscillatory behavior on a neighborhood of zy. This
implies that f € C*(xp) cannot be characterized by size estimates on the
wavelet coefficients of f.

Here let us recall the definition of the weak scaling exponent character-
izing the local oscillatory behavior.

So(R"™) denotes the closed subspace of the Schwartz class S(R™) such
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that
/ z%Y(z)dz =0

for every multi-index a in Z7. Then a tempered distribution f belongs to
I'*(zo), if for every ¥ in Sp(R"™), there exists a constant C(1) such that

f@) e (S5 do

The weak scaling exponent of a function f at a point g in R" is defined as

<C(¥)a®, 0<a<l.

’R"

B(f,zo) = sup {s € R; f locally belongs to I'*(xp)}.

Since it is known that the pointwise Holder space C*(zg) is contained in
local I'*(xg), it is obvious that

H(f,z0) < B(f, o).

Now we recall the definition of the two-microlocal spaces C2 , which
characterize this weak scaling exponent.
Let ¢ be a function in the Schwartz class S(R™) such that

1
1 <=

o=y b k=g
0 on [£|>1

where ¢ is the Fourier transform of . For every non-negative integer j, we
define the convolution operator S;(f) = f * 1 where p,(z) = ain(p (%),
27

and the difference operator A; = S;41 —S;. Then

I:SO+ZAj°

=0

Let ¢ = p1 = Then ¢ € Sp(R™) and
Aj(f) = vy

Let s and s’ be two real numbers and xg a point in R".l Then a tempered
distribution f belongs to the two-microlocal spaces Cy , if there exists a
constant C such that

1S0(f) ()| < CA + |z — o))
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and
1A;(f)(z)] < C277°(1 + |z — xol)—s’

for every j € Z; and r € R"™.
The fo}lowing remarkable theorems with respect to the two-microlocal
spaces Cz; and I'*(zg) were given in [5].

Theorem A [5, Theorem 1.8] Let s and s' be two real numbers and zq a
point in R™ and let us assume two positive integers v and N satisfying

r+ s+ inf(s',n) > 0
and

N > sup(s,s+ ).
Let ¢ be a function such that

6% (z)| < C(Q)

a| <r, >1

and
| sMb@)dz=0, p<N-1

s,s’

If a function or a distribution f belongs to the two-microlocal spaces Cgy |

then we have
f(x)inw (:c — b) dz| < Ca® (1 + b- 330|) ,
R" a a a

0<a<l, [b—xo<1.

Theorem B [5, Theorem 1.2] Let s be a real number and let f be a func-
tion or a distribution defined on a neighborhood V of x.

Then f locally belongs to I'*(xo) if and only if f locally belongs to the
two-microlocal spaces Cmo for some s

Several scientists have been interested in constructing irregular func-
tions. The well-known example is the Weierstrass function [8]. It is an
example of a nowhere differentiable continuous function. Hardy gave better
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estimates of the regularities for the Weierstrass function

We(z) = Z a" cos(b"mx) (1)

n=0

and its sine series
o0
Ws(z) =) _a"sin(b"nz), (2)
n=0

where 0 < @ < 1, b > 1 and ab > 1 [3]. He proved that these functions
do not possess finite derivatives at each point z and showed more precisely

that if ab > 1 and £ = l%i—(g—%bl, then these functions satisfy

We(z + h) = We(z) = O(|hf¥) and Wy(z + h) — Ws(z) = O(|h[*)
for each x, but satisfy neither

We(z + h) = We(x) = o[h[¥) nor Wj(z + h) — Ws(z) = o(|h[*)

for any .
Next let us recall the definition of the Takagi function [6]. Let 6* be
the 1-periodic function such that

1
(2) = 1
l—=x if§f.'1?<].

Then the Takagi function is defined by

T@)=Y % (22:“’). (3)

n=0

It is another example of a nowhere differentiable continuous function.

Using the scaling exponents, Meyer defined two types of singularities
of functions as follows [5]: a point o in R™ is called a cusp singularity of a
function f, when

H(f,il?o)‘:—,@(f,mo) < 00,

while a point zg in R™ is called an oscillating singularity of a function f,
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when

H(f,zo) < B(f, Zo).

When a point xq is a cusp singularity of a function f, the pointwise
Holder exponent can be found by computing the size estimates on the
wavelet coefficients of f inside the influence cone. Using this fact, we con-
struct continuous functions which have a prescribed cusp singularity at each
point g in R.

Daoudi and his team |2] studied the following problem which was raised
by Lévy Véhel:

Let s be a function from [0, 1] to [0,1]. Under what conditions on s does
there exist a continuous function f from [0,1] to R such that H(f,z) = s(x)
for all z in [0,1)?

They solved the problem as follows: “For a function s from [0, 1] to
[0, 1], there exist a continuous function f on [0, 1] such that H(f,z) = s(x)
for all z in [0, 1] if and only if s is a function which can be represented as a
limit inferior of a sequence of continuous functions on [0, 1].” Further, they
constructed such f by various methods, — as the Weierstrass type function,
using Schauder bases and using Iterated Function System.

On the other hand, Andersson [1] proved a similar characterization for
a function s from R to [0, 0] and constructed f satisfying H(f,z) = s(x)
for all z in R by a method using orthogonal wavelets.

In the rest of the paper we study, for a given function on R, various
constructions of a function f satisfying

H(f,ZE)—_-,B(f,ZE):S(.’II), z € R,

using orthonormal wavelets in Section 2, as the Weierstrass type function
in Section 3 and using spline functions in Section 4.

2. Construction using orthonormal wavelets

In this section, using orthonormal wavelets, we construct a continuous
function which has a prescribed cusp singularity at each point in R.
The following is used in the proof of Theorems 1 and 2.

Lemma 1 Let s be a function from R to [0,00], which is the lower limit
of a sequence of real continuous functions {t;}ien. Then there exists a
sequence {siticz, of infinitely differentiable non-negative functions with
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compact supports such that
(i) s(z) = lilm inf s;(z), z € R,
—00

(ii) For each xo in R, there exists a positive integer ly such that

si(z) >

lZlo, |£B—£L‘0|Sl.

1
Vi+1
(iii) There exists a sequence {Ci}rez, C (0,00) such that

sup s ()| < CW*HL, 1eZy,
z€R

(k)
l

where s, s the k-th derivative of s;.

Proof. Let n be a non-negative infinitely differentiable function supported
on [—1,1] satisfying n(z) = 1 if |z| < §, sup,er n(z) = 1 and [ n(z)dz =
1. If we put

- T 1
t = r i t ) ’l ) le Na
(z)=n ( 7 ) min (ma.x ( 1(z) m) )
it is easy to see that {f;};en satisfies
liminf#;(x) = s(z), =z €R,
l—o00

1 [
3 z S E)
[+1 2 4

EI(SL') >

and

sup {(z) < L.
zeR

Since each {; is uniformly continuous, we can choose a strictly increasing
sequence of positive integers {p;}ieN such that

- ~ 1
sup [ti(z) —t(y)| < 7, LEN.

1
|lz-yl< o

Under these circumstances, we define s;(z) for [ € Z; and = € R by
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0 if 0<l<p
si(r) =

/R Pl (P(® — 9))em(¥) dy i P < | < Pras1, m € N.

If we put Cx = [g In®)(z)| dz for k € Z,, then {s;}icz, satisfies the re-
quired properties (i), (ii) and (iii). To prove (i) we have

/ PmN(Pm(z — ¥)) (Em(y) — tm()) dy|
R

< swp lin(y) ~ n(o) ] n(y) dy

|si(z) — tm(2)| =

1
< =, PmSl<pm+1.
m

This proves the desired result. To prove (ii) we choose my € N such that
- mLO > |zo| + 1 and put lyp = pm,. For a positive integer [ > [y, choose
m € N such that p,, <! < ppy1. Then if |z — 29| < 1, we have

s1(z) = / Pl (Bm(@ — )i () dy

> inf i) / n(y) dy
<5 R

> inf tm (v)
ly|<|zo|+1+

> inf tm(y)
lyI<ZT

S 1 1

~ Vm \/l_i_

To prove (iii) we choose m € N, for a given ! € N, such that p,,, <1 < ppm1.
Then we have

(k)(x)l _ '/ p’fn+17)(k) (x — y))tm(y) dy‘
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Theorem 1 Let s be a function from R to [0, 0o], which is the lower limit
of a sequence of continuous functions. Then there exists a sequence {si}icz.
of differentiable functions such that

s(z) = lilm infs;(z), ze€eR (4)
—00
and
suplsi(@)] < G2, 1€ Zy. (5)
zeR

Let 1 be an orthonormal wavelet in the Schwartz class S(R). If we
define a continuous function f by

f@) =) el m)yyp(2'z —m),

=2 m=0
where
c(l,m) = min(Z_lsl(%nr) , 2”@),
then we have
H(f,z0) = B(f,z0) = s(z0)
at each point xy in R.

Proof. The existence of {s;}icz, satisfying (4) and (5) follows from Lem-
ma 1. Since

jlif& sup  |sj(x) — s;5(v)]
jo—y|<2 (o&d)?
< lim sup |s}(z)] sup |z — y
I—7X¥eR _J7

le—yl<2 (o83
< C lim 522 (os3)?
j—00
— 0,
H(f, o) = s(zo) at each point xp € R (cf. [1] p. 441, proof of Theorem T)).

We only need to compute the value of 3(f, xo).
Let us assume f locally belongs to I'*(zg). Then by B, f

locally belongs to C’ig,s, for some s’ < 0. On the other hand, ¥ € So(R)
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(cf. [4, 2. Corollary 3.7]). By [Theoreml A, there exist two constants C €
(0,00) and § € (0, ) such that
< Ca’ ( b= CU0|> ,
a

[rog(52) e

0<a<é, |b—m0|<6. (6)
Let jo be a positive mteger such that 2]0 < 4. For every 7 > jo, there
exists k; 6 Z such that i <z < %+l and we define a; and b; by a; = 37
and b; = 2:,. Then |b; — :vol <aj and by (6), we have
——————— c2~ .
f(@)299(2z — kj) dz| < 5e > J 2o (7)

We estimate the left hand side of (7) as follows:

‘/ f(x)Zdex

Z z lm/v,l) z —m)2(2x — k;) dx

kj)- (8)
By (7) and (8), f € I'’(xp) implies

c2~
278 7

e(i k) = min(2” -isi () o w) < i > o 9)

Observe that

k; k.
li 7)) —s; < 1 -2
Jm |55 (23) sj(wo)| < Jiﬁigﬁls( z)| (:ro 23)
j2
= Oiny

= 0.
y (9), we have

< imintmax (s (%),
s <tmintmax (5 (57 ) o

= liminf s; (k )
j—oo 27



170 H. Watanabe

= liminf s;(xo) + lim (sj (%) - Sj(xo))

j—oo j—oo
= s(zo).
Therefore B(f,z0) < s(wo) = H(f,x0). Since H(f,z0) < B(f,xo) is
trivial, we have H(f, zo) = B(f, zo) = s(zo)- a

3. Use of Weierstrass type functions

In this section, we construct the Weierstrass type continuous function
which has a prescribed cusp singularity at each point in R.
We begin with the following lemma.

Lemma 2 Let s € [0,00], lp € Z; and {s;}icz, C R be such that
(a) liminfs =s,
l>oo 1
1>
N/ °

Suppose A > 1 and {Oi}icz, C R are chosen arbitrary.

(b) s>

(i) If m € Zy and {o1}icz, is a bounded sequence in R and if we
define a continuous function f by

oo lm
f(z) = Z C;\lls, sin(\'z +6;), zeR,
1=0

then we have
H(f, III()) 2 S

at each point xg in R.
(ii) If we define a continuous function g by

(o ]
1
9(z) = Z o sin(\'z + ), zeR,
=0

then we have
H(g,xo) = B(g,%0) = s
at each point xgy in R.

Proof. (i) By (b), f is a continuous function on R and hence we have
only to show (i) when s > 0.
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Let g € R be fixed arbitrary.

First, we consider the case 0 < s < 1. Let € € (0, s) be arbitrary. By
(a), we can choose lp € Z4 such that s; > s — & for [ > Iy and we put
filz) = 322, %\%sin(/\lm + 6;). To show H(f,zo) > s — ¢, it suffices to
show f; € C°7¢(xg) since H(f — f1,x0) = oo is obvious. Let x be a real
number such that |z — zo| < )‘%0 and choose N € Z such that <y < |z —
zo| < 5%. Then we have

ad opl™

/\lsl
=l

|fi(x) — fi(zo)| = (sin(/\la: +6;) — sin()\l:co +6;))

o (sin(A'z + 6;) — sin(Nzg + 6)))

IN
™
>| 8

O;\lllsl (sin(\'z + 6;) — sin(Nzg + 91))|

= A + As. (10)
Observe first that there exists a constant M; € (0, 00) such that
loa|i™ < MiAE, 1> 1. (11)

To estimate A; and Ay we use to obtain

Ay <2 Z |041|lm ’ ()\l(:c;-mo) +01) sin ()\l(xz—xo))l

I=lg
N-1
< laglimAA=)| g — g
l=lg
N-1
< M Z /\l(l——s-i-e)lx . -'L'Ol
I=ly v
Ml/\lo(l-s+e) (/\(N—lo)(l—s-’re) _ 1)
- A-—s+e _ 1
Ml)\N(l—s+e)

|z — o]

S \l—s+e — 1 |z — ol
My _
< T g @ 2ol
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s (M52 ) (M=)

2(s—¢)
< 2Mi A
= Txee o1
The estimates for A; and Ay with show that there exists a constant
M, € (0, 00) such that

x — xo|°”°.

_ 1
|f1(z) — fi(zo)| < Malz — zo|*™%, |z —x0| < S

Thus H(f1,z9) > s—e and hence H(f, zy) > s—e. Since € > 0 is arbitrary,
H (f, 11:0) > 8.

Next, we consider the case n < s < n+ 1 for some n € N. In this case,
f is n-times continuously differentiable on R and we have

m

o0
F™ () = g %Sin ()\la: + 6, + n77r) .

Thus H(f™,z9) > s —n by an argument similar to the case where 0 < s <
1 and hence H(f,zg) > s holds even for 1 < s < 0.

Finally, we consider the case s = oo. In this case, f is obviously in-
finitely differentiable at z¢ and hence H(f, zg¢) = oo.

(i) H(g,xzo) > s follows from (i), if we put oy = 1 for | € Z, and
m =0 in (i).

For (g, o), let us assume g locally belongs to I'’(zg). Let % be a
function in Sp(R) such that (€) = 0 if |€ — 1| > 2‘—}—1 and 9(1) = 2. Then
there exist two constants M3 € (0,00) and 7 € (0, 1] such that

/g(m)%t/) (x_amo) dz

Let jo be a non-negative integer such that

< Msa?, 0<a<n. (12)

A

75 < n. For every j > jo,
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we put a; = 35. By [(12), we have
j J M . .
9(@)XN (XN (z = z0)) dz| < 52, § 2 Jo. (13)

We estimate the left hand side of as follows:

] [ 9@ - z0)) da

© q '
= |[ 3 s+ A+ 00 (2)
Z(Al"’w+)\l:co+91) _ —z()\’ Iz Alzg+6;)
- Z )\lSz 21 v(z)dz
e’L(Al:B(H-el),l;(_Al—j) _ e_i(Alw0+gl)’(L(Al_j)

_ " l

—~ 21\
_ Bl

2\ISi

1
- L (14

By and [14), g € I'*(zo) implies /\jls < TJ% for every 7 > jo and
hence p < liminf; ,o s; = s < H(g, o). Therefore (g, zo) < s < H(g, zo).
Since H(g, xo) < B(g, xo) is trivial, we have H(g, zo) = 5(g,%o) = s. O

Theorem 2 Let s be a function from R to [0, 00], which is the lower limit
of a sequence of continuous functions and let {s;}icz, be a sequence of
continuous functions satisfying part (i), (ii) and (iii) of Lemma 1.

Suppose A > 1 and {0} icz, C R are chosen arbitrary. If we define a
continuous function f by

o0

|
f(z) = Z @ sin(\z + 6)),
=0

then we have

H(f,z0) = B(f, o) = s(z0)

at each point xo in R.
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Proof. First, we consider the case n < s(zp) < n+ 1 for some n € Z,.
Using the Taylor expansion we have

1 1 ~1d 1
Alsl(m) = Alsl(xo) + Zlﬁﬁ Alsl(z) =

(x — mo)j
zo

N 1 dn+1 1
(n+ 1) dzntT Nai(@)

(z —zo)"tt,  (15)
=)
where § € (min(z, zp), max(z, zg)). It goes without saying that if n = 0
the second term in the right hand side of (15) does not appear. By (15), we
can write

o0

=3 o SOE+0) = (@) + h@) + A, (16

where
oo 1 -
fiz) = Z Tty SNz + ), (17)
=11 . :
fa(z) = lZ: Z e W@ sin(Az + 6))(z — zo)’ (18)
=0 j=1 T=xQ
and

1 dn+1 1
f3( ) ( + ]_ IZ dxntl )\lsl(x)

sin(\'z + 6;)(z — z0)",
z=§

(19)

where ¢ € (min(z, o), max(zx, z)).
By part (ii) of Lemma 2, H(f1,z0) = B8(f1,z0) = s(xo) follows at once.
fa does not appear if n =0, and if n > 1 we have

© n J kjk (41) (i)
1 (=log A\)*las,..in8) - (o) - - .57 % (20)
f2(m) = ZZZZ _ : )\lskl(:vo)

-sin(Nz + 6))(z — o), (20)

where }: , mean the summation under the condition iy +- - -+ = j with

i1 <- < zk and {a;;,, i } are positive integers satisfying E(*) Qi S
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(k +1)?. By [20), part (iii) of Lemma 1 and part (i) of Lemma 2, we can
deduce that H(f2,zo) > s(xo) + 1. For f3, we have

oo n+l

) (= log \¥lan i1 4. s8(E) ... s (&)
fs(z) = n+1)|zz Z )\181(51)

1=0 k=1 ()41

-sin(Xz + 8))(z — zo)" !, (21)

where E(*)n-{-l mean the summation under the condition 33 + --- 4 i, =
n+ 1 with ¢; < --- < ig and {an41,4,,..4, } are positive integers satisfying
D (9)nss WLy, < (kb + 1)"*l. By and part (iii) of Lemma 1, we
can deduce that H(f3,z9) > n+ 1. By the estimates for f;, fo and f3, and

(16), we can conclude that H(f,zo) = B(f, zo) = s(zo).

Next, we consider the case s(zg) = 0o. Let n be a positive integer and

let f = fi+ fa+ f3, where f1, f2 and f3 are defined by [17), and (19),
respectively. But in this case, we have H(f1,z9) = H(f2,29) = oo and
H(fs,zo) > n+ 1 by part (iii) of and part (i) of Lemma 2, since
liminf;_,o $1(x0) = 0o. By the estimates for fi, f2 and f3, and [16), we
have H(f, zo) > n+1. Since n is arbitrary, we can conclude that H(f, zq) =
B(f, zo) = s(xo) even for s(zg) = oo. O

In the case where s is a continuous function, we have the following
result.

Theorem 3 Let s be a continuous function from R to (0,00) such that
s(zo) < H(s, xo)

at each point zo in R. Suppose A > 1 and {0;}icz, C R are chosen arbi-
trary. If we define a continuous function f by

o0

1
f(z) = Z @ sin(Alz + 6)),

=0

then we have

H(f,z0) = B(f,z0) = s(zo)
at each point xg in R.

Proof. Let xg € R be fixed arbitrary and let « be a real number such that
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|z — zo| < 1. Then we have

—( 1 1
. l . . l
EO s1n(/\ x+0;)+ ;_0 ()\ls(m) - )\ls(zo)) sin(A'z + 6;)

fi(@) + fa(z). (22)

By part (ii) of Lemma 2, H(f1,z0) = B(f1, z0) = s(zo) follows at once.
Let € be a positive number such that s(z¢)+e < H(s, zo) and s(zg)+¢ ¢ N.
Then s € C5(%0)+¢(z0) and there exist a polynomial P of degree at most
[s(z0) + €], two constants C' € (0,00) and 6§ € (0, 1) such that

s(z) = s(zo) + P(z — o) + Q(x — x0)

and
1Q(z — x0)| < Clz — 20|*®)F, |z — 20| < 6.

To estimate fo, using the mean value theorem, we write

1 1 (—logA)l(s(z) — s(xo))
M\s(z) - M\ls(zo) - M\ ’

where 7; € [min(s(z), s(xo)), max(s(z), s(xp))]. Then we have

fo(z) — ((— log \) Z S\f—ﬁ sin()\lx + 91)) P(zx — zp)

o o]

Z sm()\laz +6;)

=0

= (log A) |Q(z — zo)|

C log/\ Z )\lq- |$ T |s(m0)+e
Hence H(f2,xo) > s(xo) + €. By the estimates for f; and f2, and [22), we
can conclude that H(f, zo) = B(f,zo) = s(zo)- O

Corollary 1 FEach point in R is a cusp singularity of the Weierstrass
functions.

Proof. Let W, and W; be the Weierstrass functions (for the definitions of

W, and W, see (1) and (2)). If we put A = b, s(z) = llg(gb) and 0; = § for
1

leZy or 6 =0forl € Z,, then we have HW,,x) = B(W,, x) = lolig‘;)) =

H(W;, ) = B(Ws, x) at each point « in R from [Theorem 3. O
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4. Construction using spline functions

In this section, using spline functions [9], we construct a continuous
function which has a prescribed cusp singularity at each point in R.

Let a be a positive real number and for a positive integer n, C"(R) be
the set of all functions f defined on R such that all the derivatives of f up
to order n exist and f(™ is continuous on R. For n = 0, we mean the set
of all continuous functions on R. A spline of order n with nodes in aZ is a
function f defined on R which is of class C" ! (R) and is a polynomial of
degree at most n when restricted to each interval of the form [ka, (k + 1)a]
for an integer k.

Lemma 3 For a positive integer n, suppose 0 is the 1-periodic spline of
order n with nodes in %Z, which is not a constant function, where A is a
positive integer greater than 1. If we define a continuous function f by

!
Z E9 Nz
where 0 < s < n, then we have

H(f,z0) = B(f,z0) = s

at each point g in R.

Proof. Let zg € R be fixed arbitrary. For H(f, z¢), we divide the proof
into the following two cases.

First, we consider the case 0 < s < 1. We first prove that H(f, xg) > s
in the case s < 1. Let x be a real number such that |z — x| < 1 and choose
N € Z, such that :\-,-\h—l < |z —xz0] < 3‘-1,v Then we have

£(@) ~ f(@o)| = |3 35 (0Nz) — 0(N'z0))
l=_01 1
< |3 5 (O0Tz) ~ 0(3z0))
=0

oo

Z (O(\'z) — O(Azp))

=A; + Ag. (23)
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To estimate Ay we have

o0

A; < (X'z) — 6(N'z0)|

1
—10
lsl
=N A

21
< 2sup |0(x —
sup 0(2)| 3 5

2sup,cg |6(z)]
T
-
As
- 2% sup,cr [0()]
- XS —1

Observe that the estimate for Ay holds even for s = 1. To estimate A; we
use the relation

6(z) — 0(y)| < Cilz -y,

where C; = SUP, R\ Z |6/ (z)| < co. Then we have

|z — xo|°.

N-1

1
AL <) S5l 2) = (X o)
1=0
N-1
< 01 Z )\l(l—s)l:l: - ;L‘()|
1=0
_ C1 ()\N(l_s) -1)
-5 _1 |:B o xOI
Ci s
< i g le ol

H(f, o) > s now follows from the estimates for A; and A, and [23).

To prove that H(f,z9) > s when s = 1 we recall that and the
estimate for Ay are still valid in this case. Thus we need to find an upper
bound for A;. Let € > 0 be fixed arbitrary. To estimate A; we write

N-1
1
A< Y l60) - 6(Vao)|
=0

< CiN|z — zo|
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1
|z — x|

Ci
< 2|y —
< log)\lw zo| log

< Cylz — zo|' 5.

for some constant C; € (0, 00). Hence there exists a constant C3 € (0, 0o)
such that

|f(z) = f(z0)| < Cs)|z — zo|'°.

Therefore H(f,xz0) > 1 — €. Since € > 0 is arbitrary, H(f,z¢) > s holds
even for s = 1.

Next, we consider the case m < s < m + 1 for some positive integer
m < n. Since fM(z) = 352, W;I_—mYO(m)()\lx), H(f™,z0) > s —m by
an argument similar to the case where 0 < s < 1. Therefore H(f,zg) > s
holds even for 1 < s < n.

For B(f, xo), let us assume f locally belongs to I'’(zg). Then by The-
orem B, f locally belongs to C;ﬁ’(’)p, for some p’ < 0. Let M be an integer
greater than p. Let 9 be a function supported on [0, 1], has M — 1 vanish-
ing moments. By A, there exist two constants Cy € (0, 00) and

6 € (0, 1] such that
- =
) dz| < Cya” ( [b_:c_o_|> ,
a

Jres (55

0<a<d, |b—=xo <0 (24)
Let jo be a non-negative 1nteger such that )\JO < 4. For every j > jo,
there ex1sts k; € Z such that < o < 5t and we define a; and b; by
a; = 35 and bj = /\j. Then ]b] — 20| < a; and by [24), we have
o o ad
‘/f(a:))&d;()&x — kj)d:cl < 4)\” . J > Jo. (25)

We estimate the left hand side of as follows:

I/f D)NY(Nz — k;) dz| =

/ 9 (A (2 + kj))y(x) dz

Then we have
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00 1 .
> 5N @+ k)
=0
i1
G O (z + k5)) +Z—9 A (z + k)
1=0

Since 6 is a spline of order n with nodes in %Z, 2{21 )\lsﬁ(f—gﬁ) is

a polynomial of degree at most n on the support of .  Thus
)\;s fo AISO(ﬁlk—)z,b(x) dx = 0. Hence

(26)

‘/f(x)wz Nz — kj) dz| = 15 /1 > )\lse()\l 2)0() da.

Since > 2, /\,SO(AI ) is not a polynomial, we can select a wavelet 1 such
that

[3 yeo0aypio) da 0

0 =0
By [25), (26) and [27), f € I'*(zo) implies 35 < %T for every j > jo
and hence p < s < H(f,zo). Therefore B(f,z0) < s < H(f,zo). Since
H(f,zo) < B(f,xo) is trivial, we have H(f,xo) = B(f, zo) = s. O

In the case where s is a continuous function, we have the following
result.

Theorem 4 For a positive integer n, suppose 0 is the 1-periodic spline of
order n with nodes in %Z, which is not a constant function, where A is a

positive integer greater than 1. Let s be a continuous function from R to
(0,n] such that

S(.’Eo) < H(S, .’Eo)

at each point xg in R. If we define a continuous function f by

(e o]

f(z) = Z P (x) O(Al ),

=
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then we have
H(f,z0) = B(f, z0) = s(x0)
at each point xy in R.

Proof. Let 29 € R be fixed arbitrary and let x be a real number such that
|z — zo| < 1. Then we have

=~ 1 —/( 1
f(.’B) = Z As(zo) O(AliL‘) + Z (}\ls(z) - /\ls%xo)> 9()\[.’17)
= fi(z) + fa(z). (28)

By Lemma 3, H(f1,z0) = B(f1,Z0) = s(zg) follows at once. Let € be a
positive number such that s(zo) + € < H(s, zo) and s(zop) + € ¢ N. Then
s € C%(@)+¢(z) and there exist a polynomial P of degree at most [s(zo) +
€], two constants C € (0,00) and & € (0,1) such that

s(x) = s(zo) + P(z — z0) + Q(z — z0)
and
1Q(z — 20)| < Clz — o™, |z — 3| < 6.

To estimate fo, using the mean value theorem, we write

1 1 (—logM)I(s(x)— s(xo))
\s(z) - \is(zo) - A !

where 77 € [min(s(z), s(zo)), max(s(z), s(zg))]. Then we have

fa(z) — ((— log A) Z X%O(,\’x))P(x — o)

o0

> 5

=0

C(log \) Z )\IT sup 10(z) ||z — zo|*®0) .

= (logA) z)|1Q(z — z0)|

Hence H(f2, o) > s(zo) + €. By the estimates for f; and f2, and (28), we
can conclude that H(f,zo) = B(f, o) = s(zo). O

Corollary 2 Fach point in R is a cusp singularity of the Takagi function.
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Proof. Let T be the Takagi function (for the definition of 7, see (3)). If
we put A =2, s(x) =1 and 0 = 6*, then we have H(7,z) = 8(7,z) =1 at
each point z in R from Theorem 4. O
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